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Abstract

The characteristic sequence of hypergraphs 〈Pn : n < ω〉 associated to a for-
mula ϕ(x; y), introduced in [5], is defined by Pn(y1, . . . yn) = (∃x)

∧
i≤n ϕ(x; yi).

We continue the study of characteristic sequences, showing that graph-theoretic
techniques, notably Szemerédi’s celebrated regularity lemma, can be natu-
rally applied to the study of model-theoretic complexity via the characteristic
sequence. Specifically, we relate classification-theoretic properties of ϕ and
of the Pn (considered as formulas) to density between components in Sze-
merédi-regular decompositions of graphs in the characteristic sequence. In
addition, we use Szemerédi regularity to calibrate model-theoretic notions of
independence by describing the depth of independence of a constellation of
sets and showing that certain failures of depth imply Shelah’s strong order
property SOP3; this sheds light on the interplay of independence and order
in unstable theories.

Key words: Unstable theories, independence property, Szemerédi regularity

1. Introduction

The characteristic sequence 〈Pn : n < ω〉 is a tool for studying the com-
binatorial complexity of a given formula ϕ, Definition 2.2 below. It follows
from [4], [5] that the Keisler order [2] localizes to the study of ϕ-types and
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specifically of characteristic sequences. However, this article will not focus
on ultrapowers.

The analysis of [5] established that characteristic sequences are essentially
trivial when the ambient theory T is NIP , Theorem 2.10 below. In this pa-
per, we turn to the study of characteristic sequences in the presence of the
independence property. The framework of characteristic sequences allows us
to bring a deep collection of graph-theoretic structure theorems to bear on
our investigations. Notably, the classic model-theoretic move of polarizing
complex structure into rigid and random components (e.g. Shelah’s isola-
tion of the independence property and the strict order property in unstable
theories) is accomplished here by the application of Szemerédi’s Regularity
Lemma, §4 Theorem B below. Because the Regularity Lemma describes a
possible decomposition of any sufficiently large graph, it can be applied here
to understand how arbitrarily large subsets of P1 generically interrelate.

In Sections 3-5, we investigate how classical properties of T affect the
density δ attained between arbitrarily large ε-regular subsets A,B ⊂ P1 (after
localization) in the sense of Szemerédi regularity, where the edge relation is
given by P2. The picture we obtain is as follows. When ϕ is stable, by
Theorem 2.10, the density (after localization) is always 1. When ϕ is simple
unstable, after localization, there will be an infinite number of missing edges
but we can say something strong about their distribution: (∗) the density
between arbitrarily large ε-regular pairs must tend towards 0 or 1 as the
graphs grow (indeed, here simplicity is sufficient but not necessary). In the
simple unstable case, a finer function counting the number of edges omitted
over finite subgraphs of size n is meaningful, and we give a preliminary
description of its possible values in Theorem 3.11. In Section 5, we use model
theory to relate the property (∗) of having arbitrarily large ε-regular subsets
of P1 with edge density bounded away from 0 and 1 to the phenomenon
of instability in the characteristic sequence, which is strictly more complex
than failure of simplicity. In Section 6 we refine this phenomenon by defining
and investigating the compatible and empty order properties. On the level
of theories, the compatible order property characterizes the model-theoretic
rigidity property SOP3, which is known to imply maximality in the Keisler
order by [7].

In the other direction, in Section 7 we use Szemerédi regularity to bring
to light a subtle model-theoretic failure of randomness, by considering the
“depth of independence” of a constellation of infinite sets. In the language
of Definition 7.2, we show that theories which are In+1

n but not In+1
n+1 for
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some n > 2, are SOP3. This is a result about the fine structure of the clas-
sic SOP/IP distinction, illustrating the tradeoff between a weaker notion of
strict order (SOP3) and a stronger notion of independence (In+1

n+1 ) in unstable
theories.

2. Preliminaries

The following conventions will be in place throughout the paper.

Convention 2.1. (Conventions)

1. If a variable or a tuple is written x or a rather than x, a, this does not
necessarily imply that `(x), `(a) = 1.

2. Unless otherwise stated, T is a complete theory in the language L.

3. A set is k-consistent if every k-element subset is consistent, and it is
k-inconsistent if every k-element subset is inconsistent.

