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Social Learning in Social Networks∗

PJ Lamberson

Abstract

This paper analyzes a model of social learning in a social network. Agents decide whether
or not to adopt a new technology with unknown payoffs based on their prior beliefs and the ex-
periences of their neighbors in the network. Using a mean-field approximation, we prove that
the diffusion process always has at least one stable equilibrium, and we examine the dependence
of the set of equilibria on the model parameters and the structure of the network. In particular,
we show how first and second order stochastic dominance shifts in the degree distribution of the
network impact diffusion. We find that the relationship between equilibrium diffusion levels and
network structure depends on the distribution of payoffs to adoption and the distribution of agents’
prior beliefs regarding those payoffs, and we derive the precise conditions characterizing those
relationships. For example, in contrast to contagion models of diffusion, we find that a first order
stochastic dominance shift in the degree distribution can either increase or decrease equilibrium
diffusion levels depending on the relationship between agents’ prior beliefs and the payoffs to
adoption. Surprisingly, adding more links can decrease diffusion even when payoffs from the new
technology exceed those of the status quo in expectation.
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1 Introduction

When choosing whether or not to adopt a new technology, people often rely
on information outside of their personal experience to make their decision.
One potential source of information is other individuals who have already
tried the technology. If the information from previous adopters is sufficiently
positive, an initially skeptical individual may be convinced to adopt, making
them a potential source of information for others in the future. Collectively, the
population learns about the value of the new technology as it spreads through
the market. This mechanism of social learning is a simple but compelling
explanation for technology diffusion.

In seeking information from previous adopters, individuals most likely
turn to their friends and acquaintances – in other words neighbors in their social
network (Jackson, 2008). In this paper we analyze a model of social learning in
which agents are embedded in a social network that dictates who interacts with
whom. Each agent in the model employs a boundedly rational decision-making
rule to determine whether or not to adopt a new technology. Specifically,
agents combine information on the payoffs received by their adopting neighbors
with their prior beliefs using Bayes’ rule, and they adopt the technology if
their resulting posterior beliefs regarding the value of the technology exceed
the known payoff of the status quo. Agents in the model may also discontinue
using the technology if payoffs observed later cause them to revise their beliefs
about the technology’s benefits. In contrast to fully rational agents, these
agents ignore some information available to them, such as the implications
that a neighbors’ adoption decision has regarding the payoffs received by that
neighbor’s neighbors. These limitations reflect our belief that the calculations
required of fully rational agents – which include not only reasoning about our
neighbors’ actions, but also reasoning about their reasoning about our actions
and so on – are more complex then what actual people can, or are willing to,
perform (Simon, 1955).

To analyze the resulting diffusion we employ an approximation tech-
nique from statistical physics known as a mean-field approximation (Chandler,
1987), which has proven useful for studying network dynamics in several con-
texts (Newman, Moore, and Watts, 2000, Pastor-Satorras and Vespignani,
2001a,b, Jackson and Yariv, 2005, 2007, Jackson and Rogers, 2007, López-
Pintado, 2008, Lamberson, 2009). We prove that this approximation to the
social learning process always has at least one stable equilibrium. In general
there may be multiple stable equilibria. We derive conditions that guarantee
a unique stable equilibrium for “costly” technologies, i.e. those with mean
payoff less than that of the status quo, and explain why non-costly technolo-
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gies are more likely to give rise to multiple equilibria. We then proceed to
analyze how equilibrium levels of diffusion depend on the parameters of the
model, specifically the distribution of payoffs to adoption and the distribution
of agents’ prior beliefs regarding those payoffs. Some of these relationships are
the same as in models without network structure: higher payoffs and higher
priors result in greater diffusion. However, the effects of changing the variance
of the payoff distribution or the variance of the distribution of priors depends
on the network.

The chief advantage of this model in comparison with previous studies
of social learning is the inclusion of potentially complex network structures
that govern agent interactions. We prove that networks matter for diffusion:
changes in network structure cause predictable changes in diffusion levels. The
effect of network structure on diffusion depends in subtle ways on the relation-
ship between the costs or benefits of the new technology and agents’ prior
beliefs about those costs or benefits. Specifically, we consider the effects of
two types of changes in the network: first and second order stochastic shifts
in the degree distribution. Intuition might suggest that adding more links
to the network (i.e. a first order stochastic shift in the degree distribution)
would increase the diffusion of beneficial technologies and decrease diffusion
for those that are costly. We confirm this intuition in some cases, but show
that the opposite is true in others. When the agents’ prior beliefs are suffi-
ciently positive, adding links to the network can lead a beneficial technology
to diffuse less. Similarly, when agents are strongly biased against adoption,
adding links can lead more agents to adopt a costly technology. In these cases,
agents would ultimately be better off with less information – their initial be-
liefs give rise to better decisions than those based on knowledge gained from
neighbors’ experiences. The effect of second order stochastic shifts is more
complicated and often varies depending on the initial level of adoption. We
illustrate this ambiguous relationship with an example comparing diffusion in
a regular network and a scale-free network with the same average degree.

Finally, we extend the basic model by allowing agents to incorporate
their observation of payoffs from the more distant past in their decision. We
show that the number of past observations that agents consider shapes diffu-
sion in a way that is analogous to the conditional effect on diffusion of first
order stochastic shifts in the degree distribution.

Social learning has a rich history in both theoretical economics and
empirical research.1 The foundational social learning models of Ellison and

1For a sampling of the theoretical literature see Bikhchandani, Hirshleifer, and Welch
(1992), Banerjee (1992), Kirman (1993), Ellison and Fudenberg (1993, 1995), Kapur (1995),
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Fudenberg (1993, 1995) were among the first to examine the collective out-
come of individual agents employing simple boundedly rational decision rules.
The most significant departure between our model and those of Ellison and
Fudenberg (1993, 1995), and most other social learning models, is that in the
model presented here, agents’ interactions are limited by a social network. In
all but one of the models considered by Ellison and Fudenberg agents interact
randomly. The Ellison and Fudenberg (1993) model that includes structured
interactions, does so in a particularly simple form: agents are located on a line
and pay attention only to other agents located within a given distance. De-
spite the simplicity of that model, they find that the “window width,” i.e. the
number of neighbors from which each agent seeks information, affects both the
efficiency and speed to convergence of the model. This hints at the importance
of the structure of agents’ interactions in diffusion. The model presented here
allows us to analyze more complex network settings and the dependence of
equilibria on the network structure. Beyond Ellison and Fudenberg’s window
width result, several empirical studies have argued that technologies and be-
haviors spread through social networks, and both computational and analytic
models have illustrated that network structure can either facilitate or hamper
diffusion.2

