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Abstract

In this study we concentrate on qualitative topological analysis of the local behavior of the
space of natural images. To this end, we use a space of 3 by 3 high-contrast patches M studied by
Mumford et al. We develop a theoretical model for the high-density 2-dimensional submanifold
of M showing that it has the topology of the Klein bottle. Using our topological software package
PLEX we experimentally verify our theoretical conclusions. We use polynomial representation
to give coordinatization to various subspaces of M. We find the best-fitting embedding of the
Klein bottle into the ambient space of M. Our results are currently being used in developing a
compression algorithm based on a Klein bottle dictionary.
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Introduction

A natural image, such as a digital photograph, may be viewed as a vector in a very high-dimensional
space P. The dimension of P is the number of pixels in the format used by the camera and the
image is associated to the vector whose coordinates are grey scale values of the pixels. There has
been a considerable amount of interest in studying families of images viewed as an approximation
to a ‘submanifold’ within PP and this point of view has provided some interesting parametrizations
of ‘phase spaces’ such as the space of all positions of a certain object in space or the hand written
copies of a particular digit. Alternatively, David Mumford has asked what can be said about the set
7 C P of all images taken outdoors. Intuitively, one feels that although 7 is very high-dimensional,
it should also in some sense be of very high codimension within the ambient space P. The intuition
behind this is that one believes that a vector chosen at random from P will almost never be close
to an actual image vector. However, this kind of global study is difficult since even if we believe
that Z in some sense approximates a submanifold, we are confronted with the fact that both its
dimension and codimension are very high, so we are unlikely to obtain much information directly.
An approach suggested by Mumford and carried out in [3] is instead to analyze the local behavior,
modeled by spaces of small ‘patches’ of pixels within images. Specifically, Mumford et al study a
large space of 3 by 3 patches of pixels obtained from a database of images constructed by H. van
Hateren ([2]), and make a number of extremely interesting observations about the resulting space
of patches. In particular, the authors of [3] give strong evidence that there exists a high-density
2-dimensional submanifold within the space of 3 by 3 patches.

The goal of this paper is to analyze a similar space of patches, which will be denoted M
throughout the paper, in a systematic way. Our results are qualitative in nature in the sense that



we describe the global topological structure of various spaces within M rather than their local
geometric behavior. In particular, we show that there is a large 2-dimensional subset IC of M,
whose homology is that of a Klein bottle. We also provide theoretical explanations for why in fact
it is the case that K is topologically equivalent, i.e. homeomorphic, to the Klein bottle. To this
end we use a parametrization of M by a space of polynomials in two variables. The Klein bottle
model can be regarded as a 2-dimensional skeleton of the space of 3 by 3 patches thought of as a
topological CW-complex ([4]). Finally, we show how to flow the initial (theoretical) embedding of
the Klein bottle in the ambient space of M into the one which best approximates the high-density
2-dimensional subspace of M.

In order to obtain the qualitative information about various subspaces of M we use a mathe-
matical formalism called algebraic topology, and specifically the newly developed portion of that
formalism called persistent homology ([1], [4]).

The subject of this paper has interesting connections with research in neuroscience. It turns
out to be possible to analyze the topology of the space of images presented to the visual cortex
area V1 by measuring the neuron responses recorded from some subset of neurons of V1 ([10]).

1 Topological approach

1.1 Homology

Bearing in mind our goal of analyzing the space of images qualitatively we turn to algebraic topology,
which provides a rich set of tools aimed at understanding the global properties of the space. Ideally,
we would like to get the homeomorphism type of the space at hand, i.e. understand its geometry
up to stretching and bending but not tearing or gluing. For example, despite having different
geometries, the circle and the ellipse have the same homeomorphism type since one can be deformed
into the other without tearing or gluing. However, even in the classical setting when the space is
given in closed form, for instance cut out by a system of equations, it is usually hard to obtain its
homeomorphism type and so one has to resort to finding some partial invariants, e.g. homotopy,
homology etc. In our case there are also serious computational limitations since the space is given
as point cloud data. To deal with this situation and calculate space invariants numerically we
would like to represent our data combinatorially. One way to do this is to approximate our space
by a simplicial complex and compute its simplicial homology groups. Instead of developing the
homology formalism from scratch, here we state the main properties that we are interested in. For
a more in-depth treatment of homology please refer to [4].

e To every space and non-negative integer k one associates a vector space Hp(X) over a field F,
which is specified once and for all. We will deal with the field with two elements 0 and 1, but the
real or rational numbers could also be chosen. The dimension of Hy(X) is called k-th Betti number
of X.

e The 0-th Betti number of X is always the number of connected components of X. In other words,
the number of blocks in a decomposition of X into pieces which can be separated from each other.
e The construction of Hy(X) is functorial in X, meaning that any continuous map of spaces
f X — Y induces a linear transformation of vector spaces Hy(f) : Hp(X) — Hi(Y).

