THE FREYD-HELLER GROUP AND THE FAILURE OF BROWN
REPRESENTABILITY

AREEB S.M.

ABSTRACT. It is a classical result due to Brown ([4]) that any set valued con-
travariant functor on the homotopy category of connected based topological
spaces taking coproducts to products and weak pushouts to weak pullbacks is
representable.

This is however, false when we drop the assumption that our spaces and
maps are based, or if we drop the assumption that the spaces under considera-
tion are connected. We describe a construction, often called the “Freyd-Heller”
group ([2]), that results in a counterexample in both cases.
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1. INTRODUCTION

1.1. Overview. The classical Brown representability theorem ([4]) states that any
set valued contravariant functor on the homotopy category of connected based
CW-complexes taking coproducts to products and weak pushout to weak pullbacks
is representable. In particular, cohomology theories satisfy these properties, and
consequently are represented by spaces. These spaces are the Eilenberg-Maclane
spaces.

In fact, Brown himself proved a generalisation in [7]. We present a modern
update below.

Theorem 1.1. Let C be a category with coproducts, weak pushouts and weak se-
quential colimits. Assume further that C admits a strongly generating set G that
is closed under finite coproducts and weak pushouts. Finally, assume that for each
X € G the functor C(X, —) takes weak sequential colimits to strict colimits.
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Then, if F' : C°P — Set takes coproducts to products and weak pushouts to weak
pullbacks, it is representable.

The homotopy category of pointed connected CW-complexes satisfies these as-
sumptions. In particular mappings out of spheres suffice to detect isomorphisms,
as here weak equivalences are in fact invertible and thus such a strongly generating
set exists. Explicitly, we take the G of Theorem 1.1. to be the closure of the set of
(based) spheres under finite coproducts and weak pushouts. (We say G is a strongly
generating set if a morphism f : Y — Z inducing isomorphisms C(X,Y) — C(X, Z)
for each X € G is sufficient to conclude that f is an isomorphism)

Interestingly, these assumptions fail to hold if we disregard either the connect-
edness or the based hypotheses. The point of failure is that there is no suitable
generating set. (for more details, see [6])

We prove that in both the unbased and disconnected case, there exists functors
F' as above taking coproducts to products and weak pushouts to weak pullbacks
that are not representable. It then also follows that neither of the two categories
admit suitable strongly generating sets.

1.2. Some Definitions and Brown Functors.

Notation 1.2. Let Set denote the category of sets, and ‘H the homotopy category
of connected based CW-complexes, i.e. the category whose objects are connected
based CW-complexes and morphisms are homotopy classes of based continuous
maps.

Remark 1.3. When we say a CW complex is based, we require the basepoint to
be a 0-cell. In particular, the CW complex is then nondegenerately based, i.e. the
inclusion of the basepoint is a cofibration.

Explicitly, given a based map f : (X,z) — (Y,y) and a path « from y to
y' €Y, there exists a free (unbased) homotopy of f restricting to the path a on
the basepoint.

Definition 1.4. An idempotent f € C(X,X) in a (locally small) category C is a
map f such that f2 = f. It is further said to split if there exists an object Y and
morphisms r € C(X,Y),7 € C(Y, X) such that

ir=f
Ty = ldy
We then call r a retraction of X onto Y, and say Y is a retract of X.

Definition 1.5. A diagram in a category C is a set of objects in C and morphisms
such that the composites of any two sequences fq, f1,..., fx of composable mor-
phisms with the same domain(fy) and codomain( fx) are equal.

Formally, for a small category J, a diagram of shape J in C is a functor F' : J — C.
The intuition is that J specifies the structure of the diagram and the functor F'
assigns a labelling to the objects and morphisms, defining the image.

We identify a diagram of shape J with it’s image, for the sake of exposition.
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Example 1.6. Consider a ‘square’ category, i.e.

such that vu = gf.
Then a diagram of this shape in a category C is merely a commuting square.

Definition 1.7. A cone over a diagram in a category C with apex A € C is a
collection of morphisms from A to every object of the diagram, such that the ‘big
diagram’ commutes.

Formally, a cone over a diagram F : J — C with apex A € C is a natural
transformation A — F, where A is the constant functor, sending every object to A
and every morphism to id 4.