Bala and Goyal (1998) also tackle the problem of social learning in a
social network. Their model makes a key assumption that we do not: agents
observe an infinite sequence of time steps and take into account all of their past
observations when making their decision. In the model presented here, agents
incorporate observations from a finite number of periods in their decision, and
we examine the dependence of diffusion equilibria on the number of observed
time periods as discussed above. The assumption of infinite observations qual-
itatively changes the results of the model because it allows agents to take an
action infinitely often, and thereby learn and communicate the true payoffs of
the action. Ultimately this implies that in the limit all agents must receive the
same utility and – if the utility to different actions differs – choose the same
action (see also Jackson, 2008). Unlike Bala and Goyal’s model, the agents’

Bala and Goyal (1998), Smith and Sørensen (2000), Chamley (2003), Chatterjee and Xu
(2004), Banerjee and Fudenberg (2004), Manski (2004), Young (2006) and Golub and Jack-
son (2010). Foster and Rosenzweig (1995), Munshi (2004) and Conley and Udry (2005)
present empirical studies supporting the theory.

2For a sampling of the empirical literature, see Coleman, Katz, and Menzel (1966), Burt
(1987), Christakis and Fowler (2007, 2008), Fowler and Christakis (2008) and Nickerson
(2008). For theoretical explorations of network structure and diffusion, see Watts and
Strogatz (1998), Newman et al. (2000), Pastor-Satorras and Vespignani (2001a,b), Sander,
Warren, Sokolov, Simon, and Koopman (2002), Jackson and Yariv (2005), Centola and Macy
(2007), Jackson and Yariv (2007), Jackson and Rogers (2007) and López-Pintado (2008).
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choices at stable equilibria in our model are always diverse; some agents will
adopt while others do not. However, taking a limit as the number of time
periods that agents consider in their decisions goes to infinity produces results
in our model that agree with those of Bala and Goyal (1998).

The spirit and techniques of our analysis are most similar to several
recent papers which also employ a mean-field approach to study network diffu-
sion (Jackson and Yariv, 2005, 2007, Jackson and Rogers, 2007, López-Pintado,
2008). These models differ from the one presented in this paper in the spec-
ification of the individual decision rules. In the models of Jackson and Yariv
(2005, 2007), Jackson and Rogers (2007), and López-Pintado (2008), the new
technology or behavior spreads either by simple contact, like a disease, or
through a social influence or “threshold model,” in which agents adopt once a
certain threshold number of their neighbors adopt. Our model adds a more so-
phisticated decision rule. As Young (2009) points out, of these three diffusion
models – contagion, threshold models, and social learning – “social learning
is certainly the most plausible from an economic standpoint, because it has
firm decision-theoretic foundations: agents are assumed to make rational use
of information generated by prior adopters in order to reach a decision.” In
addition to providing a microeconomic rationale for adopter decisions, the so-
cial learning model considered here also solves the “startup problem” of the
contact and threshold models. In those models, no adoption is always a stable
equilibrium. In order to start the diffusion process at least one agent must
be exogenously selected to be an initial adopter. The model in this paper
provides an endogenous solution to the startup problem: those agents with
positive priors adopt the technology initially without need for an exogenous
shock.

The paper proceeds as follows. Section 2 details the social learning
model. Section 3 applies the mean-field analysis to approximate the dynamics
of the model, and section 4 uses that approximation to find diffusion equilib-
ria. In section 4, we also characterize stable and unstable equilibria and prove
that for any set of parameters at least one stable equilibrium exists. Section
5 turns to analyzing the dependence of equilibrium levels of diffusion on the
model parameters and the network structure. In Section 6 the model is ex-
tended to incorporate memory of an arbitrary number of previous periods and
proceeds to describe how the equilibria change with changes in the number
of periods observed. Section 7 concludes with a discussion of extensions for
future research.
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2 The Model

This section develops a simple model of social learning in a social network.
Throughout the paper, we refer to the adoption of a new technology, but
the model and results may apply equally to the diffusion of other behaviors
that spread through social networks, such as smoking or political participation
(Christakis and Fowler, 2008, Nickerson, 2008).

At each time in a discrete sequence of time steps, each agent in the
model chooses whether or not to use a new technology with an unknown
payoff. Each agent’s decision is made by comparing her beliefs about the
unknown payoffs against the known payoff of the status quo. If an agent
believes the payoff to the new technology exceeds that of the status quo, then
the agent will use it in the following time step. Conversely, if she believes the
payoffs are less than the status quo, she will not use it. In the first time step,
adoption decisions are made based solely on the agents’ prior beliefs about
the value of the technology. In each subsequent time step, an agent’s beliefs
about the technology’s payoffs are formed by using Bayes’ rule to combine her
prior beliefs with observation of the payoffs received in the previous period
by her adopting neighbors in the social network (and her own if she also used
the technology).3 Each period that an adopting agent continues to use the
technology she receives a new payoff. Following Young (2009), we assume that
the payoffs are independent and identically distributed across time and across
agents.

In the next section we develop a “mean-field approximation” to this
model that we employ for the remainder of the paper. Intuitively, this approx-
imation can be thought of as follows. Rather than existing in a static network,
each agent in the model has a type given by her degree (the number of her
neighbors in the network). At each time step, an agent of degree d polls a sam-
ple of d other agents on their experience with the new technology, and in that
sample the fraction of agents who have adopted matches the expected fraction
of adopters in such a sample, conditional on the current fraction of adopters
of each degree type in the population as a whole. This approximation method
ignores much of the structure in the network of connections. Nevertheless, as
we show below, even with this simplified representation the structure of social
interactions affects the technology diffusion.

There are several assumptions implicit in this model. First, the payoffs
to neighboring agents are observable. This assumption stands in contrast to

3Throughout the paper we refer to agents currently using the technology as adopters and
those not using the technology as non-adopters. However, it is possible that an agent of
either type has experienced a sequence of adoptions and disadoptions in the past.
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“herd models” in which agents’ adoption decisions are observable, but their
payoffs are not (e.g. Scharfstein and Stein, 1990, Bikhchandani et al., 1992).
The assumption that agents know the payoffs of their adopting neighbors
seems best justified in situations where the technology is sufficiently costly
that agents would actively solicit payoff information instead of passively ob-
serving their neighbors’ choices. For example, this assumption might apply in
the decision of whether or not to adopt a hybrid electric vehicle or a new type
of cellular phone.