Roughly speaking the k-th homology group measures the number of k-dimensional subspaces of X
that have no boundary in X and themselves are not a boundary of any k + 1-dimensional subspace.
Given this, the next question is, “how do we compute the Betti numbers?” A simple answer is that



Figure 1: left: Rips complex with a smaller ¢, right: larger €, no 1-dimensional hole

the Betti numbers can be computed by hand using Gaussian elimination of certain matrices over
the field I, provided one has complete information about one’s space. However, when complete
information is unavailable (as in our case), one has to develop methods which make up for this lack
of information. This leads to the idea of persistent homology discussed in the next section.

1.2 Persistent homology

In most applications one deals with the data in the form of a point cloud, i.e. a large but finite set
of points in Euclidean space sampled from some underlying geometric object. Persistent homology
is in a sense a multiscale approach. Its utility is best illustrated by considering the following simple
geometric situation. Suppose we are given a set consisting of two blobs of points separated from
each other by some “small” distance e. Because our invariants highly depend on the connectivity
of the spaces that we are trying to describe, we need to specify how small € should be to for the two
blobs to qualify as one connected component. To avoid making such choices one utilises the idea
of persistence, which we sketch below. The first step is to construct a simplicial complex which
approximates the homeomorphism type of the underlying space. One way to do this is via a “Rips
complex.” Consider a point cloud data set X (which we will refer to as PCD X) in Euclidean
space and a number € > 0. We let R(X, €) denote the simplicial complex whose vertex set is X and
where we declare that the set {xg,21,..., 2} spans a k-simplex if and only if d(z;, z;) <e.

Figure 1 shows two contrasting situations. The Rips complex on the left is built with € equal
to the longest side of the polygon (vertices of the complex are vertices of the polygon); in the Rips
complex on the right € is equal to the longest diagonal ab which results in all possible simplices
being present. The homology groups are different in these two cases.

If we have no information beyond the raw point cloud data, such as curvature or some statistical
data about the space, it is hard to choose a value for € that produces a simplicial complex whose
homology agrees without our intuitive understanding of the space. Here the idea of persistence
comes into play. We also use the functoriality of homology described above. Whenever € < ¢’ there
is an inclusion R(X,¢€) < R(X,€’) and therefore by functoriality, there is a linear transformation
Hi(R(X,¢€)) — Hi(R(X,€)) for each k > 0. This means that instead of obtaining just one vector
space, we obtain a directed system of vector spaces {V,}e>0, i.e. a family of vector spaces V, for
each € > 0 together with linear transformations V., — V., whenever ¢ < €. This observation is
extremely useful since there is a simple classification of directed systems of vector spaces up to
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Figure 2: The barcode for the wedge of two circles

isomorphism.

By definition, a barcode is a finite set of intervals on the real line, where each interval is
required to be bounded below but not necessarily above. The intervals are drawn one above the
other like in figure 2, which is a barcode for the Betti numbers of a space comprised of two circles
meeting at a single point (this space is known as the wedge of two circles). It turns out that
barcodes are in bijective correspondence with isomorphism classes of directed systems of vector
spaces ([1]).

We can think of homology as a measure of the number of holes of various dimensions in our
space. Thus an interval starting at time ¢ = ¢¢ and ending at t = t; can be interpreted as a hole
that appears in the Rips complex at € = ¢y and gets filled in at € = ¢1. Long intervals correspond to
holes persisting through a large range of values of the persistence parameter € while short intervals
correspond to holes that get filled in quickly. The natural interpretation is that long intervals give
true homological information about the underlying object while short ones are “topological noise”
coming from irregularities in the point sampling rather than reflecting the topology of the space
itself. In figure 2 we see one long line in Hyp(X) and two in H;(X) which reflects the fact that a
wedge of two circles has one connected component and two one-dimensional holes.

