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Experience versus Talent Shapes the Structure of
the Web
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Abstract

We use sequential large-scale crawl data to empirically investigate and validate the dynamics that underlie
the evolution of the structure of the web. We find that the overall structure of the web is defined by an intricate
interplay between experience or entitlement of the pages (as measured by the number of inbound hyperlinks a
page already has), inherent talent or fitness of the pages (as measured by the likelihood that someone visiting
the page would give a hyperlink to it), and the continual high rates of birth and death of pages on the web. We
find that the web is conservative in judging talent, and the overall fitness distribution is exponential, showing
low variability. The small variance in talent, however, is enough to lead to experience distributions with high
variance: the preferential attachment mechanism amplifies these small biases and leads to heavy-tailed power-law
(PL) inbound degree distributions over all pages, as well as, over pages that are of the same age. The exponential
distribution of fitness is also key in countering the potentially destabilizing effect of removal of pages: it stabilizes
the exponent of the PL to a low value, and preserves the heavy tail and the resulting hierarchy, even in the face
of very high rates of uniform deletion of web pages. The balancing act between experience and talent on the web
allows newly introduced pages with novel and interesting content to grow fast and catch up or even surpass older
pages who have already built their web presence. In this regard, it is much like what we observe in high-mobility
and meritocratic societies: people with entitlement continue to have access to the best resources, but there is just
enough screening for fitness that allows for talented winners to emerge and join the ranks of the leaders. Finally,
the estimates of the fitness of webpages and their distribution have potential practical applications in ranking search
engine query results, which can allow users easier access to promising web pages that have not yet become popular.

I. INTRODUCTION

We, at both the individual and societal levels, have to constantly make decisions on how we should
distribute our limited resources and time. We need to make choices as to who to hire, elect, buy from, get
information from, award grants to, or make friends with. In this competitive landscape, each candidate touts
a resume highlighting experience – a more easily quantifiable metric that summarizes past achievements,
e.g., the total number of clients a service provider has served, or the years a prospective employee has
spent at similar jobs,– and talent or inherent fitness – a more subjective metric that indicates how well
the candidates might perform in the future, e.g., especial pedigree or degree from a prestigious college,
or knowledge of a brand new technology, or an articulation of an ideal that captures the imagination.
How we strike a balance between entitlement/experience and fitness/potential is a key determining factor
in how wealth and power get distributed in a society, and how nimble it is in adapting to changes. Too
much emphasis on experience alone could lead to an ossified social structure that lacks innovation and can
collapse dramatically when confronted with change; the world history is littered with numerous instances
of failed societies who had chosen such a path. The opposite extreme of letting only promising upstarts
rule, can equally easily lead to a state of anarchy with no dominant institutions to hold the society together;
the frequent failures of well-intentioned revolutions that supplant existing institutions en masse and make
fresh starts, provide eloquent testimonies to the perils of such a path. A society-wide quantitative study
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of how the experience vs. talent question is resolved, however, has been difficult to perform because of
the obvious lack of concrete data.

The World Wide Web (WWW) provides a unique opportunity in this regard. It has emerged as a
symbiotic socioeconomic entity, enabling new forms of commerce and social intercourse, while being
constantly updated and modified by the activities that it itself enables. Given the web’s organic nature, its
evolution, structure, and information dynamics should reflect many of the same dynamics that underlie
its real-world counterparts, i.e., our social and economic institutions. Thus, we ask how does this thriving
cyber-society deal with the experience vs. talent issue, and how this interplay influences its own structure.
The unprecedented scale and transparency of the activities on the web can provide data that hitherto
has been unavailable. The web is typically modeled as an evolving network whose nodes are web pages
and whose edges are URL links or hyperlinks. A web page’s in-degree (i.e., the number of other pages
that provide links to it) is a good approximation to its ability to compete, since heavily linked web
documents are entitled to numerous benefits, such as being easier to find via random browsing, being
possibly ranked higher in search engine results, attracting higher traffic and, thus, higher revenue through
online advertisements. Thus the degree of a node can be considered as a proxy of its experience, and it
is a reflection of its entitlement, status and accomplishments to date.