Second, agents do not take into account some information implicit in
their neighbors’ adoption decisions – for instance, that the neighbors of their
neighbors have had positive experiences. This departure from complete ra-
tionality is a common modeling assumption in the social learning literature
(e.g. Ellison and Fudenberg, 1993, 1995, Young, 2009), which reflects our be-
lief that the calculations involved in the fully rational Bayesian decision rule
are unrealistically complicated. Typically, full rationality increases pressure
towards conformity; fully rational agents with the same priors will not “agree
to disagree,” even with asymmetric information (Aumann, 1976, Geanakoplos,
1992). While we do not explore exactly how this model would change under
the alternate assumption of fully rational agents, we expect that the bound-
edly rational assumption increases the diversity of actions taken across the
population of agents.

Third, agents only attempt to maximize their next period expected
payoffs. They will not experiment with the new technology just to gain in-
formation. If agents were more forward looking, calculating an equilibrium
strategy would be much more complex. In addition to solving their own two-
armed bandit problem (Berry, 1972), the agents would also need to reason
about the potential adoption decisions of their neighbors, which would influ-
ence their own incentives to experiment. For example, if an agent expects her
neighbor to adopt the technology, it may decrease her incentive to experiment
because she can instead free ride off the information that her neighbor pro-
vides. Thus, we make this assumption because it makes solving the agents’
strategy selection problem more reasonably tractable both for the agents and
for us.

Finally, the agents’ decisions are based on the recent past; they only in-
corporate observed payoffs from the previous period in updating their beliefs.
We later relax this assumption and consider the results when agents consider
any number of previous periods. The agents’ reliance on recent observations
follows from our interpretation of the updating process. First, we think of an
agent’s prior beliefs as representing a long-standing conviction or fundamental
attitude towards the new technology that is unchanging over time. Second,
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we assume that an agent stores each observed payoff separately in her (finite)
memory. Rather than continuously updating her beliefs as new information
arrives, each time the agent makes a decision she begins with the same fun-
damental beliefs and recalls all of the separate payoffs that she has observed.
As time passes, she forgets her most outdated observations and replaces them
with more recent information. Here again the agents are deviating from op-
timal behavior, since they could instead simply keep track of the mean and
standard deviation of all of their previous observations without any loss of
data. In making this assumption on the bounds of our agents’ capabilities,
we follow Ellison and Fudenberg (1995) when they say, “To a degree, we use
this extreme assumption simply to capture the idea that boundedly rational
consumers will not fully incorporate all historical information.” In section 6
below, we examine exactly how this assumption matters by calculating the
effect of increasing the number of previous periods that the agents incorporate
in their decision making as well as examining the limiting case as the number
of observed periods goes to infinity.

Formally, at each time t each agent using the technology receives a
payoff drawn from a normal distribution with mean � and variance �2. The
payoffs are assumed to be independent across time and across agents. Let
� D 1=�2 be the precision of the payoff distribution. Following the standard
Bayesian model, we assume that the agents have conjugate prior distributions
regarding the unknown mean and variance of the payoff distribution (DeGroot,
1970, Gelman, Carlin, Stern, and Rubin, 2004). Specifically, each agent i has
prior distributions for � and � satisfying

�j�2 � N.�i0; �
2=�i0/ (1)

�2 � Inv�2.�i0; �
2
0 /: (2)

The agents have heterogenous prior beliefs about the payoffs of the new tech-
nology, reflected by the individual specific parameters �i0, which are assumed
to be distributed normally across the agents with mean m and variance s2.
To simplify the analysis we assume that all agents have identical precision on
their prior distribution for � given �2 and without loss of generality set this
equal to one, so �i0 D 1 for all i . We also assume that the payoff to the status
quo is constant and equal for all agents.

Agents update their beliefs and choices at each time t as follows. First,
each agent seeks information on the value of the technology from their neigh-
bors in the social network. Those neighbors that used the technology in the
previous period report the payoff they received. Agents that did not use the
technology at time t � 1 provide no information. Then the agents reevaluate
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their adoption decision based on the information gained from their neighbors,
and their own payoff from the previous period if they used the technology at
time t �1, using Bayes’ rule. Finally, agents that choose to use the technology
based on their updated beliefs receive a new payoff, which will inform their
choice and their neighbors’ choices in the following period.

Suppose that an agent i observes nit�1 payoffs at time t � 1. Let Nyit�1
denote the mean realized payoff to those nit�1 adopters. Then i ’s posterior
distribution for � given �2 is normal with mean

�it D
nit�1

nit�1 C 1
Nyit�1 C

1

nit�1 C 1
�i0 (3)

(Gelman et al., 2004). This is agent i ’s expectation regarding the payoff of
using the new technology given her prior beliefs and the data observed from
her neighbors’ experiences (and possibly her own). As specified in equation
(3), this posterior is simply a weighted average of agent i ’s prior mean and the
mean of the nit�1 payoffs that i observes, where the weight on the observed
payoffs is equal to their number. Here network structure begins to play a
role in the diffusion. Agents with more neighbors will on average have more
observations on which to base their decision and will place greater weight on
those observations relative to their prior beliefs.

We assume that the payoff of the status quo is equal for all agents and
without loss of generality set this to zero. Thus, agent i uses the technology
at time t if the mean of her posterior distribution for �, �it , is greater than
zero. If �it � 0, she will not use the technology at time t .

3 Mean-field Analysis

Even this simple model of social learning in a network is rendered analyt-
ically intractable by the potential for multiple equilibria depending on the
specifics of the network of connections and the distribution of prior beliefs and
payoffs. Following previous studies (Jackson and Yariv, 2005, 2007, Jackson
and Rogers, 2007, López-Pintado, 2008, Lamberson, 2009, Galeotti, Goyal,
Jackson, Vega-Redondo, and Yariv, 2010), we employ a mean-field analysis to
approximate the dynamics.