For the computations done in this paper we use a variation of the Rips complex called the witness
complex ([5]), which considerably speeds up the construction of a simplicial complex approximating
the space X. The main reason for this is that the witness complex uses only a small subset of
points, so-called landmarks, of the original PCD X as vertices of the simplicial complex. The
conditions determining when the simplex enters the simplicial complex are closely related to the
ones used to construct the Delaunay complex for a collection of points in Euclidean space ([7]).
The directed system of complexes obtained in this way turns out to be an excellent approximation
to the underlying spaces in the sense that its persistent homology often effectively computes the
actual homology, and the amount of noise is much smaller than in the case of Rips complexes.
The barcodes are computable from point cloud data using the PLE X software package developed
by G.Carlsson,V. de Silva,A. Zomorodian and P. Perry. The PLEX software is our main tool in
getting the qualitative (homological) information about various spaces in this paper.



1.3 The density filtration

The subject of density estimation is a highly developed one in statistics ([9]). In this paper we use
the ‘nearest neighbor’ estimation of the local density of the space at a point z. In other words,
fix € X and k > 0, let pi(z) denote the distance from x to the k-th nearest neighbor of .
The function py is inversely proportional to the density at = since small values of pj indicate that
there are k points of X already at this distance from x. Different values of k give rise to different
density estimations at x, with larger values giving more global estimations. Once we fix a value
of k and order the points of X by descending density we need to choose a ‘cut’ parameter p, i.e.
a percentage of densest points we extract for our topological computations. In most data sets the
points are concentrated around some ‘core’ subset. Finding this core set may give a clue about
some phenomenon occurring within the data which otherwise would be very hard to predict; this
is exactly what happened in our case. To this end the study of the set of points falling into the
top p percent (denoted X (k,p) due to its dependence on both k and p parameters) may provide
important topological information about the ‘core’ set, which could be lost when considering all
the points of X.

1.4 Denoising

Another technique we employed in the study of the image space is denoising ([9]). The idea is best
illustrated by a simple example. Suppose we have a space consisting of a unit circle in R? together
with some extra points very near the circle. The homology of this space is the same as that of a
circle but in the construction of an approximating simplicial complex there may appear some extra
simplices which produce noise and may considerably reduce the computational efficacy. To avoid
this problem we employ the denoising algorithm, which is also based on the ‘nearest neighbor’
method. We start by replacing each point in the original space by an average of points in its
neighborhood. This produces a new space, and we iterate this procedure. Two iterations is usually
enough to give much cleaner and faster results for homology calculations. The method requires
one parameter - the neighborhood size in terms of number of points. We set it experimentally
depending on the density variation within the space.

2 The space of patches

Our main space M is a collection of 4 - 109 ‘3 by 3’ patches of high contrast obtained from a
collection of still images gathered by van Hateren and van der Schaaf. M is a subset of a larger
set M, provided to us by K.Pedersen. Below are the steps performed to obtain each patch in M.
The size of M is about 8- 10%. (See [3] for more details).

e Extract at random a large set L of patches from images of the collection.

e Pick a 3 by 3 patch in L. Regard it as a vector in 9-dimensional space.

e Compute the logarithm of intensity at each pixel. This produces a new 9-vector.

e For this vector of logarithms compute the contrast or “D-norm” of the vector. The D-norm of a
vector x is defined as VaT Dz, where D is a certain positive definite symmetric 9 x 9 matrix.

e Keep this patch if its D-norm is among the top 20 percent of all patches taken from images in
the collection.

e Normalize each vector by subtracting the average of all coordinates from each coordinate and
dividing the result by its D-norm. This places it on a surface of a 7-dimensional ellipsoid.



e Perform a change of coordinates so that the set lies on the actual 7-dimensional sphere in R,
In [3] an extremely convenient basis for the space of patches was also constructed. We give it here
for reference and refer to it later as the Mumford basis.