In fact, motivated by a power-law (PL) distribution of the degree of nodes in the web graph (i.e.,
P (k) ∝ k−γ , where k denotes node degree and γ is the power law (PL) exponent), the principle of
preferential attachment (PA), known to sociologists and economists for decades (e.g., as the “cumulative
advantage” or the “rich gets richer” principle[1], [2]), was proposed as a dominant dynamic in the web
[3], [4], [5]. Note that [4] modeled web growth in terms of growth in the sizes of web sites/domains,
which is identical to the model used by Willis and Yule [6] in 1922 to explain the PL in the sizes of
the genus. However, as shown in [7], the Yule’s model and the Simon’s model [1] are equivalent to each
other, and both rely on the cumulative advantage principle. Hence, we refer to both the models introduced
in [3] and in [4], [5] as the PA model. Alternate local dynamical models of the web, e.g., via copying of
links[8] (again, inspired by analogous social dynamics, such as referral services), account for additional
characteristics of the web graph, such as high clustering coefficients and bipartite clique communities,
while still retaining the global PA mechanism.

The PA or equivalent models, however, imply that the scale is heavily tilted towards experience: the
more experienced or older a page is, the more resources it will get and the more dominant it will become.
For example, PA predicts that almost all nodes with high in-degree are old nodes (disallowing newcomers
to catch up), and that the degree distribution of pages introduced at the same time will be an exponential
one, with very low variance. This extreme bias of the model was quickly realized and [5] presented
empirical data showing that the degree distribution of nodes of the same age has a very high variance;
they also introduced a fitness or talent parameter allowing different domains to grow at different rates to
theoretically account for the high variance [4]. This also prompted a number of researchers to propose [9],
[10] and explore [11], [12] the “preferential attachment with fitness” dynamical model in which a node i
acquires a new link with probability proportional to ki × ηi, the product of its current number of links ki

and its intrinsic fitness or talent ηi. In such a linear fitness model, the degree distribution and the structure
of the resulting network depends on the distribution of the talent parameter, ηi, and thus, without any
knowledge of the exact distribution, one cannot quite say how exactly the talent vs. experience issue gets
played out in the system. For example, a uniform distribution of talent has a very different implication
than say an exponential distribution. Moreover, a significant potential dynamic that has not been studied
in the context of the web is the death or deletion dynamic, which is dominant in most societal settings,
where institutions and individuals cease to operate. The deletion dynamic, however, has been studied in
the context of other networks [13], [14], [15], [16], and a surprising finding is that the heavy-tailed degree
distribution disappears in the straight PA model under significant deletion.

This prompted us to ask data-driven questions, such as: How dominant is the churn or deletion dynamic
in the web? Can a PA model with fitness preserve the heavy tail even in the presence of high deletion rates?
Can one empirically verify that the proposed models are truly at work in the web? Can one empirically
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estimate the relative fitness of a significant number of pages on the web and quantify the distribution
of talent on the web? Most interesting of all, how often can talents overtake the more experienced
individuals and emerge as the winner? Such issues, while have been partially theorized about, have not
been empirically studied and validated.

Brief Summary of Findings. Using web crawls that span the period of one year (i.e., 13 separate
crawls, at one month interval), we tracked both the death and the growth processes of the web pages. In
particular, we tracked 17.5 thousand web hosts, via monthly crawls, with each crawl containing in excess
of 22 million pages (see Materials and Methods). First, we discovered that there is a high turnover rate,
and for every page created on the web, our conservative numerical estimates show that at least around 0.77
pages are deleted (see Results and Supporting Information). This is a significant enough deletion rate that
it prompted us to analyze a theoretical model that integrates the deletion process with the fitness-based
preferential attachment dynamics (see Materials and Methods). Previous models of the web had neglected
the death dynamic; recent results, however, show that even a relatively low-grade deletion dynamic could
alter network characteristics considerably. Given the distribution of fitness, our model can predict the
overall degree distribution and the degree distribution of nodes with similar age.