Let P denote the degree distribution of the network, so P.d/ equals
the probability that a randomly chosen agent is of degree d . We assume that
the network is connected. Let �dt denote the probability that a randomly
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chosen degree d agent is an adopter at time t and

�t D
1

Nd

X
d

dP.d/�dt (4)

denote the probability that a randomly chosen link from any given agent
points to an adopter. Following Jackson and Yariv (2005) we call this the
link-weighted fraction of adopters.4 The main assumption of the mean-field
approximation is that the fraction of each agents’ neighbors that are adopters
at time t is given by (4). So, at time t a degree d agent observes the payoffs
from d�t�1 adopting neighbors. Agents currently using the technology also ob-
serve one additional payoff, their own, but for analytic convenience we assume
that both those agents not currently using the technology and those currently
using the technology observe the same number of payoffs.5 Thus, in equation
(3) we replace nit�1 with d�t�1:

�dt D
d�t�1

d�t�1 C 1
Nyit�1 C

1

d�t�1 C 1
�i0: (5)

Since adopters’ experiences are distributed N.�; �2/, the sample mean

Nyit�1 from a sample of size d�t�1 is distributed N.�; �2

d�t�1
/. The prior beliefs

�i0 are distributed N.m; s2/, so the posterior beliefs of the degree d agents
determined by equation (5) are distributed

�dt � N

�
d�t�1�Cm

d�t�1 C 1
;
d�t�1�

2 C s2

.d�t�1 C 1/2

�
: (6)

Since an agent will use the new technology at time t if the mean of her
posterior distribution for � is positive, the probability that a degree d agent
will use the technology at time t is

�dt D ˆ

 �
d�t�1�Cm

d�t�1 C 1

�
=

 p
d�t�1�2 C s2

d�t�1 C 1

!!
D ˆ

�
d�t�1�Cm
p
d�t�1�2 C s2

�
;

(7)
where ˆ is the standard normal cumulative distribution function.

4This is different from the overall fraction of adopters in the network,
P
d P.d/�dt ,

because higher degree agents are more likely to lie at the opposite end of a randomly chosen
link than lower degree agents. Equation (4) correctly (assuming no correlation in neighboring
agents’ degrees) accounts for this by weighting P.d/�dt by d (see Jackson and Yariv, 2005,
Jackson and Rogers, 2007).

5Without this assumption the analysis becomes substantially more complicated. One
possible justification is that agents currently using the technology have less of an incentive
to seek information from their neighbors, since they also observe their personal payoff,
resulting in degree d adopters and degree d non-adopters observing an equal number of
payoffs on average.
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Steady states of the process occur when (7) determines a new link-
weighted fraction of adopters �t that equals the previous link-weighted fraction
of adopters �t�1. To simplify notation, let

hd .�/ D ˆ

�
d��Cm
p
d��2 C s2

�
: (8)

Substituting hd .�/ into equation (4), we see that an equilibrium link-weighted
fraction of adopters is a solution to

� D
1

Nd

X
d

dP.d/hd .�/: (9)

Given a solution �� to (9), the corresponding equilibrium (unweighted)
fraction of adopters can be calculated from the equation (7) for the fraction
of adopters of degree d , along with the degree distribution, and is given byX

d

P.d/hd .�
�/: (10)

4 Equilibria

In this section we begin by proving that there is always at least one equilibrium
of the diffusion process. Then we derive conditions that guarantee a unique
equilibrium when the average payoff of the new technology is less than that of
the status quo. Finally, we categorize equilibria as stable or unstable and show
that every set of model parameters gives rise to at least one stable equilibrium.

4.1 Existence

Our first task is to prove that an equilibrium always exists. Define

G.�/ D
1

Nd

X
d

dP.d/hd .�/: (11)

Fixed points of G correspond to equilibria of the diffusion process. Since G
is a continuous function defined on all of Œ0; 1�, existence is a consequence
of the Brouwer fixed point theorem (e.g. Massey, 1991). We will call such
a function G determined by the model parameters �, �2, m and s2 and the
degree distribution P a diffusion function.
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Figure 1: Three examples of a diffusion function G.�/ for a regular degree four
network.

Several aspects of the function G should be noted. First,

G.0/ D
1

Nd

X
d

dP.d/hd .0/ D
1

Nd

X
d

dP.d/ˆ
�m
s

�
D ˆ

�m
s

�
> 0: (12)

That is, G.0/ is simply the fraction of agents with positive priors. Thus, zero
is never an equilibrium of the process. This highlights a difference between
social learning and the contagion models of diffusion studied by Jackson and
Yariv (2005), Jackson and Rogers (2007), and López-Pintado (2008), in which
zero is always an equilibrium. Here, as soon as the technology is available
some agents will adopt based solely on their prior beliefs. Similarly,

G.1/ D
1

Nd

X
d

dP.d/hd .1/ <
1

Nd

X
d

dP.d/ D 1; (13)

so full adoption is also never an equilibrium. This stands in contrast to models
of social learning in which the agents make use of an infinite number of obser-
vations, where typically all of the agents settle on the same action (e.g. Bala
and Goyal, 1998). These observations have welfare implications. Because the
payoff distribution is identical across agents and across time, the social opti-
mum is always either no adoption or full adoption depending on the sign of the
expected payoff �. Equations (12) and (13) demonstrate that the agents never
settle precisely on the optimal level of adoption. Depending on the parameter
values there may be equilibria that are practically indistinguishable from no
or full adoption, but in many cases there are not.

For some parameter values multiple equilibria exist. For example, as
illustrated in Figure 1A, in a regular degree four network with mean payoff
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� D 2, payoff variance �2 D 1, mean prior m D �3, and variance of priors
s2 D 1, there are three equilibria: near zero, :26, or :99 (since this is a regular
network, � equals the actual fraction of adopters). Because the distribution
of agents’ prior beliefs is strongly biased against adoption we would expect
the system to settle on the low adoption equilibrium, even though more than
97 percent of draws from the payoff distribution are positive. Unfortunately,
from a social welfare perspective, without forcing many of the agents to adopt
initially against their beliefs, the society will never gather enough evidence
regarding the positive payoffs of the technology to overcome their skepticism
and reach the high adoption equilibrium.

In other cases, only a single equilibrium exists. In the previous example,
agents’ were initially biased against adoption; only about one in a thousand
agents began with a positive prior. If agents have more favorable priors we
observe a different pattern. Figure 1B depicts the graph of G.�/ for the same
parameter values as Figure 1A except that m has been increased from �3 to
�1. In this case, a greater number of agents adopt initially, and observing
these early adopters’ payoffs convinces much of the rest of the population to
adopt. Figure 1C illustrates a third possibility for the diffusion function. The
parameters that generate this curve are the same as those for Figure 1A except
that now the mean payoff � has been decreased from 2 to 1. In this case the
system inevitably settles on near zero adoption.

With other network degree distributions there may be many more equi-
libria. Figure 2 plots an example with five equilibria. In this example � D 2,
�2 D :25, m D �3 and s2 D :25. In the network one percent of the nodes have
degree fifty, while the rest of the nodes have an equal chance of having degree
one, two, three, four, or five.

4.2 Uniqueness for Costly Technologies

When � < 0 the technology offers less utility than the status quo on average.
We call such a technology costly. When a technology is costly, as long as
the agents’ priors are not overly biased against adoption, there is a unique
equilibrium to the social learning process.