1 0 -1 1 1 1 1 2 1
er=(1/v6)| 1 0 -1 |, e2=(1/v/6)| 0 0 0 |, es=(1/vV54) | 1 -2 1
1 0 -1 -1-1 -1 1 2 1
1 1 1 1 0 -1 1 0 -1
er=(1/Vh4) | 2 -2 -2 |, es=(1/V8 | -2 0 2|, e=(1/V8)| -2 0 2
1 1 1 1 0 -1 1 0 -1
1 2 1 1 -2 1
er=(1/vV48) | 0 0 0 |, es=(1/v216) | 2 4 -2
10201 1 -2 1

The basis vectors are normalized so as to have D-norm equal to one.

3 The space of polynomials in two variables

In what follows it will be important to identify various subspaces of M in a more common closed
form, i.e. as a family of polynomials depending on one or more parameters. In order to obtain
such a representation we note that each individual patch can be thought of as belonging to an
xy-plane with each of the nine pixels having coordinates (x¢,yp),xo € {—1,0,1},y0 € {—1,0,1}.
We denote the grid made by these nine points in a plane by H. Let us denote the space of all
polynomials in two variables by P. Evaluating a polynomial p(x,y) at each of the points of H
produces a 9-vector. Subtracting the mean from each coordinate and dividing the result by the
norm (here we use the standard Euclidean norm) produces a point on the surface of the 7-sphere
S7 in R®. By making p(z,y) depend on parameters we obtain a certain topological space T' C P,
where each point is a polynomial corresponding to a particular choice of these parameters. Let us
define a map ¢ : P — S7 as a composite of evaluating the polynomial on H, subtracting the mean
and normalizing. In the instance where we know the topology of T" and the behavior of the map
q|lr we can deduce the topology of the space im(q|7) in S”. We will make use of this idea later.

4 Klein bottle

In this section we describe the space which plays a key role in our study of M, the Klein bottle.
To visualize this surface within R3 one can picture it as a tube which is allowed to move through
itself to connect up with the opposite end. Figure 3 shows an immersion of the Klein bottle in R?
together with a Mobius band drawn on its surface.

Of course, such a description is not a mathematically precise definition of the space, but rather
serves to build up one’s intuition about it. In order to make a more precise definition, we will need to
establish the concept of identifying points in a topological space. Given a topological space, we can
always construct a new topological space by specifying sets of points to be identified. For example,
starting with the closed interval [0, 1] and identifying its endpoints produces a space homeomorphic
to a circle. In the case of Klein bottle one starts with a unit square [—1,1] x [—1,1] in the plane
and makes the following identifications on the boundary: (—1,¢) with (1, —¢) and (s, —1) with (s, 1)



Figure 3: Klein bottle immersion in R? (picture by K.Polthier)

Figure 4: Klein bottle representation as a rectangle with opposite edges identified

(figure 4).

Note that even though this space is two-dimensional it cannot be embedded in R?® without
self-intersections. It can, however, be embedded as a subspace in R*. Another interesting feature
of the Klein bottle is that it is non-orientable, i.e. it essentially has only one side unlike surfaces
such as the sphere or the torus.

5 Results for X (k,p) spaces

We would like to analyze the structure of the dense subspaces within the spaces of patches.

In [8] it was observed that if we take a space of patches of size 5-10% (note that this is much
smaller than M) and extract 30 percent of the densest points using the density estimator k = 15,
we obtain a space whose first Betti number is equal to 5. One can construct many different spaces
that satisfy this condition on the Betti numbers. However, if we take into account the nature of the
space, one reasonable candidate is the the three circle model (figure 5), denoted C's. In the three
circle space, two of the circles (labeled S, and Sj in the picture) intersect the third one (Sy;;,) in
exactly two points, while they themselves do not intersect(the two ellipsoidal circles in the figure
do not intersect inside S7). Note that the space Cs lives in S” where this geometric situation is
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Figure 5: The ‘three circle’ space

possible, but when drawn in the plane the extra intersections cannot be avoided without distorting
the actual pattern. Figure 6 shows the same three circles sitting in the Klein bottle parametrization
space. The red line in the figure which appears to be two connected components is actually a single
circle (corresponding to Sy;;,) on the surface of the Klein bottle due to identifications made on the
vertical edges of the square.