4. ϕ`(x; y1, . . . y`) :=
∧

i≤l ϕ(x; yi)

5. Pℵ0(X) is the set of all finite subsets of X.

6. ε, δ are real numbers, with 0 < ε < 1 and 0 ≤ δ ≤ 1.

7. Let G be a symmetric binary graph. We present graphs model-theoretically,
i.e. as sets of vertices on which certain edge relations hold. Throughout
this paper R(x, y) is a binary edge relation, which will sometimes (we
will clearly say when) be interpreted as P2.

8. A graph is a simple graph: no loops and no multiple edges. Definition
2.2 below implies that ∀x(P1(x)→ P2(x, x)), but we will, by convention,
not count loops when taking P2 as R.

9. Given a graph G, with symmetric binary edge relation R(x, y):

• |G| is the size of G, i.e. the number of vertices.

• e(G) is the number of edges of G.

• ê(G) is the number of edges omitted in G.

• An empty graph is a graph with no edges between distinct ele-
ments. In the case where the language contains more than one
edge relation, write R0-empty graph to mean that there are no
R0-edges between distinct elements.

• A complete graph is a graph with all edges, i.e. in which x, y ∈
G, x 6= y =⇒ R(x, y).
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• We will use the word “subgraph” in the model-theoretic sense, cor-
responding to the graph-theoretic notion of induced subgraph. That
is, X is a subgraph of G if X is a substructure of G in the graph
language, i.e. for any vertices x, y in X and any graph edge rela-
tion R in the language, we require R(x, y) in X iff R(x, y) in G.
This will occasionally require some translation, as for instance in
Corollary 4.4.

• The degree of a vertex is the number of edges which contain it.

• The complement G′ of a graph G is given by: for x 6= y, G′ |=
R(x, y) ⇐⇒ G |= ¬R(x, y).
(Further conventions are at the end of the next item.)

10. Write (X, Y ) to indicate a graph whose set of vertices has been par-
titioned into two disjoint sets X, Y . Call such a graph a 2-partite
graph. Whereas “bipartite” is often used to mean that each
of the components X, Y is itself an empty graph, the term
“2-partite” does not assume this to be the case. Rather, we
present a graph as a 2-partite graph to indicate that the edges under
analysis are those between elements x ∈ X and y ∈ Y . More precisely:

• e(X, Y ) is the number of edges between elements x ∈ X and y ∈ Y
(edges between elements x, x′ ∈ X or y, y′ ∈ Y are not counted).

• ê(X, Y ) is the number of edges omitted between elements x ∈ X
and y ∈ Y .

• The density of a finite 2-partite graph (X, Y ) is
δ(X,Y ) := e(X, Y )/|X||Y | when |X|, |Y | 6= 0, and 0 otherwise.

• An empty pair is a pair of vertices x, y with ¬R(x, y).

• An infinite empty pair is (X, Y ) such that |X| = |Y | ≥ ℵ0 and
for all x ∈ X, y ∈ Y , we have ¬R(x, y).

• A complete 2-partite graph is (X,Y ) such that for all x ∈ X and
y ∈ Y , R(x, y) holds.

• When a graph is presented as a 2-partite graph (X, Y ), we will sup-
pose its complement (X, Y )′ only disagrees with (X, Y ) on edges
between x ∈ X, y ∈ Y . That is, (X, Y )′ contains an edge between
x ∈ X and y ∈ Y iff the original graph (X, Y ) does not, but (X,Y )
and (X, Y )′ agree on edges between x, x′ ∈ X or y, y′ ∈ Y .
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We will make extensive use of the classification-theoretic dividing lines of
stability, simplicity, the independence property, and the strict order property;
see, for instance, [6], Chapter II, sections 2-4 and [7]. A theory or a formula
is NIP, also called dependent, if it does not have the independence property;
see, for instance, [10].

We now turn to definitions. The characteristic sequence of hypergraphs
was introduced in [5] as a tool for studying the complexity of a given formula
ϕ. Let us set the stage by briefly reviewing some of the results obtained
there.

Definition 2.2. (Characteristic sequences) Let T be a first-order theory and
ϕ a formula of the language of T .

• For n < ω, Pn(z1, . . . zn) := ∃x
∧

i≤n ϕ(x; zi).

