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I
n the past decade, graph theory has gone
through a remarkable shift and a profound
transformation. The change is in large part
due to the humongous amount of informa-
tion that we are confronted with. A main way

to sort through massive data sets is to build and
examine the network formed by interrelations.
For example, Google’s successful Web search al-
gorithms are based on the WWW graph, which
contains all Web pages as vertices and hyper-
links as edges. There are all sorts of information
networks, such as biological networks built from
biological databases and social networks formed
by email, phone calls, instant messaging, etc., as
well as various types of physical networks. Of
particular interest to mathematicians is the col-
laboration graph, which is based on the data from
Mathematical Reviews. In the collaboration graph,
every mathematician is a vertex, and two mathe-
maticians who wrote a joint paper are connected
by an edge.

Figure 1 illustrates a portion of the collaboration
graph consisting of about 5,000 vertices, repre-
senting mathematicians with Erdős number 2 (i.e.,
mathematicians who wrote a paper with a coauthor
of Paul Erdős).

Graph theory has two hundred years of history
studying the basic mathematical structures called
graphs. A graph G consists of a collection V of
vertices and a collection E of edges that connect
pairs of vertices. In the past, graph theory has
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Figure 1. An induced subgraph of the
collaboration graph.

been used in a wide range of areas. However,
never before have we confronted graphs of not
only such tremendous sizes but also extraordinary
richness and complexity, both at a theoretical and
a practical level. Numerous challenging problems
have attracted the attention and imagination of
researchers from physics, computer science, engi-
neering, biology, social science, and mathematics.
The new area of “network science” emerged, call-
ing for a sound scientific foundation and rigorous
analysis for which graph theory is ideally suited. In
the other direction, examples of real-world graphs
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lead to central questions and new directions for
research in graph theory.

These real-world networks are massive and
complex but illustrate amazing coherence. Empir-
ically, most real-world graphs have the following
properties:

• sparsity—The number of edges is within
a constant multiple of the number of
vertices.

• small world phenomenon—Any two ver-
tices are connected by a short path. Two
vertices having a common neighbor are
more likely to be neighbors.

• power lawdegree distribution—The degree
of a vertex is the number of its neighbors.
The number of vertices with degree j (or
having j neighbors) is proportional to j−β

for some fixed constant β.

To deal with these information networks, many
basic questions arise: What are basic structures of
such large networks? How do they evolve? What
are the underlying principles that dictate their
behavior? How are subgraphs related to the large
(and often incomplete) host graph? What are the
main graph invariants that capture the myriad
properties of such large graphs?

To answer these problems, we first delve into the
wealth of knowledge from the past, although it is
often not enough. In the past thirty years there has
been a great deal of progress in combinatorial and
probabilistic methods, as well as spectral methods.
However, traditional probabilistic methods mostly
consider the same probability distribution for all
vertices or edges while real graphs are uneven
and clustered. The classical algebraic and ana-
lytic methods are efficient in dealing with highly
symmetric structures, whereas real-world graphs
are quite the opposite. Guided by examples of
real-world graphs, we are compelled to improvise,
extend and create new theory and methods. Here
we will discuss the new developments in several
topics in graph theory that are rapidly developing.
The topics include a general random graph theory
for any given degree distribution, percolation in
general host graphs, PageRank for representing
quantitative correlations among vertices, and the
game aspects of graphs.

Random Graph Theory for General Degree
Distributions
The primary subject in the study of random graph
theory is the classical random graph G(n, p),
introduced by Erdős and Rényi in 1959 [38, 39]
(also independently by Gilbert [44]). In G(n, p),
every pair of a set of n vertices is chosen to
be an edge with probability p. In a series of
papers, Erdős and Rényi gave an elegant and
comprehensive analysis describing the evolution
of G(n, p) as p increases. Note that a random

graph in G(n, p) has the same expected degree
at every vertex, and therefore G(n, p) does not
capture some of the main behaviors of real-world
graphs. Nevertheless, the approaches and methods
in classical random graph theory provide the
foundation for the study of random graphs with
general degree distributions.

Many random graph models have been pro-
posed in the study of information network graphs,
but there are basically two different approaches.
The “online” model mimics the growth or decay of
a dynamically changing network, and the “offline”
model of random graphs consists of specified fam-
ilies of graphs as the probability spaces together
with some specified probability distribution.