In section 6 below we provide justification to why each of the three components of C’5 is topolog-

ically a circle. This model was verified by inspection and suggested in [8]. In terms of polynomial
representation of patches (section 3) the circle Sy;, (primary circle) corresponds to linear gradients
while the other two (secondary circles) to quadratic polynomials in a single variable x (or y). To
verify that the first Betti number of this space is equal to 5 we note that the space C3 can be
thought of as a graph with 8 arcs, 4 vertices and one connected component. Therefore, using the
standard formula we arrive at by = #(arcs) — #(vertices) + #(connected components) = 5. The
PLEX result from [8] for X (15,30) is shown in figure 7.
Remark: The above result for X (15,30) suggests that there are two competing preferences in the
natural images. One is a preference for linear intensity functions on small patches and the other
is a preference for vertical and horizontal directions as opposed to intermediate directions. The
alternative explanation for the presence of secondary circles could lie in our choice of patches as
squares with edges in vertical and horizontal directions. However, when we analyzed the set of
patches coming from the images taken while holding the camera at the 45° angle we found that the
set of densest points projected onto the first two coordinates of the Mumford basis is also rotated
by the same angle as compared with similar projection of the set of patches coming from M, so
the bias towards vertical and horizontal directions remained present in this case.

In [8] it was also shown that for higher values of the parameter k (i.e. less localized density
estimation) with the fixed cut parameter p the space X (k,p) loses both secondary circles. Figure
8 shows the results for X (300,30). The only interval in the Betti one barcode corresponds to a
primary circle of linear intensity gradients.

These results raise the question of what happens when we decrease k below 15. Can we detect
the intermediate directions as well? More precisely, can we detect whether the space X (k,p)
spans a two-manifold for some cut parameter p with £ < 15?7 In the same vein the results in [3]
provide strong evidence that there exists a two-manifold in the 7-sphere where the data points are
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Figure 7: PLEX results for X (15, 30)
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Figure 9: PLEX results for X (100, 10) in M

concentrated.

Since reducing the value of k below 15 seems unreasonable due to noise issues we decided to
examine the situation for a much bigger space of patches (recall that the size of M is 4 - 109).
In this new situation the value of k = 15 for a space of size 5 - 10* would correspond to a value
k = 15 x (4-105/5 - 10%) = 1200 for our space M. Figure 9 shows the result for the space
X(100,10) € M. Note that k& = 100 corresponds to k = 1.25 for the space of size 5 - 10%. The
barcode reflects the situation where there are two essential one-dimensional cycles and one two-
dimensional cycle. The presence of an interval in Betti two implies that the underlying space is
no longer one-dimensional. Moreover, there is a general result from algebraic topology that any
two-manifold has bs = 1 when homology is taken with coefficients in Zs. The next section provides
explanations for the result shown in figure 9.

Combined together, the results of this section suggest strong evidence that as the density
estimation parameter decreases, the space of densest points with an appropriate value of the cut
parameter fills out a two-manifold: initially, for large k it consists only of a primary circle of
linear gradients; then it acquires two additional circles corresponding to quadratic gradients in the
‘preferred’ vertical and horizontal directions; finally it admits all the intermediate directions.

6 Klein bottle and a family of degree 2 polynomials

There is a pair of two-manifolds whose homology groups with Zo coeflicients agree with the result at
the end of the previous section (figure 9). These are the torus and the Klein bottle. The following
argument gives a theoretical reason to why it is plausible that we are seeing a Klein bottle when
restricting to the subspace of the densest points in M.

Consider the space K of all degree two polynomials of the form c(az + by)? + d(az + by), where
a,b,c,d are real parameters such that (a,b) € S! and (¢,d) € S*, where S! denotes the unit circle
in the plane. Varying the 4-tuple (a,b, c,d) on the surface of the torus S!' x S! and evaluating the
resulting polynomials at 9 points of H, followed by the subtraction of the mean and division by
the norm, we get patches with either linear or quadratic gradients. Since we are dealing with the
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Figure 10: Klein bottle, the image of the map g

high-contrast parts of the image we expect that the patches with the above properties occur with
high frequency in our space M.

Define the map g : S! x S' — K by (a,b,c,d) — c(ax + by)? + d(ax + by). Map g is onto,
but not 1-1, since the points (a,b,c,d) and (—a,—b,c,—d) are mapped to the same polynomial.
Let us denote the pairs (a,b) and (¢, d) by € and ¢ respectively. Both 6 and ¢ vary in the interval
[0,27]. In these terms the relation (a,b,c,d) «~ (—a,—b, ¢, —d) becomes (0, ) «~ (0 + m, 2w — ¢).
Since there are no other identifications produced by g, the space K = im(g) is homeomorphic to
St x 81/(0,¢) ~ (0 +7,2m — ¢).