Example 1.8. For example a cone over the discrete diagram A B is simply

C

/N

A B

Definition 1.9. Dually, a co-cone over a diagram in a category C with nadir A € C
is a collection of morphisms to A from every object of the diagram, such that the
‘big diagram’ commutes.

Formally, a co-cone over a diagram F' : J — C with nadir A € C is a natural
transformation F' — A, where A is the constant functor, sending every object to A
and every morphism to id4.

Definition 1.10. The limit of a diagram F : J — C is a universal cone (with
say, apex A), in the sense that every other cone over the diagram factors uniquely
through it.

Formally, the limit of a diagram F': J — C is a cone a : A — F, such that for
any other cone 3 : B — F, there is a unique morphism A : B — A in C such that
B=aol

Example 1.11. In the category of sets, the limit of the discrete diagram A B
is the cartesian product, as a function C' — A x B is uniquely determined by a pair
of functions C — A,C — B.

C

!

I

I

Y
X

AxB
>N

A B
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Definition 1.12. Dually, the colimit of a diagram F' : J — C is a universal co-cone
(with say, nadir A), in the sense that every other co-cone under the diagram factors
uniquely through it.

Formally, the colimit of a diagram F : J — C is a co-cone o : F — A, such that
for any other co-cone 3 : F — B, there is a unique morphism \ : A — B in C such
that 8 = Ao a.

Definition 1.13. A weak limit over a diagram is a cone over a diagram such that
any other cone over the diagram factors through it. Dually, a weak colimit under
a diagram is a co-cone under a diagram such that every other co-cone under the
diagram factors through it.

That is, we delete uniqueness from the definitons of limit and colimit.

Definition 1.14. We say a functor F' : C°? — Set is a Brown functor if it takes
coproducts to products and weak-pushouts to weak-pullbacks.

Definition 1.15. A functor F' : C — Set is representable if there exists an object
Y of C and isomorphisms F'(X) — C(Y, X) for every object X of C that are further
natural in X, i.e. a natural isomorphism F = C(Y, —).

Notation 1.16. As is conventional, we identify the functors C°P(Y, —) and C(—,Y).

Examples 1.17. The primary diagrams we will be interested in limits and colimits
of are,
(1) A discrete diagram is one where the only morphisms under consideration
are the identities. The limit over a discrete diagram is called the product.
Dually, the colimit under a diagram is called the coproduct.
(2) The limit of a diagram of the form A ——% B is called an equaliser. Dually,
the colimit of such a diagram is called a coequaliser.
(3) The limit of a diagram of the form B is called a pullback. Dually,

|

A——C
the colimit of a diagram of the shape A ——= B is called a pushout.

|

C
(4) The limit of a diagram of the form ... ——= X; ——= X, is called a se-

quential limit. Dually, the colimit of a diagram of the form Xqg —— X; —— ...
is called a sequential colimit.

Analogously, we can define weak versions of the limits and colimits above.

Example 1.18. Reduced cohomology theories on based CW complexes are Brown
functors.

e The “homotopy” axiom states that reduced cohomology descends to a func-
tor on H. The “additivity” axiom (sometimes called the “wedge” axiom)
states that cohomology sends coproducts to products.

e Further for any reduced cohomology theory, we can derive the “Mayer-
Vietoris” axiom, that will imply that reduced cohomology takes weak pushouts
to weak pullbacks.
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2. THE BROWN REPRESENTABILITY THEOREM

We now have enough to state the Brown Representability theorem.

Theorem 2.1. (Brown Representability Theorem): Let F' : H°P — Set be a Brown
functor. Then F is representable.(See [4])

Theorem 2.1 will imply that all idempotents split in H. We state the lemmas
used to prove this fact for an arbitrary category, as we will use them later to show
non-representability of a Brown functor in a different category.

Lemma 2.2. Let F : C°? — Set be a Brown functor, and G : C°? — Set a retract
(in the sense of Definition 1.2) of F(in the functor category Set®” ), then G is a
Brown functor.

Proof. As G is a retract of F, we have natural transformations ¢ : G — F and
r: F'— G such that ri = idg. We must show two things:

(1) G sends weak pushouts to weak pullbacks: Let

A—f>B

|k

be a weak pushout square, we must show it gets mapped to a weak pullback
square.
Let a be a cone over the diagram with apex X (depicted with dotted arrows)

A<l gB
A
GgT lap
\
GC<—--X
ac
Applying i, we get a cone which factors through F'D as follows.