One online model is the so-called preferential
attachment scheme, which can be described as
“the rich get richer”. The preferential attachment
scheme has been receiving much attention in the
recent study of complex networks [11, 57], but its
history can be traced back to Vilfredo Pareto in
1896, among others. At each tick of the clock (so
to speak), a new edge is added, with each of its
endpoints chosen with probability proportional to
their degrees. It can be proved [15, 31, 57] that the
preferential attachment scheme leads to a power
law degree distribution. There are several other
online models, including the duplication model
(which seems to be more feasible for biological
networks, see [35]), as well as many recent exten-
sions, such as adding more parameters concerning
the “talent” or “fitness” of each node [50].

There are two main offline graph models
for graphs with general degree distribution—the
configuration model and random graphs with ex-
pected degree sequences. A random graph in
the configuration model with degree sequences
d1, d2, . . . , dn is defined by choosing a random
matching on

∑
i di “pseudo nodes”, where the

pseudo nodes are partitioned into parts of sizes
di , for i = 1, . . . , n. Each part is associated with a
vertex. By using results of Molloy and Reed [58, 59],
it can be shown [2] that under some mild condi-
tions, a random power law graph with exponent
β almost surely has no giant component if β ≥ β0

where β0 is a solution to the equation involving the
Riemann zeta function ζ(β− 2)− 2ζ(β − 1) = 0.

The general random graph model G(w) with
expected degree sequence w = (w1, w2, . . . , wn)
follows the spirit of the Erdős-Rényi model. The
probability of having an edge between the ith and
jth vertices is defined to be wiwj/Vol (G), where
Vol (G) denotes

∑
i wi . Furthermore, in G(w) each

edge is chosen independently of the others, and
therefore the analysis can be carried out. It was
proved in [28] that if the expected average degree
is strictly greater than 1 in a random graph
in G(w), then there is a giant component (i.e.,
a connected component of volume a positive
fraction of that of the whole graph). Furthermore,
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the giant component almost surely has volume
δVol (G) +O(

√
n log3.5 n), where δ is the unique

nonzero root of the following equation [29]:

(1)
n∑

i=1

wie
−wiδ = (1− δ)

n∑

i=1

wi.

Because of the robustness of the G(w) model,
many properties can be derived. For example, a
randomgraph inG(w)has averagedistance almost

surely equal to (1 + o(1)) logn
log w̃

, and the diameter

is almost surely Θ( logn
log w̃

), where w̃ =
∑
i w

2
i /
∑
i wi

provided some mild conditions on w are satisfied
[27]. For the range 2 < β < 3, where the power law
exponents β for numerous real networks reside,
the power law graph can be roughly described as
an “octopus” with a dense subgraph having small
diameterO(log logn) as the core, while the overall
diameter is O(logn) and the average distance is
O(log logn) (see [31]).

For the spectra of power law graphs, there are
basically two competing approaches. One is to
prove analogues of Wigner’s semicircle law (which
is the case for G(n, p)), while the other predicts
that the eigenvalues follow a power law distri-
bution [40]. Although the semicircle law and the
power law have very different descriptions, both
assertions are essentially correct if the appropriate
matrices associated with a graph are considered
[33, 34]. For β > 2.5, the largest eigenvalue of the
adjacency matrix of a random power law graph
is almost surely (1 + o(1))

√
m, where m is the

maximum degree. Moreover, the k largest eigen-
values have power law distribution with exponent
2β− 1 if the maximum degree is sufficiently large
and k is bounded above by a function depending
on β,m and w . When 2 < β < 2.5, the largest
eigenvalue is heavily concentrated at cm3−β for
some constant c depending on β and the aver-
age degree. Furthermore, the eigenvalues of the
(normalized) Laplacian satisfy the semicircle law
under the condition that the minimum expected
degree is relatively large [34].

The online model is obviously much harder
to analyze than the offline model. One possible
approach is to couple the online model with the
offline model of random graphs with a similar
degree distribution. This means to find the appro-
priate conditions under which the online model
can be sandwiched by two offline models within
some error bounds. In such cases, we can apply
the techniques from the offline model to predict
the behavior of the online model (see [30]).