• The characteristic sequence of ϕ in T is 〈Pn : n < ω〉.

• Write (T, ϕ) 7→ 〈Pn〉 for this association.

• We assume that T ` ∀y∃z∀x(ϕ(x; z) ↔ ¬ϕ(x; y)), i.e. by varying the
parameters we can obtain any positive or negative instance of ϕ. If this
does not already hold for some given ϕ, replace ϕ with

θ(x; y, z, w) =

{
ϕ(x; y) if z=w

¬ϕ(x; y) otherwise

Convention 2.3. As the characteristic sequence is definable in T , its first-
order properties depend only on the theory and not on the model of T chosen.
Throughout this paper, we will be interested in whether certain, possibly in-
finite, configurations appear as subgraphs of the Pn. By this we will always
mean whether or not it is consistent with T that such a configuration exists
when Pn is interpreted in some sufficiently saturated model. Thus, without
loss of generality the formulas Pn will often be identified with their interpre-
tations in some monster model.

In the characteristic sequence, complete graphs and empty graphs have
model-theoretic meaning.

Observation 2.4. Fix T, ϕ and M |= T and suppose (T, ϕ) 7→ 〈Pn〉.

1. The following are equivalent, for a set A ⊂M :
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(a) A is a positive base set.
(b) The set {ϕ(x; a) : a ∈ A} is a consistent partial type.

2. The following are equivalent, for a set A ⊂ P1:

(a) A is a Pn-empty graph for some n.
(b) {ϕ(x; a) : a ∈ A} is 1-consistent but n-inconsistent

(Convention 2.1(3)).

Note that if A is infinite, compactness then implies some instance of ϕ
divides.

Characteristic sequences give a natural context for studying the complex-
ity of ϕ-types, which are complete P∞-graphs by the previous observation.
Let us fix some notation:

Definition 2.5. Fix T, ϕ, M |= T and (T, ϕ) 7→ 〈Pn〉.

1. A positive base set is a set A ⊂ P1 such that An ⊂ Pn for all n < ω.

2. The sequence 〈Pn〉 has support k if: Pn(y1, . . . yn) iff Pk holds on every
k-element subset of {y1, . . . yn}. The sequence has finite support if it
has support k for some k < ω. Note that support k implies support k+1.
For our purposes here, it is usually not important to know whether k
is minimal.

3. For k ≥ 2, say that A ⊂ P1 is a Pk-complete graph if Ak ⊂ Pk. If A is
a Pk-complete graph for all k ≥ 2, say that it is P∞-complete.

4. The elements a1, . . . ak ∈ P1 are a k−point extension of the Pr-complete
graph A just in case Aa1, . . . ak is also a Pr-complete graph, where r ∈
N≥2 ∪ {∞} is given. Unless otherwise specified, r =∞.

Remark 2.6. The following are equivalent:

1. 〈Pn〉 has finite support.

2. ϕ does not have the finite cover property.

Localization is a definable restriction of the predicates Pn of a certain use-
ful form which eliminates some of the combinatorial noise around a positive
base set A under analysis. Definability ensures that Convention 2.3 applies
when asking whether certain configurations are present in some localization.
By way of motivation, consider the following simple example.

Example 2.7. Suppose L contains equality and a binary relation E, let T
be the theory of an equivalence relation with infinitely many infinite classes,
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and let ϕ(x; y, z, w) be “xEy” if z = w and “¬xEy” otherwise. Then the
characteristic sequence of ϕ has support 2, because any k triples (yi, zi, wi) ∈
P1 will each assert the existence of an x which is or is not equivalent to yi,
and the ultimate consistency of these assertions depends on the consistency
of every pair. If we consider the graphs Pn in some model M , the P∞-
complete subsets of P1 correspond to consistent partial ϕ-types, either the
type of an element in some given each equivalence class and or that of an
element not in any of the equivalence classes. If a, b ∈ P1 are in distinct
maximal P∞-complete graphs, they are inconsistent, i.e. ¬P2(a, b) (notice we
are suppressing that these are tuples, i.e. a ∈M3).