A<t rp

FQT TFu s

A
AN
In
N
X

icac

And then we apply r giving us the desired factorization.

aa<2’ aB

GgT TG,U‘ o8

A
N
TD]'L N N
ac X

Hence, G does in fact send weak pushouts to weak pullbacks.
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(2) G sends coproducts to products: The proof of existence of a factorization
is same as for the previous case mutatis mutandis.

Let A; be a collection of objects of C, denote the corresponding discrete
diagram by J. Let a: J — [] 4; be the colimit co-cone. Let §: X — GJ
be a cone over GJ, then as remarked there is a factorisation 5 = (Ga) for
some A: X — G(]] 4:)

To prove uniqueness, assume for the purpose of contradiction that there
were two different factorisations f,g : X — G([] A4:) as before. Then on
applying i we have that ig(ya,)f ic(14.,)9 are two factorisations of the

cone if : X — FJ through F(]] A;) = [[ F(A;) (by hypothesis). By the
uniqueness criterion of the universal property,

ic(1A0f = taq1a09
and hence

f=rrq1anicq1anf =Tr(1A)IGITA) =9

We recall the (contravariant) Yoneda lemma. (Chapter 3, Section 2 of [3])
Theorem 2.3. Let C be a locally small category and F : C°P — Set be a functor.

Then there is a bijection

Setcop(c(faX)a F) = F(X)
between natural transformations C(—, X) — F and elements of F(X), that is further
natural in both F' and X.

Which has as a corollary,

Corollary 2.4. The ’Covariant Yoneda Embedding’ y : C — Set®” satisfying
y(X) =C(—, X) is a fully-faithful embedding.

Remark 2.5. Recall that a fully-faithful embedding is one that induces bijections
on morphism sets (as the category is locally small).

We make one final observation,

Lemma 2.6. Let f € C(X,X) be an idempotent in C. Then, on applying v,
fv:C(—=, X) = C(—, X) is an idempotent in Set®” , which splits.

Proof. Tt is a direct check that f,. is an idempotent. To construct a splitting, we
define a functor R : C°? — Set. On objects, define R(X) = Image(f,). For a
morphism g : Y — Y’ in C, from the commuting square

c(Y, X)Ly, X)

| |

CY'", X) —=C(Y, X)
g

we observe that g* maps R(Y”) into R(Y'), hence decends to a map g : R(Y’) —
R(Y).

The assignment R(g) = g defines a functor R : C°? — Set. Also, the inclusion
R(Y) — C(Y, X) defines a natural transformation ¢ : R — C(—, X). Further, the
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restriction of the codomain of f to its image defines another natural transformation
p:C(—,X)—R.
The identities

Lp = fx
pt=idp
hold as they hold on objects, thus providing the desired splitting for f,. ([l

Consequently, if the retract of C(—, X) is representable, Corollary 2.4 implies
that the splitting for f, lifts to a splitting of f in C.

We now have enough to prove a general fact about categories where the Brown
Representability theorem holds. A counterexample to this will prove that there
exists a Brown functor which is not representable.

Theorem 2.7. Let C be a category in which all Brown functors are representable.
Then all idempotents split in C.

Proof. Applying Lemma 2.6 to an arbitrary idempotent f of C we get a splitting
for f. in Set®”. One observes that by Lemma 2.2 the retract of C(—, X) induced
by f« is a Brown functor.

Hence by the hypothesis of the Theorem the retract is representable, and thus
f splits in C by Corollary 2.4. ([

Corollary 2.8. All idempotents in H split.

3. CONJUGACY ACTIONS ON GROUP VALUED FUNCTORS

Theorem 2.7 implies that to show failure of Brown representability in the unbased
or disconnected case, it suffices to locate an idempotent that doesn’t split. Before
proceeding further we introduce some notation.

Notation 3.1. Let u denote the category whose objects are nonempty (unbased)
connected CW-complexes and morphisms are homotopy classes of (unbased) con-
tinuous functions.

Let H denote the category whose objects are based CW-complexes and mor-
phisms are homotopy classes of based continuous functions.

Definition 3.2. Define a functor (=) : uH — H by defining (X)4 to be X with
a disjoint basepoint for objects X of uH. For a function f : X — Y representing a
homotopy class [f] in uH, define its image under (—) to be the based homotopy
class of the map (X);y — (Y); restricting to f on X. One can check that this
assignment gives a well defined functor.