Theorem 1. If � < 0 and

2
�

�2
<
m

s2
; (14)

then a diffusion function G with parameters �, �2, m, and s2 has a unique
equilibrium regardless of the network structure.

12

The B.E. Journal of Theoretical Economics, Vol. 10 [2010], Iss. 1 (Topics), Art. 36

http://www.bepress.com/bejte/vol10/iss1/art36



0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

θ

G
(θ
)

Figure 2: An example of a diffusion function G.�/ with five equilibria.

Theorem 1. If � < 0 and

2
�

�2
<
m

s2
; (14)

then a diffusion function G with parameters �, �2, m, and s2 has a unique
equilibrium regardless of the network structure.

Proof. The reason for the unique equilibrium is that when � < 0 and (14)
is satisfied, G is a decreasing function of � and therefore has a unique fixed
point. The derivative of G with respect to � is

G 0.�/ D
1

Nd

X
d

dP.d/
@hd

@�
.�/: (15)
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The derivative of hd with respect to � is

@hd

@�
.�/ D dˆ0

�
d��Cm
p
d��2 C s2

�
d���2 C 2�s2 � �2m

2.d��2 C s2/3=2
: (16)

Thus the sign of @hd
@�
.�/ and therefore of G 0.�/ is the same as the sign of

d���2 C 2�s2 � �2m. When � < 0,

d���2 C 2�s2 � �2m < 2�s2 � �2m; (17)

which is negative whenever the condition (14) is satisfied.

This theorem illustrates the asymmetry between costly and benefi-
cial technologies. For costly technologies, an external shock that adds more
adopters tends to be countered by a decrease in adoption as those new adopters
learn and communicate that the technology is costly. This “negative feedback
loop” tends to bring the system to equilibrium. For beneficial technologies,
the system can come to rest at an equilibrium in which more agents would
adopt if they knew about the benefits of adopting, but too few agents are
currently adopting in order for the group to learn about those benefits. An
external shock that adds more adopters increases the number of agents who
know about the benefits, who in turn can communicate that knowledge to their
neighbors leading to still further adoption. This results in a “positive feedback
loop,” which can move the system towards a higher adoption equilibrium.6

4.3 Stable and Unstable Equilibria

The mean-field analysis in the previous section identifies equilibria of the social
learning process. In practice, randomness makes it unlikely for some of these
equilibria to be maintained. For example, because agents’ experiences are
random draws from the payoff distribution, at any particular time or particular
region of the network these draws will fluctuate around the true mean of the

6For discussions of positive and negative feedbacks and multiple equilibria see Arthur
(1996) and Sterman (2000).
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Figure 3: One realization of the social learning process and the corresponding
diffusion function G.�/ in a regular degree five network. The adoption level
converges to, and then fluctuates around, the unique stable equilibrium.

distribution in turn leading to fluctuations in the actual adoption pattern.
Figure 3 illustrates this in the evolution of one simulated realization of the
social learning process in a regular degree five network with 300 agents (with
� D 1, � D 1, m D �1, and s D 1). The adoption fraction in the simulated
population quickly approaches the predicted equilibrium of 94% adoption and
then fluctuates around that level.

In some cases, small perturbations away from an equilibrium tend to
be countered by perturbations back towards the equilibrium as in Figure 3.
We call these equilibria stable. In other cases, once a perturbation knocks the
process off of the equilibrium the adoption path tends to diverge away from
that equilibrium towards another. We call these equilibria unstable.

Stable and unstable equilibria can be identified by the local form of
the function G.�/ near a fixed point. If the link-weighted fraction of adopters
is � and G.�/ > � , then the link-weighted fraction of adopters will tend to
increase. Conversely, if G.�/ < � , then the link-weighted fraction of adopters
will tend to decrease. This leads us to the following definition.

Definition 1. A fixed point ��s of G is a stable equilibrium if there exists an
� > 0 such that for any � 2 .��s � �; �

�
s /, G.�/ > G.��s / and for any � 2

.��s ; �
�
s C �/, G.�/ < G.�

�
s /. A fixed point ��u of G is an unstable equilibrium

if there exists an � > 0 such that for any � 2 .��u � �; �
�
u /, G.�/ < G.�

�
u / and

for any � 2 .��u ; �
�
u C �/, G.�/ > G.��u / (c.f. Definition 1 of Jackson and

Yariv, 2007).7

15

Lamberson: Social Learning in Social Networks

Published by The Berkeley Electronic Press, 2010



For example, the fixed points in both Figure 1B and Figure 1C are
stable. The smallest and largest fixed points in Figure 1A are stable, while the
middle fixed point in Figure 1A is unstable. For the most part we are more
interested in stable equilibria than unstable equilibria because it is highly
unlikely that the stochastic process will settle on an unstable equilibrium.
Instead a realization of the model will tend to hover near a stable equilibrium
as in Figure 3.

The following theorem collects several observations on stable and unsta-
ble equilibria, which can be proven using simple Intermediate Value Theorem
arguments along with the facts that G is continuous, G.0/ > 0 and G.1/ < 1.

Theorem 2. Consider a diffusion function G as in equation (11). Then the
set of equilibria for G satisfy the following:

1. There is at least one stable equilibrium.
2. The smallest equilibrium is stable.
3. The largest equilibrium is stable.
4. The ordered set of equilibria alternates between stable and unstable equi-

libria.

We are interested in how stable equilibria depend on the parameters
of our model and the network structure; however, when there are multiple
equilibria it is unclear what it means for certain parameters to generate more
or less diffusion. To better describe this dependence we define a function
�G W Œ0; 1� ! .0; 1/, which we call the equilibrium function of the diffusion
function G. For any � 2 Œ0; 1� with G.�/ < � let �G.�/ be the largest stable
equilibrium of G that is less than � . For any � 2 Œ0; 1� with G.�/ � � let
�G.�/ be the smallest stable equilibrium of G that is greater than or equal to
� . The idea of the equilibrium function is that if we begin the social learning
process specified by G with a link-weighted fraction of adopters � then we

7A fixed point �� of G may also be a degenerate fixed point, which under definition 1
is neither stable nor unstable, if G0.��/ D 1: However, generically all fixed points of G are
either stable or unstable. By this we mean that any G with a degenerate fixed point �� can
be transformed by an arbitrarily small perturbation in the space of the model parameters
into another diffusion function QG without a degenerate fixed point and for any G without a
degenerate fixed point any diffusion function generated by a sufficiently small perturbation
of the model parameters will also have no degenerate fixed points. For the remainder of the
paper we assume that G has no degenerate fixed points.
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Figure 4: An example of a diffusion function G.�/ (solid) and the associated
equilibrium function �G.�/ (dashed).

expect the process to converge to near the stable equilibrium �G.�/.
8 Figure

4 depicts an example.