The empirical crawl data is then used to estimate the parameters of the model. This allows us to validate
for the first time whether detailed time-domain data is consistent with the predictions of the theoretical
model. One of the most important assumptions of the model is that each page can be assigned a constant
fitness (which can vary from page to page) that determines the rate at which it will accumulate hyperlinks.
We perform an estimation of the fitness factor for each month, and show that for the period of the crawls,
the data do not reject the hypothesis that each page has a constant fitness (see Supporting Information). A
further verification of the model is obtained by validating one of its most direct implications. In particular,
the dynamical model predicts that the accumulated in-degree (i.e., counting all hyperlinks, including those
made by pages that get deleted during our study period) of a page grows as a power-law. We find that for
a vast majority of pages that show any growth, the degree-vs-time plots in the log-log scale have linear
fits with correlation coefficients in excess of 0.9 (see the Results section). The slope of the linear fit is an
affine function of the fitness of the page.

The robust estimation of the fitness factors of individual pages allows us to determine the overall
distribution. We find the fitness on the web to be exponentially distributed (i.e., see Figure 3(a)), with a
truncation. When inserted into our analytical model, this exponential fitness distribution correctly predicts
the power-law degree distribution empirically observed in the overall web as well as for the set of nodes
with similar age. For pages with similar age, the initial exponential distribution of fitness gets amplified
by the PA mechanism, and as a result, the degree distribution of pages of the same age is a PL distribution
with exponent 2, i.e., with high variance. Moreover, the truncated exponential distribution of fitness is
one of the few distributions that would generate a constant PL exponent in the overall degree distribution,
even as the turnover rate approaches unity (i.e., as many pages are deleted as created on the average).
The empirical data agrees with this prediction and the PL degree distribution retains a constant low-
magnitude exponent throughout the period of our study (see the Results section) even though the deletion
rate of pages remains high. Thus the fitness distribution of the pages helps in preserving the heavy-tailed
scale-free overall degree distribution of the web.

The sequential time-sampled data helps us in better understanding the interplay between experience
and talent (fitness). For example, the initial in-degree of a page (i.e., in June 2006) is a measure of its
experience, and the accumulated final in-degree (i.e., in June 2007) is a measure of how it fared based
on its fitness and its experience. We define a page to be a winner if its final degree exceeds a specific
desired target, while starting with an initial degree less than the target value. Figure 1 (a) shows the initial
in-degree distribution of all pages such that the initial degree was less than 1000 and the accumulated
final degree greater than 1000. The case of different target final degree values is discussed in Supporting
Information. If the growth of the number of hyperlinks acquired by a page was based purely on PA (i.e.,
all pages have the same talent/fitness), then only pages with initial degree greater than a certain threshold
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would end up with final degree greater than a thousand. Clearly, the empirical data shows that it is not
the case: There are talented winners who have very low initial in-degree and yet end up as winners;
similarly, there are experienced losers who start with a large in-degree (i.e., greater than the cut-off) but
yet end up with cumulative in-degree less that 1K. Figure 1 (b) shows the number of talented winners
and experienced losers as a function of the cut-off, and for the sake of fair comparison, we pick a value
for the cutoff such that the number of talented winners equals the number of experienced losers. Thus,
we find that for this sample set, the web collectively picked 48% talented winners, and displaced an equal
number of more experienced pages, thus striking a balance between talent and experience. As analyzed
in Supporting Information, the percentage of talented winners seems to remain relatively constant as the
target degree is varied.

What does the fitness distribution look like for pages with similar experience? Figure 3 (b) shows the
fitness distributions of pages with similar initial in-degree, and hence, similar experience. They all are
exponentially distributed, except that the average fitness is a function of the initial degrees of the nodes.
Figure 2 shows the average fitness as a function of initial in-degree. It shows that the average fitness is
largest for nodes with least experience, and decreases as a PL until about an in-degree value of 100; it
levels off after that. Thus, the web encourages pages with low or little experience just a bit more than the
mature pages; but for any group, it judges talent quite conservatively keeping the distribution exponential.
The concept of fitness has implications on how we rank the importance and attractiveness of web pages.
In the Discussion section, we propose that one can use the fitness estimates of the pages to boost their
rankings; this way, pages with low overall degree but that are growing fast will get higher ranking.