We desire idempotents in both these categories that do not split. In fact it
suffices to find one in uH, by the following lemma.

Lemma 3.3. Let [ be an idempotent in uH that does not split. Then, (f)4 is an
idempotent in Hy that does not split.

Proof. We prove the contrapositive. Let f have source (and target) X. We use
crucially that X is connected. Let r: (X); — Y and i : Y — (X)4 be a splitting
of (f)+. Then note that as X x I is connected, any element in the homotopy class
of r maps X into the same connected component of Y. Thus, r restricts to a map
from X to a connected component Z of Y. Further, ¢ restricts to a map of Z into
X. This defines a splitting of f in u#. O
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We now describe a construction used to construct categories with non-split idem-
potents. To do so, we define conjugacy actions.

Definition 3.4. Denote by & the category of groups, and let A be a category in
which all idempotents split.

Then a conjugacy action on a functor 7 : A — & is an assignment f*: A — B
for every f: A — B in A and « € 7(B) such that:

(3.5) =7

(3.6) (f*)° = ro?
(3.7) g*of=1(g90f)"
(3.8) go f*=(go f)m
(3.9) ©(f*) = a7 (f)a

Given such a conjugacy action on a group valued functor 7w : A — &, we can
define a new category A . by identifying f and f< for all & € 7(B). One can check
that (3.8) and (3.9) ensure that we have a well defined category.

Definition 3.10. A conjugacy idempotent f is a morphism in A such that for some
a, f2 = f*, i.e. the equivalence class of f is an idempotent in A /.. We further say
a conjugacy idempotent f in A splits if its equivalence class is a split idempotent
in A/N

We have one immediate example of a conjugacy action, when 7 is the identity
functor on the category of groups and (as is forced by (3.10)) the conjugacy action
is just the inner automorphism, i.e. f* =a~ ! fa.

The other example that we will be primarily concerned with is the fundamental
group functor m : H — & and the conjugacy action is defined as follows.

Definition 3.11. Fix the basepoint 0 for the unit interval I = [0,1]. Let f : X - Y
be a representative of a morphism in H. Consider an element of the fundamental
group of X, represented by a loop « at the basepoint of X. By the universal
property of the coproduct, the maps f and « determine a map X VI — Y. As
X is nondegenerately based, X V I is a retract of X x I. Thus, we get a map
h : X x I — Y by pre-composing with r. Define f* = hx,;;. The map f¢
is defined uniquely up to based homotopy. One can check that this is in fact a
conjugacy action.

Proposition 3.12. H,. is equivalent to uH.

Proof. Denote by £ the category of connected nondegenerately-based CW com-
plexes and free homotopy classes of based maps. There is a canonical functor
EH— 9.

Consider arbitrary f: X — Y in H and o € m1(Y), where 71 (Y) is the funda-
mental group of Y. Then f¢ is free-homotopic (homotopic in an unbased sense) to
f. Then the map & descends to & : H /~ — $. One further observes that € induces
bijections on all morphism sets, and is in fact an isomorphism.

Thus H,. is precisely the category of pointed connected CW-complexes and
free-homotopy classes of continuous pointed maps between them.
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Construction 3.13. Define a functor F': uH — H . as follows. For a connected
CW complex X, fix a 0-cell z to be the basepoint and set F(X) = (X, z). Now for
a morphism [f] : X — Y in uH, pick a representative f.

Let « and y be the chosen basepoints of F(X) and F(Y') respectively. As Y is a
connected CW complex, there exists a path « from f(x) to y. This induces a map
¥ : X VI — Y restricting to f on X and o« on I. The map @ extends to a map
X x I =Y as the 0-cells are non-degenerate basepoints.

This is a homotopy between f and a based map ¢ : (X,z) — (Y,y) which is
unique up to free homotopy. Also, the homotopy class of g, [g] is independent of
the representative f.

The assignment F([f]) = [g] defines the functor.

One further checks that this functor is fully-faithful. Finally, it is essentially
surjective, i.e. every object of the codomain is isomorphic to an object in the image
of the functor. To see this consider any other choice of basepoint 3’. The same
strategy as that of Construction 3.13. applied to a path between y and ¥’ exhibits a
based map (Y,y) — (Y,y’) free homotopic to the identity. Consequently, this map
induces an isomorphism between (Y,y) and (Y,%') in H,.