Random Subgraphs in Given Host Graphs
Almost all information networks that we observe
are subgraphs of some host graphs that often
have sizes prohibitively large or with incomplete
information. A natural question is to attempt to
deduce the properties of a random subgraph from

the host graph and vice versa. It is of interest to
understand the connections between a graph and
its subgraphs. What invariants of the host graph
can or cannot be translated to its subgraphs? Under
what conditions can we predict the behavior of all
or any subgraphs? Can a sparse subgraph have
very different behavior from its host graph? Here
we discuss some of the work in this direction.

Many information networks or social networks
have very small diameters (in the range of logn), as
dictated by the so-called small world phenomenon.
However, in a recent paper by Liben-Nowell and
Kleinberg [52], it was observed that the tree-like
subgraphs derived from some chain-letter data
seem to have relatively large diameter. In the
study of the Erdős-Rényi graph model G(n, p), it
was shown [60] that the diameter of a random
spanning tree is of order

√
n, in contrast with

the fact that the diameter of the host graph Kn
is 1. Aldous [4] proved that in a regular graph
G with a certain spectral bound σ , the diameter
of a random spanning tree T of G, denoted by
diam(T), has expected value satisfying

cσ
√
n

logn
≤ E(diam(T)) ≤

c
√
n logn√
σ

for some absolute constant c. In [32], it was
shown that for a general host graph G, with high
probability the diameter of a random spanning
tree of G is between c

√
n and c′

√
n logn, where c

and c′ depend on the spectral gap of G and the
ratio of the moments of the degree sequence.

One way to treat random subgraphs of a given
graph G is as a (bond) percolation problem. For
a positive value p ≤ 1, we consider Gp, which is
formed by retaining each edge independently with
probability p and discarding the edge with proba-
bility 1− p. A fundamental problem of interest is
to determine the critical probability p for which
Gp contains a giant connected component. In the
applications of epidemics, we consider a general
host graph being a contact graph, consisting of
edges formed by pairs of people with possible
contact. The question of determining the critical
probability then corresponds to the problem of
finding the epidemic threshold for the spreading
of the disease.

Percolation problems have long been studied
[45, 49] in theoretical physics, especially with the
host graph being the lattice graph Zk. Percolation
problems on lattices are known to be notoriously
difficult even for low dimensions and have only
been resolved very recently by bootstrap perco-
lation [8, 9]. In the past, percolation problems
have been examined for a number of special host
graphs. Ajtai, Komlós, and Szemerédi considered
the percolation on hypercubes [3]. Their work was
further extended to Cayley graphs [16, 17, 18, 55]
and regular graphs [42]. For expander graphs with
degrees bounded by d, Alon, Benjamini, and Stacey
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[5] proved that the percolation threshold is greater
than or equal to 1/(2d). In the other direction,
Bollobás, Borgs, Chayes, and Riordan [13] showed
that for dense graphs (where the degrees are of
orderΘ(n)), the giant component threshold is 1/ρ
where ρ is the largest eigenvalue of the adjacency
matrix. The special case of having the complete
graph Kn as the host graph concerns the Erdős-
Rényi graph G(n, p), which is known to have the
critical probability at 1/n, as well as the “double
jump” near the threshold.

For general host graphs, the answer has been
elusive. One way to address such questions is
to search for appropriate conditions on the host
graph so that percolations can be controlled.
Recently it has been shown [26] that if a given
host graph G satisfies some (mild) conditions
depending on its spectral gap and higher moments
of its degree sequence, for any ε > 0, if p >
(1 + ε)/d̃, then asymptotically almost surely the
percolated subgraphGp has a giant component. In

the other direction, if p < (1 − ε)/d̃, then almost
surely the percolated subgraph Gp contains no
giant component. We note that the second order
average degree d̃ is d̃ =

∑
v d

2
v/(
∑
v dv), where dv

denotes the degree of v .
In general, subgraphs can have spectral gaps

very different from those of the host graph. How-
ever, if a graph G has all its nontrivial eigenvalues
of the (normalized) Laplacian lying in the range
within σ from the value 1, then it can be shown
[25] that almost surely a random subgraphGp has
all its nontrivial eigenvalues in the same range (up
to a lower-order term) if the degrees are not too
small.