II. RESULTS

Estimating the Fitness of Webpages: Talents Are Exponentially Rare. If the fitness with deletions
model is indeed applicable to the web, the accumulated degree of each node should follow Eq. 11 as
discussed in Materials and Methods. In particular, from Eq. 11, taking the logarithm of both sides of the
accumulated degree of a page, we get:

log k∗(i, t) = (
ηi

A
−

c

1 − c
) log t + B = βi log t + B (1)

where B is some time-invariant offset. Hence, the slope of the linear fit of the logarithm of the accumulated
degree k∗(i, t) and time t gives node i’s growth exponent βi. Note that the fitness value is related to the
growth exponent of a node by a linear transformation with constant coefficients (see Eq. 6). Thus, the
distribution characteristics of fitness can be obtained by measuring the growth exponent of each node.

The methodology for measuring the distribution of the growth exponents is described as follows: first,
we identify about 10 million webpages that persist through all 13 months from June 2006 to June 2007.
For each of these webpages, the set of in-neighbors are identified for all months. The accumulated in-
degree of a node at any month is the sum of the in-neighbors up to that particular month. In accordance
with Eq. 1, after taking the logarithm of the accumulated in-degree and time (measured in months), the
slope of the linear ordinary least-square fit (i.e. the empirical growth exponent) along with the Pearson
correlation coefficient are obtained for each webpage. We will refer to this methodology as the growth
method; in the Supporting Information, we present an alternative methodology, the direct kernel method,
to estimate the fitness of webpages; the results from the alternative method is consistent with the results
from the growth method.

We found that a large fraction of webpages do not gain any in-connection at all during the entire 1-year
period. We consider a webpage to have a zero growth exponent if its in-degree values increases two times
or less during the 13 months. We found that only 6.5% of the webpages have nonzero growth exponents.
We will focus our study on the set of nodes with nonzero growth exponents. Note that the set of webpages
with zero growth exponents essentially introduces a delta function at the origin in a fitness distribution
plot. It is simple to check that the delta function does not impact the derivation of results and hence
omitted from discussion for simplicity.



5

An overwhelming fraction of the linear fit produces a correlation coefficient of 0.8 or more, with
an average correlation value of 0.89 (see Supporting Information). Thus, our empirical measurement is
consistent with the model that the evolution of node in-degree as a function of time follows a power-law
as described in Eq. 1 for majority of the webpages.

We plot the distribution of the growth exponents for the set of nodes with correlation coefficient of
0.8 or more in Fig. 3. The distribution of the growth exponents has a mean of 0.30 and clearly follows
an exponential curve with a truncation around 2.0 and a slope of −1.44 in the log-linear plot (i.e. a
characteristic parameter of λ = 1.44/ log e). Since node fitness and the growth exponent are related by
a linear transformation involving the constants A and c as βi = ηi

A − c
1−c , the fitness distribution is also

well modeled by the same form of a truncated exponential.

Examples of High-Talent Webpages. We now conduct checks to see if the webpages identified to
have a large growth exponent indeed contain interesting or important content that warrants the title of
being highly fit or “talented”. We manually inspected the several highest-fitness pages in our dataset.
One example is a webpage from the John Muir Trust website that calls on people to explore nature
(http://www.jmt.org/journey). Many in-links to this page is from other sites on nature and outdoor ac-
tivities. Another example is the webpage that reports the crime rate of the US from 1960 to 2006
(http://www.disastercenter.com/crime/uscrime.htm). This URL has many in-links from other sites that
discuss different crimes such as murder.

Power Law Degree Distribution of the Webpages with the Same Age. For scientific citation networks,
it is known that the in-degree distribution of the papers published in the same year follows a power law
(see the ISI dataset in Fig. 1(a) in [17]). However, no parallel study has been performed for the web.
Using our temporal web dataset, we studied the in-degree distribution of the set of webpages with the
same age. The in-degree distribution is found to follow a power law with an exponent of 2.0 for over
three decades (see Fig. 4). This result is consistent with the empirical finding by Adamic and Huberman
that the degree distribution of web hosts with the same age has a large variance [5]. Furthermore, the
power law nature of the in-degree distribution is consistent with our theoretical prediction from Eq. 10
given the fitness distribution is found to be a truncated exponential (see Materials and Methods).

In contrast, a network dynamic model that does not account for fitness has a small variance for the
nodes with the same age, which leads to the effect that the “rich” node must be the old node. In fact,
this is the basis of the issue raised by Adamic and Huberman [5]. Thus, the fitness-based model naturally
generates the power law degree distribution for the set of nodes with the same age, which is not explained
by other existing models that do not account for fitness such as [3], [13], [14], [15], [16].