Thus F is a fully-faithful essentially surjective functor, and is thus an equivalence.

O

Consequently, it suffices to find an idempotent that does not split in either of
these categories, as the retract induced by the splitting extends to the isomorphism
class. We now proceed to construct a non-splitting idempotent in H ..

4. A SPLITTING LEMMA

Our tool in finding non-split idempotents is the following. (Main Lemma of [2])

Theorem 4.1. Let A be a category in which all idempotents split, and let w : A — &
have a conjugation action, then we have a commutative diagram

A—" =6

L

Ajfn —> 0

Here, the conjugacy action on & is the inner automorphism action described earlier
and the column maps are the natural projections. Then for an idempotent f in A,
[ splits in A, if and only if 7(f) splits in &, ..

Remark 4.2. In the rest of the section, we assume A is a category in which all
idempotents split.

Proof. We follow the proof in [2].
One direction is clear, by functoriality a splitting in A/ is taken to a splitting
in .. For the converse, we first note some lemmas.

Lemma 4.3. An idempotent f in A, splits if and only if there exists f' in A such
that f' represents f and f'? = f'.
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Proof. One direction is clear as a splitting in A (which exists by the assumption of
Remark 4.2) induces a splitting in A,.. For the converse, note that if f splits in
A/, then we can find morphisms r,4 in A and a representative f of f such that
ir=f
ri = 1¢

—1

Then a choice of f’ satisfying the desired conditions is f/ :=r® 4. O

Lemma 4.4. If f> = f* in A for some a € Image(w(f)) then f splits in A .

Proof. The image of a group homomorphism is a subgroup of the codomain. Thus,
if @ € Image(rw(f)), then a=! € Image(n(f)). Pick arbitrary 8 € #(f) *(a™?t).
Then f# is an idempotent in A, so by Lemma 4.3, f splits in A (|

Lemma 4.5. If f2 = f* in A and 7(f)(a) is a fived point of 7(f), (i.e. 7(f)*(a) =
7(f)(a)) then f splits in A ..

Proof. Let g = f2.

@ =fff=f00f = (fQ)ﬂ(f)(a)f — (fQ)ﬂ(f)(Om(f)(a)) — gﬂ(f)ﬂ(f)(a2) — gﬂ(g)(a2)

Then

=1 =17
By (3.7), fof = (f2)*)(@), Hence,

JSr = (e
Applying (3.6) yields

(f2)7f(f)(a)f - (fa)ﬂ(f)(a)f = o) f
Now, we use (3.7) as before.

fwrr(f)(a)f _ (f2)7r(f)(a'7r(f)(a))

As w(f)(«) is a fixed point of 7(f), we can rewrite

m(f)(a-m(f)(@) = (7 (H)m(f)(@)* = 7(f*)(a?)
We conclude the formula

T a T a?
g = gfr(f)(a () — g (9)(a?)

By Lemma 4.4, g splits in A /. Being equal in A/, so does f. (I

Now suppose for arbitrary f, 7(f) splits in &,. and identify f with a fixed
representative in A. Then, by Lemma 4.3 7(f)® is an idempotent in & for some a.
Thus, g = f¢ is such that 7(g) is an idempotent in &. Further

92 = (ff9e = (f2)a7r(f)(a) — gﬁw(f)(a)

where f2 = fP.
As 7w(f) is an idempotent, the conditions of Lemma 4.5 hold, and thus f splits
in A, . This proves the other implication in the Splitting Lemma. (]
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5. A RIGHT INVERSE

In order to find a non-splitting idempotent f in uH it suffices to check that its
image under 7; does not split. We desire a functor K(—,1) : & — H that serves as
a right inverse to the fundamental group functor 7.

We recall some facts about simplicial sets, their geometric realisations and clas-
sifying spaces. For more details, the reader is referred to Section 5, Chapter 16 of

1.

Lemma 5.1. There exists a functor & — H, that assigns to a group G its total
space EG.

Lemma 5.2. For any group G, its total space EG is contractible.

Lemma 5.3. There is a functor & — H, sending a group G to its classifying space
BG. This functor is denoted K(—, 1), and called the Eilenberg-Maclane functor.