The torus has a representation similar to the representation of the Klein bottle as a square with
the opposite edges identified, but without the orientation reversal. Figure 10 shows the effect of
the map ¢ on the torus. The right half, denoted R in the picture, gets identified by g with the
left half, denoted L, with the identifications on the boundary as shown. Each half is the standard
representation of the Klein bottle (figure 4, section 4) thus the image of g is homeomorphic to the
Klein bottle and hence so is K.

The space K also incorporates the ‘three circle’ space C's, described in section 5 above. The
primary circle of C3 is the subspace obtained by setting (¢,d) = (0,1) and letting (a,b) vary on
S1, while the secondary circles are obtained by setting {a = 1,b = 0} on one hand or {a =
0,b = 1} on the other. Denoting the primary circle by Cj;;, and the secondary ones by C and
Co,1 respectively, we note that their intersection pattern is the one described in section 5, namely
Ciin(Cro = {z,—z}, C1in (N Cop = {y, —y} and C1 (1 Co,1 = 2.

Recall the map ¢ : P — S7. We will need the following result.

Proposition. The restriction of ¢ to the subspace K of P is one-to-one.

The proposition together with a result from general topology that a continuous one-to-one map
on a compact space is a homeomorphism onto its image implies that im(q|x) in S7 is homeomorphic
to the Klein bottle.

Proof.

Let p = c(az + by)? + d(ax + by) and p’ = ¢(d’z + V'y)? + d'(a’z + b'y) be two polynomials such
that their images under ¢ agree, i.e. ¢(p) = q(p’). We show that p = p'.

Let us introduce some notation. Denote by m and m’ the mean values of the 9-vectors v and v/,
obtained by evaluating the polynomials p and p’ on the grid H and by k and k' the Euclidean
norms of the vectors v — m - e and v/ — m’ - e, where e is a 9-vector with all components equal to
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one.

Since ¢(p) = q(p’) we have the following two equations in coordinates corresponding to (1,0) € H
and (—1,0) € H:

(ca® + da —m)/k = (dd* + d'd' —m/) /K (1)
(ca® —da —m)/k = (dd* —d'd —m/) K (2)

Subtracting the second equation from the first we get kda = k'd'a’. Doing the same for the
coordinates corresponding to (0,1) and (0, —1) we similarly obtain kdb = k’d’'t/. From these last
two equations it follows that either (1) a/b = a’/b' or (2) d = d’ = 0. Note that m = 2(a® + v?)/3,
m' = 2(a’?> + b?)/3 and k, k' > 0.

Consider case (1). Since (a,b) € S! and (a’,b') € S! there are only two possibilities. Either (a)

(a,b) = (a’,b') and hence d = d’, in which case either ¢ = ¢’ giving p = p’ or ¢ = —¢’. In this
last case m = —m/ and looking at the coordinate corresponding to (0,0) we get that m = m/ =0
(—mk = —m/k with k, k' > 0) and hence ¢ = —¢’ = 0 implying p = p’. Or (b) (a,b) = —(d’, V),
in which case d = —d’ and hence either p = p’ or ¢ = ¢/, and the last situation is treated the same
way as in the case (a), i.e. appealing to the (0, 0)-coordinate.

In case (2) we have two essentially distinct subcases: (a) c=1,¢/ = =1 and (b) c=¢ = 1.

In case (a) we get m > 0,m' < 0, and equality of vectors at the (0,0)-coordinate implies that
m =m’ =0 hence ¢ = ¢ =0, a contradiction. It remains to consider case (b). We have ¢ = ¢’ =1,
d =d = 0. Looking at the (1,1) and (—1, —1)-coordinates gives the following pair of equations:

(a® +b* + 2ab —m) /k = (a’? +b* + 24’ —m/) /K (3)
(a® +b* — 2ab —m)/k = (a”* + V'* — 24’V —m/) K/ (4)

Subtracting the second equation from the first yields ab/k = a'b' /K" or ab = (k/k")a’b’. At the same
time the (1,0) and (0, 1)-coordinates give the following two equations:

(a® —m)/k = (" —m/)/K ()
(6% —m)/k = (b —m) /K (6)
Subtracting (6) from (5) yields (a? —b%)/k = (a”* —b"%) /K or (a®> —b*) = (k/K')(a’?> —b?). Rewriting

(a,b) = (cos(a),sin()) and (a’,b") = (cos(B ) sm( )) and recalling the trigonometric identities
sin(2x) = 2sin(z) cos(z) and cos(2x) = cos(z)? — sin(z)? the previous two equations

ab= (k/K")ad't/ (7)
@~ = (k/K)(a® ~ 1) ®
become
sin(2a) = (k/k') sin(23) 9)
cos(2a) = (k/k") cos(20) (10)
There are two solutions o = (3, i.e. (a,b) = (a’,0') and a« = —f, i.e. (a,b) = —(d’,’). In both cases
p=r"
Hence the map ¢ is one-to-one as claimed. O
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We use the proposition to show that we obtain a ‘three circle’ space as a subset of im(q| k)
inside S7.

Since ¢|f is one-to-one, the image of C3 C K in S” is homeomorphic to Cs, since C3 is compact.
It remains to show that any patch with linear gradient or quadratic gradient in the vertical or
horizontal direction is in the set im(q|c,), the image of ¢ restricted to C3. This is obvious in the
linear gradient case. Since the vertical and horizontal cases are identical we concentrate on the
latter.

Any patch with quadratic gradient in the horizontal direction can be obtained by evaluating
on H a polynomial p = cx? + bxr + a, whose mean value m(p) on H is equal to zero and whose
norm k(p) = >_ 5 p(x)? is one. The coefficients of polynomials with these two properties satisfy the
following pair of equations:

3a+2c=0 (11)
6(a+c)® +3a*>+6b° =1 (12)

The first equation restricts the possible values of (a, b, ¢) to a plane in (a, b, ¢)-space, and the second
defines an ellipsoid. The intersection of the two will be an ellipse, which is topologically equivalent
(homeomorphic) to a circle. Therefore, the space of all patches with quadratic gradient in the
horizontal direction (denoted Sj,) is also topologically a circle in S” (quadratic function in one
variable is uniquely determined by its values at three distinct points, here these are z = {—1,0, 1}).
On the other hand the image of C o under ¢ lies inside S}, and is also homeomorphic to a circle.
Hence Sy, = im(q|c, ), since if im(q|c, ,) missed at least one point of S}, it would be contractible.
The same argument applies to the case of patches with quadratic gradient in the vertical direction,
yielding the ‘three circle’ space sitting inside the set im(q|x).

Taking the point of view that the space M should be homeomorphic to some CW-space M,
(cf. [4]), we can think of the spaces im(q|c,) and im(q|x) as being the first and the second skeleton
respectively of the cell structure of M.,,.

7 Embedding of the Klein bottle into S”

The homology of spaces X (100,p) with p > 10 no longer agrees with the homology of the Klein
bottle (cf. figure 9). Probably the sporadic high-density regions due to sampling within the space
M start to take effect as the cut parameter increases beyond 10.

We try a different approach. The idea is to first embed the idealized Klein bottle into the
7-sphere where the set M lives and then move it towards higher density regions making sure that
its topology stays intact along the way, i.e. there is no tearing or gluing of the surface as it moves
within S7.

As an initial step for the embedding of the Klein bottle into S7 we select 900 points from the torus
St x S by taking the set of uniformly spaced 30 points on each of the circles (denoted {a1,...,a3}
and {b1,...,b30} respectively) and forming all possible tuples (a;,b;). Applying the composition
g o q to each of the 900 points gives a point cloud data in S7.

Due to the identification (0,¢) «~ (6 + m, 27 — ¢) produced by g, not all 900 points are going to
be distinct under the composition g o q. In fact, we obtain a total of 537 distinct points as our
point cloud data for the embedded Klein bottle. Let us denote this set by K. Figure 11 shows the
PLEX result for the homology of the space K. The barcode supports the theoretical conclusion of
the previous section about the topology of the embedded space giving Zo-homology of the Klein
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bottle.