Definition 2. A diffusion function G generates greater diffusion than a dif-
fusion function QG if �G.x/ � � QG.x/ for all x 2 Œ0; 1� (c.f. Definition 3 of
Jackson and Yariv, 2007).

Intuitively, a diffusion function G generates more diffusion than an-
other QG if, regardless of the initial fraction of adopters, we expect the process
specified by G to converge to an equilibrium with a greater fraction of adopters
than that specified by QG.
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5 Comparative Statics

In this section we examine how changes in the model parameters and the social
network affect equilibrium levels of diffusion.

5.1 Dependence on Model Parameters

First, we examine how the stable equilibria of a diffusion function G depend
on the non-network parameters of the model, �, �2, m, and s2. We begin with
the following lemma, which shows that changes that increase the diffusion
function lead to greater diffusion.

Lemma 1. If G.�/ � QG.�/ for all � then G generates greater diffusion than
QG (c.f. Proposition 1 of Jackson and Yariv, 2007).

Proof. For t 2 Œ0; 1�, define 't W Œ0; 1�! Œ0; 1� by

't.x/ D G.x/C t . QG.x/ �G.x//: (18)

So '0.x/ D G.x/ and '1.x/ D QG.x/ (i.e. 't is a homotopy from G to QG). We
can determine how � QG relates to �G by examining how solutions to 't.x/ D x
change as t moves from zero to one. We extend the definition of stable and
unstable equilibria to stable and unstable fixed points of 't.x/ in the obvious
way and for each t define a function �t.x/ corresponding to 't.x/ in the same
way that �G.x/ is defined from G. Small increases in t can result in three
changes in the ordered set of fixed points of 't :

8When � is an unstable equilibrium the choice to set �G.�/ to be the next largest stable
equilibrium as opposed to the next smaller stable equilibrium is arbitrary.
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Figure 5: Two diffusion functions (A) and the associated equilibrium functions
(B). The process illustrated by the dotted line has a higher mean payoff � than
that illustrated by the solid line.

A. Stable fixed points increase and unstable fixed points decrease.
B. A stable fixed point and the next highest unstable fixed point vanish.
C. A new unstable fixed point and consecutive stable fixed point are intro-

duced.

It is straightforward to check that each of these three changes results in an
increase in �t.x/. Thus, '1 D � QG � '0 D �G .

Figure 5 illustrates a specific example of Lemma 1. Panel A on the left
side of the figure plots two diffusion functions G and QG with QG.�/ � G.�/ for
all � . Panel B on the right plots the associated equilibrium functions. As we
can see, � QG.�/ � �G.�/ for all � .

Any change in parameters that increases the values of the function
hd .�/ also increases the value of the function G.�/. Returning to the definition
of hd .�/ from equation (8) we see that hd .�/ increases when � increases or m
increases. Thus, we have proved the following theorem.

Theorem 3. Increasing the mean of the payoff distribution, �, or the mean
of the distribution of priors, m, generates greater diffusion.

The example depicted in Figure 5 is generated by a mean payoff shift as
described in Theorem 3. The solid lines plot the diffusion function G and the
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associated equilibrium function �G with � D 1, �2 D 1, m D �5 and s D 1

for a regular degree ten network. The dotted lines show the diffusion function
QG and the associated equilibrium function � QG which has the same parameters

and network as for G but with � increased to 1.3.
The effects of changes in �2 and s2 are conditional on the sign of d��C

m. Since d� > 0, if � and m are either both positive or both negative, then
the sign of d�� C m is also positive or negative, respectively. Thus, if both
� and m are positive then hd .�/ increases when �2 decreases or s2 decreases.
This proves the following theorem.

Theorem 4. If both � and m are positive, decreasing the variance of the payoff
distribution �2 or the variance of the distribution of priors s2 generates greater
diffusion. If both � and m are negative, increasing the variance of the payoff
distribution �2 or the variance of the distribution of priors s2 generates greater
diffusion.

The results in Theorem 3 and 4 do not depend on the network struc-
ture. The same relationships would hold if there was no structure to agent
interactions. However, when � and m have opposite signs, the effect of in-
creasing or decreasing the variance in the payoff or prior distributions depends
on the degree distribution of the network. Depending on the network, chang-
ing the variance of the payoff or prior distribution can generate greater or less
diffusion or have an ambiguous effect.

5.2 Dependence on Network Structure

This section examines the effect of changes in the network structure, as spec-
ified by the degree distribution P , on the extent of the technology diffusion.
We examine the effects of two types of changes in the network: first and second
order stochastic dominance shifts in the degree distribution (Rothschild and
Stiglitz, 1970). A distribution P strictly first order stochastically dominates a
distribution QP if for every nondecreasing function u W R! R;

DmaxX
dD0

u.d/ QP .d/ <

DmaxX
dD0

u.d/P.d/; (19)

where Dmax is the maximum degree of any node in the network. A distribution
P strictly second order stochastically dominates a distribution QP if (19) holds
for every nondecreasing concave function u W R! R:
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First order stochastic dominance implies second order stochastic domi-
nance, but not vice versa. If P and QP have the same mean, then the statement
P second order stochastically dominates QP is equivalent to the statement QP
is a mean preserving spread of P . Intuitively, one network first order stochas-
tically dominates another if agents have more neighbors in the former than
the latter. A network second order stochastically dominates another if there is
less heterogeneity in the number of neighbors that agents have in the former
than the latter.9

In our case, the role of the function u in equation (19) is played by
hd .�/ and the role of the distribution P is played by dP= Nd D dP=EP Œd �.
In order to understand the consequences of stochastic shifts in the degree
distribution, we need to understand when h is increasing and decreasing as
well as its concavity when viewed as a function of d . Since throughout this
section we will be interested in hd .�/ as a function of d , we will abuse notation
by suppressing the dependence on � and simply write h.d/ for hd .�/, h

0.d/

for @hd .�/

@d
and so on. Examining the first derivative of h, we see that

h0.d/ D �ˆ0
�

d��Cm
p
d��2 C s2

�
d���2 C 2�s2 � �2m

2.d��2 C s2/3=2
: (20)

Thus the sign of h0.d/ depends on the sign of

d���2 C 2�s2 � �2m: (21)

If d���2C 2�s2� �2m > 0 then h0.d/ is positive. Suppose that � > 0. Then

d���2 C 2�s2 � �2m � 2�s2 � �2m; (22)

since d���2 � 0. The right hand side of (22) is greater than zero when

2
�

�2
>
m

s2
: (23)