Ad Hoc Characteristics of the Web and the Resilience of the Power Law Exponent. We now
discuss the webpage removal process as observed in our dataset. In our analytical model, a node is
removed uniformly randomly (i.e. independent of node degree). We found empirical evidence to support
the uniform random removal assumption: we observed that the degree distribution of the set of removed
nodes that disappear in a given month is similar to the degree distribution of all nodes (see Supporting
Information).

Recall that the turnover rate is defined as the average number of nodes removed per node added. From
our dataset, the turnover rate is measured to be c = 0.91 (i.e. for every new webpage inserted, 0.91
webpage is removed per unit time). However, this figure is an overestimate of the true turnover rate on
the web, since we are examining a fixed set of web hosts. Therefore, we also need to account for the
growth in the number of web hosts. Nevertheless, even after accounting for the source of growth from
the insertion of web hosts, web still has a minimum turnover rate of 77% (see Supporting Information).

Despite the high rate of node turnovers, the power law degree distribution is found to be very stable (see
Fig. 5). This finding is consistent with our ad hoc fitness model prediction that the power law exponent
γ of the degree distribution P (k) ∝ k−γ stays constant for varying rates of node deletion for a truncated
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exponential fitness distribution (see Eq. 9 in Materials and Methods). The resilience of the power law
exponent is in stark contrast to the result obtained for the PA-with-deletion model (without any fitness
variance), where the power law exponent is found to diverge rapidly as γ = 1 + 2/(1 − c) [13], [16].
Thus, the natural variation of node fitness provides a self-stabilization force for the power law exponent
of the degree distribution under high rate of node turnovers.

Talented Winners versus Experienced Losers. In the Introduction, we proposed the idea of talented
winners and experienced losers and how they are identified in our empirical web dataset for a given target
degree ktg. For the particular case of ktg = 1000, we find that 48% of the winners are talented winners (see
Fig. 1), who successfully displaced the experienced losers (i.e. the nodes with higher initial in-degrees but
fail to become a winner). This observation is seemingly paradoxical: how can talents emerge to win close
to half of the times when talents are exponentially rare? We seek to understand the interplay between
experience and talent through analytical modeling.

Consider a node with the initial degree k < ktg in month 1 (i.e. June, 2006, the start of our observation
period). In order for the node to achieve ktg in month 13 (i.e. June, 2007, the end of our observation
period), the growth exponent of the node must exceed the critical value: βc(k) =

log
ktg
k

log 13 . The fraction of
nodes that are winners is simply given as:

W (ktg) =

∫ ktg

1

C(βc(k))P (k)dk (2)

where C(β) is the complementary cumulative distribution function (CCDF) of the growth exponent
distribution and P (k) is the initial degree distribution in month 1. Thus, one can find the fraction of
winners for a given ktg by performing numerical integration of Eq. 2.

We now introduce the cutoff kcut: the set of winners with an initial degree k < kcut are denoted as the
talented winners, since they start with a low initial degree but nevertheless reach the target degree ktg in
month 13; the set of losers with an initial degree k > kcut are denoted as the experienced losers, since
they start with a high initial degree but still fail to reach the target degree ktg in month 13. We can solve
for the critical cutoff k∗

cut such that the number of talented winners TW (k∗

cut) is equal to the number of
experienced losers EL(k∗

cut) (i.e. the talented winners displace the experienced losers):

TW (k∗

cut) =

∫ k∗
cut

1

C(βc(k))P (k)dk =

∫ ktg

k∗
cut

(1 − C(βc(k)))P (k)dk = EL(k∗

cut) (3)

The above equation can be solved numerically to obtain k∗

cut. Now, the fraction of talented winners or
experienced losers is simply given by: rtw(ktg) = TW (k∗

cut)/W (ktg).
From our empirical web data, the growth exponent of the nodes is distributed according to a truncated

exponential function C(β) with the parameter λ = 1.44/ log e and the truncation βmax = 2.0. The initial
degree distribution P (k) is a power law with exponent γ = 1.8. Substituting the empirically obtained C(η)
and P (k) functions into Eq. 2 and 3, we use numerical integration to find the fraction of talented winners
rtw(ktg) for the target degree ktg = 1000 and obtain the theoretical prediction of 48.8%, which matches
well with the empirical measurements obtained as described in Fig. 1 (See Supporting Information for
theoretical and measurement results for different target degrees). For a given system with known talent
and initial degree distribution, one can now estimate the fraction of talented winners using our analytical
model.