8 Moving the initial embedding

We would like to understand just how much of M is captured by the Klein bottle model, i.e. what is
the largest subspace in M still having the homology of the Klein bottle. Recall again in this context
the result from figure 9 which suggests that the space consisting of 10 percent of the densest points
of M (with density estimation parameter equal to 100) does have the Klein bottle’s homology.
Going beyond 10 percent for the value of the cut parameter, however, changes the topological type
of the space X (100,p). As was mentioned in the beginning of the previous section, what we try to
do instead is to make the local density of M guide our initial Klein bottle point cloud data toward
the region where it best fits the actual data.

Let us rename the initial embedding IC by Ky and denote by Ag, the subspace of M obtained
by taking p percent of the closest points to g. More specifically, for each point of M we find the
Euclidean distance from this point to the closest point of Ky, then take the top p percent of the
points for which this distance is smallest. As p gets larger we expect the space Ag, to look less
and less like a Klein bottle. And, indeed, at some value of p slightly above 20 the space undergoes
a topological change. Figure 12 shows the result for the space Ag 20, which is the largest subspace
M we found giving a reliable topological approximation to K.

Even though the embedding Ky may be the most justified from a theoretical point of view,
the actual data may exhibit a slightly different behavior. To this end we need to find a way to
move Ky toward the denser regions of M without tearing it apart or gluing it onto itself. The
implementation of this idea is based on one property of density distribution on the space M.
Recall the Mumford basis, whose vectors were listed in the section 2 above. For fixed integers
jed{l,...,8 and 7 € {0,...,9} let J(j,7) be the set of points in M with the absolute value of
the j-coordinate belonging to the interval [0.17,0.1(7 + 1)). It turns out that for j > 4 the size of
the set J(j,7) decreases considerably at every step as 7 increases from 0 to 9. This observation
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allowed us to design a simple algorithm for moving the point cloud data within S7.

Start with ICo. (It can be easily checked that with regard to the Mumford basis the points
of Ky may have nonzero values only in coordinates one through five, while the remaining three
coordinates are always zero). Perturb the points of g by reducing the absolute value of their
fifth coordinate by some fixed amount § (for our experiment we chose § = 0.05) compensating for
this change in the first four coordinates so that the resulting point still lies on S”. Compute the
homology of the resulting space (denoted K1) to make sure there are no topological changes as we
pass from Ky to ;. Compute the homology of the spaces A;, (we chose a step of 10 percent for
p). Iterate this procedure several times and finally select the best pair IC;, A; 5, i.e. the pair with
the largest value of p for which A; , is still a good topological approximation for ;.

Figures 13,14 and 15 show homological results for ICo, A2 20 and A g respectively. The latter
space is the largest for which we still recover the homology of the Klein bottle although the range
is already limited. In other words, the topology of the space consisting of 60 percent of the points
of M can be sufficiently well approximated by the Klein bottle model.

In obtaining the results of this section we used the following procedure on the spaces A, ,,.
First, select at random a subset Sy with |Sp| = 5000 from A; ,. Apply the denoising algorithm (two
iterations) to Sp with the neighborhood size parameter set to 10, obtaining a new space Sy (see
section 1.4). Compute homology of the space S;. Repeat many times, each time selecting a new
set Sp to make sure the results are stable and convey the actual homology of A; .

Summary and concluding remarks

In this paper we continued the qualitative (topological) approach to the study of the space of 3 by 3
patches coming from natural images initiated in [8]. Perhaps the key advantage of this approach is
that it allows one to find highly non-linear yet extremely important subsets within the data which
otherwise would be very hard to discover using more common statistical techniques.

We established a correspondence between the space of patches and the space of polynomials
in two variables and used it as an initial step in finding that there is a large portion of M which
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is topologically equivalent to a well-known two-manifold, the Klein bottle. We were using PLEX
topological software to exprerimentally verify our theoretical conjectures about the qualitative
structure of various subspaces within M.

If we think of the 2-manifold that we found as representing the two-skeleton of M further
development in this direction may concentrate on trying to find the three- and higher-dimensional
skeleta of the space M, thereby giving it the structure of a CW-complex. Another interesting way
to proceed which is currently being explored is to use the Klein bottle embedded into S” for the
purposes of image compression, i.e. create an efficient and reliable algorithm which replaces the
high-contrast patches of the given image by the points on the surface of the embedded Klein bottle
that best approximate these high-contrast patches. This paves the way for very useful practical
applications.
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