Lemma 5.4. The natural projection EG — BG is a bundle with fiber G. Conse-
quently the fundamental group of BG is G.

Theorem 5.5. The FEilenberg-Maclane functor K(—,1) : & — H is a right inverse
to the fundamental group functor.

We will construct a right inverse B to 7;. Then, suppose there was an idempotent
fin &, that did not split. Its image Bf would be an idempotent in H,~ that did
not split. This follows from the observation that a splitting of Bf would taken to
a splitting of f by 7.

Lemma 5.6. Let X be a connected based CW complex and let Y be a K(G,1) as
above. Then every homomorphism w1 (X) — 7 (Y) is induced by a (based) map
X =Y that is unique up to (based) homotopy.

This is Proposition 1B.9. of [5]

Lemma 5.7. For spaces X, Y and based maps p : (X,z) — (Y,p(x)),q: (X,2) —
(Y, q(x)) such that there is a free homotopy h : p ~ q, let a be the path-homotopy
class of the path traced out by x under h. Then the following diagram commutes.

m1 (X, )

(Y, p(x)) (Y, q(z))

(]
The proof can be found in chapter 1, section 4 of [1].

Lemma 5.8. There exists a functor B making the following diagram commute.

K(_vl)

& H
G/ —5 Hn

i.e. K(—,1) takes inner automorphisms to maps free homotopic to the identity.
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Proof. Fix an inner automorphism, say by a. Denote the resulting map on the
group G by 7v[a]. Then v[a](z) = axa™!. Let [ be a representative of a.

Let ¢ = K(vy[a],1). We wish to show that ¢ is free homotopic to the identity.
Define a map X A I — X restricting to [ on I and the identity on X. By nonde-
generacy of basepoints, X A [ is a retract of X x I. Pre-composition gives a free
homotopy from the identity funtion to a function f, also a based map. Then, by
Lemma 5.7, f induces vy[a] on 7 (K (G,1)) = G.

From Lemma 5.6. and the fact that K(—,1) is a right inverse to 7y, it follows
that f and v are homotopic as based maps. But f is free homotopic to the identity,
and thus so is . O

Consequently, B is a right inverse to ;. Thus given a non split idempotent in
&,., Bf is an idempotent in H . that does not split.

6. CoNJUGACY ACTIONS ON GROUPS

We are thus led to look for idempotents in &, that do not split. We describe
the “Freyd-Heller” idempotent, as defined in [2].

Definition 6.1. A conjugacy triple is a three-tuple (F, f, ) of a group F, a group
endomorphism f, and an element o € F such that f2 = f®. (We assume the
standard conjugacy action via inner automorphisms)
A morphism ¢ of conjugacy triples ¢ : (F, f,a) — (G,g,5) is a commuting
square
»

F—

Q

f

-
)

Q

F—

P
such that ¥(«a) = S.
Construction 6.2. We construct the initial conjugacy idempotent as follows.
Let the “Freyd-Heller” group F, be the group with generators g, x1, ... subject
to the relations x;z; = x;x;41 for 0 <¢ < j. That is,
G =< o, L1, .- - |£L'jf£i = $Z‘1'j+1,0 <i<g>
Define f: F — F by f(x;) = 41, and observe that
-1, -1 -1, -1
TjTiZjq Ty P Tjp1Tip1 50T
This is the identity, as it is a defining relation of F'. Thus, the map f is well defined.
Further
fH@) = ie = ag wiizo = 2 f(xi)wo = [0 (2:)
Consequently f2 = f%. Thus (F, f,z¢) forms a conjugacy idempotent.

Theorem 6.3. The conjugacy idempotent of Construction 6.2 is initial in the
category of Definition 6.1.

Proof. Let (G,g,B) be another conjugacy idempotent. Define h : F — G by
F(zo) = 8 (which is forced).

It is forced by the commutative square criterion that we have h(z;) = g*(f).
One checks that this does in fact form a morphism of conjugacy triples. Thus, it is
the unique morphism we desire. [
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We wish to show that f is an idempotent in &, that doesn’t split. Our strategy
is motivated by the following lemma.

Notation 6.4. For a group G and a,b € G, denote the commutator by [a,b] :=
aba~'b~!. The normal subgroup generated by the commutators, the commutator
subgroup is denoted [G, G].