III. DISCUSSION

The competition between experience and talent arises in all aspects of society on a frequent basis:
from choosing an applicant to fill a highly coveted job to deciding which political candidate to vote
for. Although the study of the interplay between experience vs. talent has long interested scientists and
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investigators, and much on the topic has been theorized about [4], [9], [11], large-scale empirical study
on this topic from a quantitative perspective has been lacking.

In this paper, taking advantage of the large, open and dynamic nature of the World Wide Web, we find
an intricate interplay between talent and experience. Talents are empirically found to be exponentially
rare. However, through empirical measurements and theoretical modeling, we show that the exponentially
distributed talent accounts for the following observed phenomena: the heavy-tailed power law in-degree
distribution of the web pages born at the same time, the preservation of the low power law exponent
even in the face of high rates of node turnovers, and most intriguing of all, talented winners emerge and
displace the experienced losers in just slightly less than half of all winning cases!

Beyond the interesting findings, we discuss several issues associated with this work. While our data
is statistically consistent with the model assumption of a constant fitness for each page, our observation
period is over a relatively short period of one year. For longer periods, one would expect the fitness of
a page to change. For example, occasionally, a page that has been lying dormant for a while might find
its content become topical and, hence, its fitness suddenly increases, allowing it to start accumulating
links and becoming popular. Such pages can be referred to as sleeping beauties [18]. Developing a model
that accounts for time-varying fitness can be a subject for future work. In addition, the sample size on
the order of tens of millions of nodes used in this study is arguably large, especially in comparison to
studies from the social sciences. However, the size of the web is currently on the order of billions of
pages. Nevertheless, the source of our data, the Stanford WebBase project, to the best of our knowledge
is the largest publicly accessible web archive available for research studies. Finally, the statistics on node
in-degrees as reported in this work is measured from the crawled web graph; potential in-links from
webpages not included in the crawl are not accounted for. Future work focusing on examining larger web
samples can mitigate these limitations.

On the World Wide Web, the problem of search engine bias or the “entrenchment effect” (i.e. the “rich-
get-richer” mechanism) has received considerable attention from a broad audience from the popular press
to researchers [19]. However, researchers have shown evidence that the “rich-get-richer” mechanism might
be less dominant than previously thought [20], [21]; nevertheless, search engine bias and the “entrenchment
effect” remains a concern. The findings in this paper present an alternative perspective on this problem
and show that talents, while being exponentially rare, are frequently afforded the opportunity to overtake
more “entrenched” web pages and emerge as the winner.

Currently, for any given query, pages are ranked based on a number of metrics, including the relevancy
score of the query keywords in a document, and the document’s pagerank, which is computed based on
the in-degree (or experience) of the page and the hyperlink structure of the web at the time of the crawl.
In order to avoid the entitlement bias potentially introduced due to pagerank, a number of researchers
have advocated that one should also boost low pagerank pages, for example, by randomly introducing
them among the top pages [22], [23]. The fitness of a page could be added as another metric that could
influence the ranking. The determination of the exact functional form of how the fitness, ηi, of a page would
influence its rank would require considerable experimentation and editorial evaluations, but a promising
start would be to multiply the currently computed ranks by ηα

i , where the exponent α is tuned based on
quality assessment and testing. This would allow users to find pages that do not have high page rank yet,
but are catching up fast. We expect such fitness-based ranking algorithms to have widespread applications
beyond the web in other domains that employ ranking algorithms. We will note in passing that as with any
other ranking algorithm based on link structure, the proposed ranking scheme must be used in conjunction
with link farm detection algorithms to minimize the effect of link spamming that might try to influence
the estimation of the fitness factors.

Besides the web, the methodologies developed in this work is applicable for studying other complex
networks and systems such as the citation network of scientific papers and the actor collaboration social
network, where the interplay between “experience” and “talent” is also interesting. The fitness distribution
is arguably an important parameter for dynamically evolving networks. The empirical study and theoretical
models presented in this paper pave the road for studying the fitness characteristics of other systems, which



8

will allow us to better understand, characterize and model a broad range of networks and systems.