Now suppose we would like to analyze some partial ϕ-type of the form
{ϕ(x; a) : a ∈ A}. So A ⊂M3, A ⊂ P1 and by definition A is a P∞-complete
graph. By stability, this is a definable type, which in our context corresponds
to the following picture. Choose some a0 ∈ A and consider the restriction
of P1 given by X := P1(y) ∧ P2(y, a0). Now A ⊂ X and moreover X is a
P∞-complete graph which, to belabor the point, is definable with parameters
from P1 in the graph language, i.e. by conjoining a positive instance of one
of the formulas Pn. This motivates the slightly more general definition (2.8)
of a localization of P1 around the positive base set A.

Once outside the stable case, types need not have definable extensions,
and it may be too much to hope that some definable restriction (more pre-
cisely, a localization) of P1 around a given positive base set A will itself be
a complete graph. The analysis of [5] shows that the classification-theoretic
complexity of ϕ is reflected by the graph-theoretic complexity of the finite
graphs which “persist” in the vicinity of positive base sets in the characteris-
tic sequence of ϕ, where a graph Y is said to be “persistent” around A if any
localization containing A also contains a copy of Y . For a formal discussion
of persistence, see [5], Section 4.2.

Definition 2.8. (Localization, Definition 5.1 of [5] in the case n = 1)
Fix a characteristic sequence (T, ϕ) → 〈Pn〉 and interpret the predicates Pn

in some (monster) model M |= T . Let A ⊂ P1 be a positive base set for ϕ,
and let B ⊂ P1 be a finite set of parameters, with A,B possibly empty. A
localization P f

1 of the predicate P1(y) around the positive base set A with
parameters from B is a definable subset of P1 given by a function f : m →
ω × Pℵ0(B) where m < ω and:
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• writing f(i) = (ri, βi), where βi = bi1, . . . b
i
ri
, we have:

P f
1 (y) :=

∧
i≤m

Pri+1(y, b
i
1, . . . b

i
ri
)

• In any model of T containing A and B, A ⊆ P f
1 .

• For each ` < ω, there exists a P`-complete graph C` ⊆ P f
1 . (If A is

infinite, this is automatically satisfied. If not, this condition ensures
that although we have restricted the parameter set of ϕ, the restriction
still contains infinite consistent partial types.)

When analyzing a given formula ϕ, we will often write “after localization,
[X holds]” to mean “for any positive base set A in the parameter space of ϕ,
there exists a localization of P1 which contains A in which [X holds]”.

A brief digression on the interest of localization may be in order. Many
classical dividing lines in classification theory have the form: either there
is good behavior everywhere, or there exists an indicator of complexity, e.g.
an instance of the order property or of the independence property. But
how are these indicators of complexity distributed, say, in the vicinity of
a type under analysis? How many ϕ-ordered sequences (say) might there
be and how do these configurations interact with each other and with the
rest of the parameter space of ϕ? Which configurations will occur in any
localization around a given positive base set, and which can be avoided by
a judicious restriction of the parameter set P1? Localization arguments thus
reveal dividing lines of a different sort: to be on the “wild” side of a line seen
by localization means that the indicators of complexity are everywhere in the
vicinity of some positive base set, because they cannot be avoided. When
localization arguments recognize known classification-theoretic dividing lines,
the alignment of the classical and the new characterizations is of interest. Let
us mention several such results.

The first is that many instances of the order property in the character-
istic sequence are not essential, i.e. they disappear after localization, un-
less ϕ is quite complex: having the tree property is necessary but not suffi-
cient. If no partition of {y1, . . . yk} into object and parameter variables has
been specified, to say that a symmetric formula R(y1, . . . yk) does not have
the order property means here that none of the formulas R(y1; y2, . . . yk),
R(y1, y2; y3, . . . yk), . . . , R(y1, . . . yk−1; yk) have the order property.
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Conclusion 2.9. (Conclusion 5.10 of [5]) Suppose T is simple, (T, ϕ) 7→
〈Pn〉. Then for any n < ω and any positive base set A, there is a localization
around A in which the formulas P2(y1, y2), . . . Pn(y1, . . . yn) do not have the
order property.

§5 below will illuminate this curious result.
The second result is that it is possible, for any positive base set A and

any given n < ω, to find a localization of P1 around A which is a Pn-complete
graph, precisely when ϕ does not have the independence property. [Recall
Convention 2.3.]