So, when � > 0 and (23) holds, h is an increasing function of d for any � > 0.
A similar argument shows that when � < 0 and

2
�

�2
<
m

s2
(24)

h is a decreasing function of d . In this case, Theorem 1 guarantees that there
is a unique equilibrium level of diffusion in both P and QP . Combining this
with the definition of first order stochastic dominance and Lemma 1 proves:

9For an introduction to stochastic dominance and its role in network diffusion see Jackson
(2008) or Lamberson (2009).
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Theorem 5. Suppose that dP=EP Œd � strictly first order stochastically domi-
nates d QP=E QP Œd �. If � > 0 (i.e. on average adopting the technology is benefi-
cial) and

2
�

�2
>
m

s2
; (25)

then P generates greater diffusion than QP . If � < 0 (i.e. on average adopting
the technology is costly) and

2
�

�2
<
m

s2
; (26)

then the unique equilibrium level of diffusion in the network with degree distri-
bution QP is greater than the unique equilibrium level of diffusion in the network
with degree distribution P .

We can think of a network that first order stochastically dominates
another as providing the agents with more information, since on average the
agents have more links to other agents. We would expect that for beneficial
technologies, more information would aid diffusion. Theorem 5 confirms this
intuition, but only if the agents are not overly optimistic about the technology
to begin with, as captured by condition (25). If the agents’ prior beliefs about
the payoffs of the technology are sufficiently positive, so that (25) is violated,
adding more links to the network can hinder diffusion. This stands in contrast
to contagion models in which adding links always aids diffusion (Jackson, 2008,
López-Pintado, 2008).

On reflection, we might expect that when agents’ priors tend to be
more positive than the payoffs, adding links could decrease diffusion. That
logic leads to a condition that says if the fraction of payoffs that are positive
is greater than the fraction of agents with positive priors, i.e.

�

�2
>
m

s2
; (27)

then first order stochastic shifts lead to greater diffusion. But the actual
condition (25) is more subtle. The intuitive condition (27) differs from the
actual condition (25) by a factor of two on the left hand side. If we fix the
distribution of priors, and consider (25) as a condition on the payoffs, then
the actual condition (25) is weaker than the intuitive condition (27). In other
words, relative to the distribution of priors, the payoff distribution contributes
more to the marginal effect of degree on diffusion than we might expect.

This discrepancy arises because there is a non-trivial interaction be-
tween the effect of adding links to the network and of changing the payoff
distribution due to the fact that only adopting agents can communicate payoff
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information. Increasing the payoffs increases the number of adopting agents,
which makes the effect of adding links stronger because those additional links
are more likely to connect to agents that have payoff information to share.
Conversely, decreasing the payoff distribution weakens the effect of adding
links, because those additional links are more likely to connect to non-adopting
agents who do not contribute any additional information.

Turning to second order stochastic dominance shifts, we have a similar
theorem:

Theorem 6. Suppose that dP=EP Œd � strictly second order stochastically dom-
inates d QP=E QP Œd �. If

h00.d/ > 0; (28)

then P generates greater diffusion than QP . If

h00.d/ < 0; (29)

then QP generates greater diffusion than P .

In Theorem 5 we were able to express conditions (25) and (26) in terms
of the social learning parameters in an interpretable fashion. In the case of
second order stochastic changes in the degree distribution, as examined in
Theorem 6, the analogous conditions become too complex to decipher when
written out in terms of the model parameters.10 Moreover, in many cases sec-
ond order stochastic shifts in the degree distribution do not have a consistent
effect on diffusion because h is convex for some values of � and concave for
others.

This highlights another difference between network diffusion via social
learning and via an epidemic model as considered by Jackson and Rogers
(2007) or López-Pintado (2008). In the model by Jackson and Rogers (2007),
for example, a second order stochastically dominant degree distribution always
has a lower highest stable equilibrium. This holds because in the epidemic
model the effect of adding edges is convex, essentially because adding a link to
an agent increases both the chances that she becomes infected and the chances
that she spreads the infection. In the social learning model the contribution
of adding edges depends on the level of adoption, the distribution of payoffs,
and the distribution of prior beliefs as well as the degree distribution.

10The second derivative of h with respect to d is

�2

4

"
ˆ00

 
d��Cmp
d��2C s2

!
.d���2C 2�s2 � �2m/2

.d��2C s2/3
Cˆ0

 
d��Cmp
d��2C s2

!
��2.d���2C 4�s2 � 3�2m/

.d��2C s2/5=2

#
: (30)
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Figure 6: A diffusion function with the same model parameters in two different
networks with the same average degree: a regular network (dashed line) and
a scale-free network (solid line).

has a lower highest stable equilibrium. This holds because in the epidemic
model the effect of adding edges is convex, essentially because adding a link to
an agent increases both the chances that she becomes infected and the chances
that she spreads the infection. In the social learning model the contribution
of adding edges depends on the level of adoption, the distribution of payoffs,
and the distribution of prior beliefs as well as the degree distribution.
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Figure 6 illustrates the phenomenon. The figure plots the diffusion
function G with the same model parameters (� D 3, �2 D 1, m D �3 and
s2 D 1) for a regular network (dashed line) and a scale-free network (i.e. one
with a power law degree distribution, solid line).11 The regular network second
order stochastically dominates the scale-free network, but both have the same
average degree. Despite having the same average degree, these two degree
distributions generate vastly different dynamics. The scale free network has a
single equilibrium link-weighted fraction of adopters of 87.9%, which by equa-
tion (10) corresponds to an actual adoption fraction of only 49.6%. Regardless
of the initial fraction of adopters, in the scale-free network we would expect
the process to converge to near 49.6% adoption. The regular network gives rise
to two stable equilibria, one nearly indistinguishable from no adoption and an-
other at approximately 98.6% adoption, as well as one unstable equilibrium at
34.3%. For this network, unless the fraction of adoption is exogenously pushed
beyond the unstable equilibrium at 34.3% adoption, the process settles on the
equilibrium near zero. However, if the population begins at a point above the
unstable equilibrium, it then moves to the equilibrium at 98.6%, which is 49%
higher than the equilibrium in the scale-free network. Thus, depending on the
initial adoption level, the regular network, which second order stochastically
dominates the scale-free network, can generate more or less diffusion.