PageRank and Local Partitioning
In graph theory there are many essential geo-
metrical notions, such as distances (typically, the
number of hops required to reach one vertex from
another), cuts (i.e., subsets of vertices/edges that
separate a part of the graph from the rest), flows
(i.e., combinations of paths for routing between
given vertices), and so on. However, real-world
graphs exhibit the small world phenomenon, so
any pair of vertices are connected through a very
short path. Therefore the usual notion of graph
distance is no longer very useful. Instead, we need
a quantitative and precise formulation to differen-
tiate among nodes that are “local” from “global”
and “akin” from “dissimilar”. This is exactly what
PageRank is meant to achieve.

In 1998 Brin and Page [19] introduced the notion
of PageRank for Google’s Web search algorithm.
Different fromthe usualmethods inpatternmatch-
ing previously used in data retrieval, the novelty
of PageRank relies entirely on the underlying Web
graph to determine the “importance” of a Web
page. Although PageRank is originally designed

for the Web graph, the concept and definitions
work well for any graph. Indeed, PageRank has
become a valuable tool for examining the correla-
tions of pairs of vertices (or pairs of subsets) in any
given graph and hence leads to many applications
in graph theory.

The starting point of the PageRank is a typical
random walk on a graph G with edge weights wuv
for edge u, v. The probability transition matrix P
is defined by: P(u, v) = wuv

du
, where du =

∑
v wu,v .

For a preference vector s, and a jumping constant
α > 0, the PageRank, denoted by pr(α, s) as a row
vector, can be expressed as a series of random
walks as follows:

prα,f = α
∞∑

k=0

(1−α)ksPk.(2)

Equivalently, pr(α, s) satisfies the following recur-
rence relation:

pr(α, s) = αs + (1−α)pr(α, s)P .(3)

In the original definition of Brin and Page [19], s is
taken to be the constant function with value 1/n at
every vertex motivated by modeling the behavior
of a typical surfer who moves to a random page
with probability α and clicks a linked page with
probability 1−α .

Because of the close connection of PageRank
with random walks, there are very efficient and ro-
bust algorithms for computing and approximating
PageRank [6, 12, 47]. This leads to numerous ap-
plications, including the basic problem of finding
a “good” cut in a graph. A quantitative measure
for the “goodness” of a cut that separates a subset
S of vertices is the Cheeger ratio:

h(S) =
|E(S, S̄)|
vol (S)

,

where E(S, S̄) denotes the set of edges leaving S
and vol (S) =

∑
v∈S dv . The Cheeger constant hG

of a graph is the minimum Cheeger ratio over all
subsets S with vol (S) ≤ vol (G)/2. The traditional
divide-and-conquer strategy in algorithmic design
relies on finding a cut with small Cheeger ratio.
Since the problem of finding any cut that achieves
the Cheeger constant of G is NP-hard [43], one of
the most widely used approximation algorithms
was a spectral partitioning algorithm. By using
eigenvectors to line up the vertices, the spectral
partitioning algorithm reduces the number of
cuts under consideration from an exponential
number of possibilities to a linear number of
choices. Nevertheless, there is still a performance
guarantee provided by the Cheeger inequality:

2hG ≥ λ ≥
h2
f

2
≥
h2
G

2
,

where hf is the minimum Cheeger ratio among
subsets that are initial segments in the order
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determined by the eigenvector f associated with
the spectral gap λ.

For large graphs with billions of nodes, it is
not feasible to compute eigenvectors. In addition,
it is of interest to have local cuts in the sense
that for given seeds and the specified size for the
parts to be separated, it is desirable to find a cut
near the seeds separating a subset of the desired
size. Furthermore, the cost/complexity of finding
such a cut should be proportional to the specified
size of the separated part but independent of
the total size of the whole graph. Here, PageRank
comes into play. Earlier, Spielman and Teng [63]
introduced local partitioning algorithms by using
random walks with the performance analysis us-
ing a mixing result of Lovász and Simonovitz [54]
(also see [56]). As it turns out, by using PageRank
instead of random walks, there is an improved
partitioning algorithm [6] for which the perfor-
mance is supported by a local Cheeger inequality
for a subset S of vertices in a graph G:

hS ≥ λS ≥
h2
g

8 log vol (S)
≥

h2
S

8 log vol (S)
,

where λS is the Dirichlet eigenvalue of the induced
subgraph on S, hS is the local Cheeger constant
of S defined by hS = minT⊆S h(T), and hg is the
minimum Cheeger ratio over all PageRank g with
the seed as a vertex in S and α appropriately
chosen depending only on the volume of S. This
approximation partition algorithm can be further
improved using the fact that the set of seeds for
which the PageRank leads to the Cheeger ratio
satisfying the above local Cheeger inequality is
quite large (about half of the volume of S). We
note that the local partitioning algorithm can also
be used as a subroutine for finding balanced cuts
for the whole graph.