IV. MATERIALS AND METHODS

Dataset. Our dataset of the World Wide Web was obtained from the Stanford WebBase project. WebBase
archives monthly web crawls from 2006 to 2007. We downloaded a total of 13 crawls for a one year
period from June 2006 to June 2007. These crawls track the evolution of 17.5 thousand web hosts with
each crawl containing in excess of 22 million webpages1. The set of hosts consists of a diverse sample of
the web: it contains 5.4 thousand .com hosts, 4.7 thousand .org hosts and 2.6 thousand .edu hosts. This
set also includes many foreign hosts, such as hosts from China, India and Europe.

A Fitness-based Model for Ad Hoc Networks. The existing “preferential attachment with fitness model”
is specified as follows [9]: at each time step, a new node i with fitness ηi ≥ 0 joins the network, where
ηi is chosen randomly from a fixed fitness distribution ρ(η); node i joins the network and makes m links
to m nodes. A link is directed to node l with probability:

Πl =
ηlkl

∑

j ηjkj
(4)

where kl is the in-degree of the node l. We extend the fitness model to account for node deletion. The
new model, which may be called “fitness with deletion model”, has the following extra dynamic added
to the original fitness model: at each time step, with probability c, a randomly selected node is deleted,
along with all of its edges. We present the analysis of the model using the continuous mean-field rate
equation approach as introduced in [24]. Other approaches would include the generating function method
as discussed in [16] and the rigorous mathematical analytical method presented in [25]. However, we prefer
the mean-field approach for its simplicity. In addition, the analytical results are verified by simulations.
On another note, since the web is a directed graph, we note that the model can be easily generalized into
a dynamic directed network model (details are discussed in the Supporting Information).

In the fitness with deletion model, we show that the evolution of ki follows a power-law (see Supporting
Information):

kηi
(i, t) = m

(

t

i

)β(ηi)

, (5)

where the growth exponent β is a function of the fitness ηi:

β(η) =
η

A
−

c

1 − c
. (6)

The parameter A is given by:
1 =

∫ ηmax

0

dηρ(η)
1

A
η

1+c
1−c − 1

(7)

where ηmax is the maximum fitness in the system.
We now examine the case where the fitness distribution is a truncated exponential, which is shown to

empirically characterize the fitness distribution of webpages. When ρ(η) is distributed exponentially in
the interval [0, ηmax], we have: ρ(η) = λe−λη/(1− e−ληmax). The constant A can be determined from Eq.
7. For ηmax large compared with 1/λ, we have A = (ηmax + ε1)

1−c
1+c , where ε1 is negligibly small. Thus,

according to Eq. 6, the growth exponent is given by

β(η) =
η(1 + c)

(ηmax + ε1)(1 − c)
−

c

1 − c
(8)

1The WebBase crawler would extract a maximum of 10 thousand pages per host. However, the 10 thousand pages per host limit is not a
problem, since none of the page count of the tracked hosts reaches this limit.
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For maximum fitness η = ηmax, we have βmax = 1−ε2
1−c , where ε2 is negligibly small. Since the power law

exponent is dominated by the highest β, we invoke the scaling relation [13] γ(η) = 1 + 1
(1−c)β(η) ; we

obtain:
γ = 2 + ε3. (9)

where ε3 is negligibly small. Thus, the power law exponent stays at 2 regardless of the deletion rate (see
Supporting Information for the detailed derivations and justifications on assumptions made). This is a
rather surprising result. As was shown in [13], [14], [15], [16], for plain preferential attachment dynamics
(where all nodes have the same fitness), the power-law exponent depends on c as γ = 1 + 2/(1− c), and
diverges as c goes to 1. The introduction of fitness with a truncated exponential distribution stabilizes the
power-law exponent, in the sense that the exponent remains close to 2.0 and does not diverge, regardless
of the value of c. To verify the result that the power-law exponent does not depend on the turnover rate,
we performed large-scale simulations and confirmed that the power-law exponent stays constant at 2.0
even under high rates of node turnovers (see Supporting Information).