6 Memory

Up to this point, agents’ adoption and disadoption decisions in the model are
based solely on payoffs from the previous period. In this respect, our model
follows those considered by Ellison and Fudenberg (1993, 1995). In contrast,
the model by Bala and Goyal (1998) allows agents to base their decisions on
observation of an infinite number of periods. At each stage in Bala and Goyal’s
model the agents update their priors based on new observations, and their new
posterior becomes the prior for the following round. As discussed in section
2, our agents behave differently. Instead, we think of each agent as storing
her prior and each piece of the information she has accrued separately. Each
time she makes an adoption decision, she recalculates her expected payoff
based on her prior and the information on payoffs that she has observed,
but she will have forgotten observations which occurred sufficiently long ago.
As described in the introduction, the finite and infinite observation cases are

11For this computation the maximum degree is fixed at 500. The power law exponent is
2.3, the same as the exponent in the network of movie actors measured by Barabási and
Albert (1999).
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qualitatively different. In the infinite observation case, the population tends
towards conformity, while the finite observation case considered here always
maintains some diversity.

While we take the one period approach of Ellison and Fudenberg in our
analysis above, we now extend the model to incorporate an arbitrary finite
number of observations. Suppose that agents base their adoption decision on
observations of payoffs from the previous k periods.12 Then, in equation (5)

we would replace d�t�1 with
Pk
jD1 d�t�j . Carrying through the mean-field

analysis this leads to a new definition of the function hd .�/ in equation (8),

hd .�/ D ˆ

�
dk��Cm
p
dk��2 C s2

�
: (31)

None of the comparative statics analyzed in Theorems 3 and 4 are affected by
this change. Furthermore, differentiating h with respect to d as in equation
(20), we obtain

h0.d/ D �kˆ0
�

d�k�Cm
p
d�k�2 C s2

�
d�k��2 C 2�s2 � �2m

2.d�k�2 C s2/3=2
: (32)

Following the analysis in section 5.2, adding the parameter k also has no
effect on the conditions (25) and (26) or on the relationship between network
structure and diffusion described in Theorem 5 or 6.

While the inclusion of larger numbers of observations does not change
any of the other comparative statics, it does itself have an effect on the equilib-
rium. As is evident from equation (31), the role of the number of observations
term k is similar to the role of degree. As with changes in degree, increases
in the number of observations cause increases in h when � > 0 and (25) is
satisfied. Increases in k cause h to decrease when � < 0 and (26) is satisfied.

Combining these observations and applying Lemma 1 proves the fol-
lowing theorem.

Theorem 7. Consider two diffusion functions G and QG with all of the same
parameters with the exception that the number of observations parameter k for
G is greater than the number of observations parameter Qk for QG. If � > 0, so
on average adopting the technology is beneficial, and

2
�

�2
>
m

s2
; (33)

12We implicitly assume that each agent observes at least k periods worth of payoffs before
updating her decision.
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then G generates greater diffusion than QG. If � < 0, so on average adopting
the technology is costly, and

2
�

�2
<
m

s2
; (34)

then QG generates greater diffusion than G.

So, the condition and direction of the effect of increases in the number
of observations on diffusion are the same as for first order stochastic shifts in
the degree distribution.

We can also ask, what happens in the limit as k approaches infinity?
If � > 0 then as k approaches infinity G approaches one. Conversely, if
� < 0 then G approaches zero. Thus, in the infinite observations limit the
population converges to the social optimum: all agents adopt if the technology
has a positive average payoff and no agents adopt if the technology has a
negative average payoff. In the infinite observation model of Bala and Goyal
(1998), the population always converges to a consensus, but that consensus
may not be the optimal one. The reason for the discrepancy between our
results and theirs lies in the distribution of prior beliefs. Their model allows
for the possibility, for example, that all agents are sufficiently biased against
adoption of a technology that none of them ever try it. However, if at least one
agent has a sufficiently positive prior when � > 0, or a sufficiently negative
prior when � < 0, then the population in the Bala and Goyal model also
converges to the “correct” equilibrium. Because the model here assumes a
normal distribution of prior beliefs and the mean-field approximation assumes
an infinite population, this condition is always satisfied. Thus, taking the
limit as k approaches infinity, the model here reproduces the results of Bala
and Goyal (1998) under the assumption that the distribution of agents’ priors
has sufficiently wide support.

7 Conclusion

In this paper we analyze a model of social learning in a social network. The
paper contributes to two streams of literature – the literature on social learning
as a mechanism for diffusion and the literature on diffusion in social networks
– which were until now largely separate.13 Incorporating social network struc-
ture in a standard social learning model adds realism; we would expect that
individuals seek information from their friends and family. We prove that

13The papers by Bala and Goyal (1998, 2001) and Gale and Kariv (2003) are notable
exceptions.
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adding this network structure affects the diffusion. To the diffusion literature,
the model presented here adds a microeconomic rationale for agents’ deci-
sions, as opposed to a simple contagion or threshold model. Not surprisingly,
we find that the collective dynamics of rational actors are more complex than
the physics of disease spread. For example, in a contagion model, first order
stochastic shifts in the degree distribution always increase diffusion (Jackson
and Rogers, 2007). In contrast, in the model presented here, the effect of a first
order stochastic shift depends on the payoffs to adoption and the agents’ prior
beliefs regarding those payoffs. We derive precise conditions for the relation-
ships between first and second order stochastic shifts in the degree distribution
and equilibrium levels of diffusion. In some cases we find these conditional ef-
fects surprising. For example, adding links to a network can decrease diffusion
even when the social optimum is for all agents to adopt.

To analyze this model we employ a mean-field approximation, which re-
quires assumptions that may not always be appropriate. For example, the ap-
proximation results are likely to be less accurate in small networks or networks
in which the degrees of neighboring agents are highly correlated. However,
in many cases simulation results confirm that mean-field techniques provide
a good approximation to discrete dynamics (e.g. Newman and Watts, 1999,
Newman et al., 2000, Newman, 2002).

The model and analysis employed in this paper open the door to the ex-
ploration of other questions. First, in the model presented here, while agents’
prior beliefs differ their preferences do not. Extending this model to include
heterogenous preferences is a logical next step. We may also consider the
possibility that those preferences are correlated with agents’ positions in the
network to reflect the fact that agents are more likely to have social ties with
agents that are similar to them (i.e. the network exhibits homophily (McPher-
son, Smith-Lovin, and Cook, 2001)). Second, one could add a dynamic to the
“supply side” of the model to investigate how the results may be affected if
the payoffs to the new technology changed over time or if multiple technologies
competed for market share. The model raises the possibility of using informa-
tion on network structure to tailor firm strategies to specific network contexts.
Finally, the model offers a potential explanation for why technologies and be-
haviors may diffuse to a greater extent in one community than another. This
could provide the basis for an empirical test of the model’s predictions and
help us to better understand the mechanisms of diffusion and the role of social
structure in the process.
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