Lemma 6.5. Let (G,g,[) be a conjugacy idempotent. Then, g splits in &, if and
only if 8 and g(B) commute.

Proof. One direction is immediate with the theory we have developed. If 8 and
g(B) commute then g%(8) = ¢°(B) = g(3). Then by Lemma 4.5, we conclude that
g splits in & ...
For the converse, let g split and choose representatives to get v : G — H,i: H —
G such that
ir~g
ri o~ idH

But as the conjugacy action is by inner automorphisms we have that ri = idy. As
a consequence we have that
(6.6) Image(g) = Image(g?)
We can express ¢° in two ways,

9 =9(9®) = 9(¢") = (4*)

9 =d*9=9"g=(¢>)??
Thus conjugation by g(3) and 3 are the same on Image(g?). We know this to be
Image(g) by (6.6). Thus

B

97 (B) = ¢? P (B) = g(B)

Hence 8 and g(f) commute, proving the converse. O

We use the specific form of the initial conjugacy idempotent of Construction 6.2
to restate Lemma 6.5.

Corollary 6.7. For a conjugacy triple (G,g,8), g splits in &, if and only if
the kernel of the canonical morphism of conjugacy triples F — G contains the
commutator subgroup F' := [F, F]

Thus, to show that f doesn’t split in & /., it suffices to show that F' is non-

abelian.

7. THE FIRST CANONICAL REPRESENTATION

We seek a concrete representation of F', from which it will be evident that F is
non-abelian. To do so, we define a First Canonical Representation.

Definition 7.1. For ¢ a continuous order preserving bijection of R, its support is
defined as spt(o) := {z € R|s(x) # x}.

Construction 7.2. Let X denote the group of continuous order preserving bijec-
tions of R. (Note that any continuous order preserving bijection of R is in fact also
a homeomorphism).

Let S € ¥ be translation by 1, i.e. S(x) =z + 1. Define

YT = {0 € Slspt(o) C Rxo}
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Observe that ¥ is a subgroup of ¥. Now consider conjugation by S, given by
o+ S 1oS on X.

This restricts to an endomorphism of ¥+. That is, if o € ¥, then S~10S € ©F.
Define g : ¥+ — X+ by g(T) =T%.

Pick a Q € ©* that agrees with S on [1,00). Then g? = g and thus (X7, g, Q)
is a conjugacy triple.

Definition 7.3. Let (X7, g, Q) be the conjugacy triple of Construction 7.2. We
have a canonical map of triples h : FF — XT. We call this the ’'First Canonical
Representation’.

Construction 7.4. We can in fact compute h explicitly. Define Q € T as
follows,
T <k
Qrz)=<22—k k<z<k+1
z+1 x>k+1
Then Q7 = Qx+1 and consequently h(xy) = Q.

Lemma 7.5. F is non-abelian.

Proof. Let @, be defined as in Construction 7.4. Then we directly compute
(Q10Qo)(1) =3
(@10Qo)(1) =2

Hence @y and @)1 do not commute. Consequently, their pre-images zy and
under the group homomorphism h of Construction 7.4 do not commute. Thus F is
non-abelian. O

Theorem 7.6. The endomorphism f of the conjugacy triple (F, f,a) of Construc-
tion 6.2 does not split in & .

Proof. By Lemma 7.5, F' is non-abelian. Applying Corollary 6.7 to the conjugacy
triple (F, f, «) itself, we see that the kernel of the canonical map (the identity) does
not contain the commutator subgroup. Consequently, f does not split in &,.. [J

Lemma 7.7. Let (F, f,a) be the conjugacy triple of Construction 6.2. Then Bf
is an idempotent in uH that does not split.

Proof. The map f is an idempotent in &, hence Bf is an idempotent in uH
(Here we identify H,. with the equivalent category u?). Assume for the purpose
of contradiction that Bf splits in uH. Then there is a witness i,7 to the splitting
such that

ir=DBf
ri = id
in uH.
Then 7, (i), 71(r) is a witness to the splitting of f, a contradiction. Thus Bf
does not split in uH. (I

In conclusion, Theorem 2.7 and Lemma 7.7 imply that not every Brown functor
uH? — Set is representable. Similarly, Lemma 7.7, Lemma 3.3 and Theorem
2.7 imply that not every Brown functor #3’ — Set is representable. Thus Brown
representability fails to hold in these two categories.
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