Degree Distribution of Nodes with the Same Age. Given the fitness distribution ρ(η) and the degree,
k, that grows exponentially with fitness for a fixed time interval t, we have k(η) ∝ tη/C , where C is some
constant. The degree distribution of nodes with the same age is given as: P (k) = ρ(η)dη

dk ∝ ρ(η) C
k ln t .

For the case that the fitness distribution is a truncated exponential ρ(η)λe−λη/(1 − e−ληmax), the degree
distribution follows a power law:

P (k) ∝
λe−λη

1 − e−ληmax

C

k ln t
∝ k−γ (10)

where the power law exponent is γ = 1+ λ
ln t . Effectively, the light-tailed distribution in fitness is amplified

into the heavy-tailed degree distribution for nodes born at the same time through the PA mechanism. The
phenomenon of heavy-tailed degree distribution of nodes with the same age has also been observed and
analyzed in other contexts [26], [27], [18].

The Evolution of the Accumulated Node Degree. In our model, a node would gain neighbors as
well as lose neighbors when the neighboring nodes are deleted. As a result, when we track the evolution
of a node’s degree over time, the time series shows a number of upward and downward jumps, making
it difficult to estimate the growth exponent β(η) from Eq. 5 accurately. In order to reduce noise in the
data, we can instead track the evolution of a node’s accumulated degree over time. We define the set
of accumulated neighbors of a node to include previous neighbors that have been deleted in addition to
the current set of neighbors. Thus, the accumulated node degree is the size of the set of accumulated
neighbors. It is simple to derive that the evolution of the accumulated degree of node i is (see Supporting
Information):

k∗

ηi
(i, t) = m

ηi(1 − c)

ηi(1 − c) − cA

(

t

i

)β∗(ηi)

(11)

where the growth exponent is found to be β∗(η) = η
A − c

1−c . Note that the growth exponent for the
evolution of the accumulated node degree β∗(η) is identical to the growth exponent of node degree as
given in Eq. 6 (i.e. β∗(η) = β(η)).
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Fig. 1. (a) Cumulative distribution of the initial in-degree (or experience) of pages with measurable fitness (see the Results
section for the definition of such pages) with the following properties: (i) Initial in-degree in June 2006 was less than one
thousand; (ii) The final accumulated in-degree at the end of the observation period (i.e., in June 2007) was greater than one
thousand. (b) Count vs. cutoff degree: the downward-slope line denotes the number of experienced losers (i.e. pages with initial
in-degree greater than the cutoff degree, but final in-degree less than 1K) for different cutoff degrees; the upward-slope line
denotes the number of talented winners (i.e., pages with initial in-degree less than the cutoff and final in-degree greater than
1K) as a function of the cutoff. For comparison sake, we pick the critical cutoff degree that equalizes the number of talented
winners and experienced losers. Inserting a dashed vertical line denoting the critical cutoff degree into Fig. (a), we find that
48% of the winners are talented winners.
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Fig. 2. The average fitness value (as measured by the growth exponent) plotted as a function of the initial in-degree (or
experience) of pages. The set of pages considered consists of those with measurable fitness (see the Results section for a
definition of such pages). As the plot shows, pages with low initial in-degree has higher average fitness, even though the
distribution is always exponential; moreover, the average fitness decreases as a power law form k−0.4 until about k = 100, and
then levels off to a constant value. Thus, the web on the average gives a slight fitness boost to the pages with low experience,
but then treats them statistically the same once they have experience above a certain value.
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Fig. 3. (a) Distribution of the growth exponents: the log-linear plot is well-fitted by a straight line in the range between 0
and 2, which suggests that the distribution is a truncated exponential. The slope of the fitted line is -1.44. (b) We find that the
growth exponent distribution also exhibits an exponential form when restricting to sets of nodes with the same initial in-degree
in June, 2006; the plot for the set of nodes with an initial in-degree of 10 is displayed here. Note that the growth exponent is an
affine function of the underlying fitness parameter (see Eq. 6); hence, the fitness distributions are also truncated exponentials.
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Fig. 4. This figure plots the degree distribution as measured in 2007-06 for webpages that first appear in the month 2006-07.
The fitted power law exponent is γ = 2.0.
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Fig. 5. In-degree distributions for different months: 06-2006, 10-2006, 02-2007 and 06-2007. All distributions decay as a
power law with the exponent γin = 1.8 over four decades.