Note that PageRank is expressed as a geometric
sum of random walks in (2). Instead, we can con-
sider an exponential sum of random walks, called
heat kernel pagerank, which in turn satisfies the
heat equation. The heat kernel pagerank leads
to an improved local Cheeger inequality [23, 24]
by removing the logarithmic factor in the lower
bound. Numerous problems in graph theory can
possibly take advantage of PageRank and its vari-
ations, and the full implications of these ideas
remain to be explored.

Network Games
In morning traffic, every commuter chooses
his/her most convenient way to get to work
without paying attention to the consequences of
the decision to others. The Internet network can
be viewed as a similar macrocosm that functions
neither by the control of a central authority nor by
coordinated rules. The basic motivation for each
individual can only be deduced by greed and self-
ishness. Every player chooses the most convenient

route and uses strategies to maximize possible
payoff. In other words, we face a combination of
game theory and graph theory for dealing with
large networks both in quantitative analysis and
algorithm design. Many questions arise. Instead
of just proving the existence of Nash equilibrium,
we would like to design algorithms to effectively
compute or approximate the Nash equilibrium.
How rapidly can such algorithms converge?
There has been a great deal of progress in the
computational complexity of Nash equilibrium
[22, 37].

The analysis of selfish routing comes naturally
in network management. How much does unco-
ordinated routing affect the performance of the
network, such as stability, congestion, and delay?
What are the trade-offs for some limited regula-
tion? The so-called price of anarchy refers to the
worst-case analysis to evaluate the loss of collec-
tive welfare from selfish routing. There has been
extensive research done on selfish routing [62].
The reader is referred to several surveys [41, 51]
and some recent books on this topic [61].

Many classical problems in graph theory can be
reexamined from the perspective of game theory.
One popular topic on graphs is chromatic graph
theory. For a given graph G, what is the minimum
number of colors needed to color the vertices of
G so that adjacent vertices have different colors?
In addition to theoretical interests, the graph
coloring problem has numerous applications in
the setting of conflict resolution. For example, each
faculty member (as a vertex) wishes to schedule
classes in a limited number of classrooms (as
colors). Two faculty members who have classes
with overlapping time are connected by an edge,
and then the problem of classroom scheduling can
be viewed as a graph coloring problem. Instead
of having a central agency to make assignments,
we can imagine a game-theoretic scenario that the
faculty members coordinate among themselves to
decide a nonconflicting assignment. Suppose there
is a payoff of 1 unit for each player (vertex) if its
color is different from all its neighbors. A proper
coloring is then a Nash equilibrium, since no player
has an incentive to change his/her strategy.

Kearns et al. [48] conducted an experimental
study of several coloring games on specified net-
works. Many examples were given to illustrate the
difficulties in analyzing the dynamics of large net-
works in which each node takes simple but selfish
steps. This calls for rigorous analysis, especially
along the line of the combinatorial probabilistic
methods and generalized Martingale approaches
that have been developed in the past ten years
[20]. Some work in this direction has been done on
a multiple round model of graph coloring games
[20], but more work is needed.
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Summary
It is clear that we are at the beginning of a new

journey in graph theory, emerging as a central

part of the information revolution. It is a long way

from the “seven bridges of Königsberg”, a problem
posed by Leonhard Euler in 1736. In contrast

to its origin in recreational mathematics, graph

theory today uses sophisticated combinatorial,

probabilistic, and spectral methods with deep
connections with a variety of areas in mathematics

and computer science. In this article, some vibrant

new directions in graph theory have been selected

and described to illustrate the richness of the

mathematics involved, as well as the utilization
through major threads of current technology. The

list of the sampled topics is by no means complete,

since these areas of graph theory are still rapidly

developing. Abundant opportunities in research,
theoretical and applied, remain to be explored.
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