Theorem 2.10. (rewording of Theorem 6.17 of [5]) Let ϕ be a formula of T
and 〈Pn〉 its characteristic sequence.

1. Suppose X ⊆ P1 is a localization and that ϕ does not have the inde-
pendence property on parameters in X. Then for each positive base set
A ⊂ X and each n < ω, there is a further localization Y ⊂ X such that
A ⊂ Y and Y n ⊂ Pn, i.e. Y is a Pn-complete graph.

2. Suppose X ⊆ P1 is a localization and that ϕ has the independence
property on parameters in X. Then for all n < ω, there are elements
z1, . . . zn ∈ X such that ¬Pn(z1, . . . zn), i.e. X is not a Pn-complete
graph for any n.

Notice that given a formula ϕ(x; y) with the independence property and
a stable formula ψ(x; y), the merged formula θ(x; y, z, w) which is ϕ(x; y)
if z = w and ψ(x; y) otherwise will, by construction, have a characteristic
sequence which is not uniformly complex. For some positive base sets A ⊂ P1,
it may well be possible to find a localization containing A which is a complete
Pn-graph, while Theorem 2.10(2) says that as long as θ has the independence
property over parameters in a given localization, that localization cannot be
a complete Pn-graph for any n ≥ 2. So in the course of analyzing a type,
which appears as a positive ‘base set A, we continually localize around A
until one of two things happens: either most of the ambient complexity of ϕ
drops away and A is revealed to be e.g. a stable type, or else we see that ϕ
maintains its level of classification-theoretic complexity however we attempt
to zoom in around A. Subsequent sections consider this second case.

One can check that if ϕ has the independence property then there will
always be some positive base set around which missing edges are persistent;
consider a complete P∞-subgraph of the array described in Claim 3.8.
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Convention 2.11. Suppose (T, ϕ) 7→ 〈Pn〉 and let X ⊂ P1 be a localization.
To say that ϕ is stable (resp. unstable) on X means that ϕ does not (resp.
does) have the order property on parameters from X. Likewise, we say that
ϕ is simple (or has the tree property) on X if it does not (does) have the
tree property on parameters from X, and that ϕ has the independence prop-
erty on X if it has the independence property on parameters from X. Note
that by Convention 2.3, this means asking whether it is consistent for these
configurations to occur over parameters from X, as X is a definable set.

Simplicity can be characterized similarly. Recall that a formula is simple
if it does not have the tree property.

Theorem 2.12. (rewording of Theorem 6.24 of [5]) Let ϕ be a formula of T
and 〈Pn〉 its characteristic sequence.

1. Suppose X ⊆ P1 is a localization and that ϕ does not have the tree
property on parameters in X. Then for each positive base set A ⊂ X
and each n < ω, there is a further localization Y ⊂ X and an integer k
such that A ⊂ Y and for all Z ⊂ Y with Z a Pn-empty graph, |Z| < k.

2. Suppose X ⊆ P1 is a localization and that ϕ has the tree property on
parameters in X. Then for all n, k < ω there is Z ⊂ X such that
|Z| > k and Z is a Pn-empty graph.

This should not come as a surprise to those familiar with D-rank. Re-
call Observation 2.4(2). In the simple case, the localization corresponds to
choosing a finite sequence of forking extensions of the partial type A so that
no further n-dividing is possible.

3. Counting functions on simple ϕ

Throughout this section, we consider the binary edge relation P2 from the
characteristic sequence of ϕ. The notation and vocabulary follow Convention
2.1. If ϕ remains simple unstable on any localization around a given positive
base set A (Convention 2.11), Theorems 2.10 and 2.12 give lower and upper
bounds on the number of missing P2-edges. So there is some complexity, but
it is not yet of a manageable form. A key move in the study of unstable
theories was Shelah’s proof that the presence of complexity, i.e. the order
property, meant the presence of either something uniformly random (the in-
dependence property) or uniformly rigid (the strict order property SOP ). In
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our case, insight into global behavior of the many missing edges will come
from Szemerédi’s regularity lemma, Theorem B, after some preliminary ob-
servations.

Observation 3.1. Suppose ϕ is stable. Then after localization, for any two
disjoint finite X, Y ⊂ P1, δ(X,Y ) = 1. On the other hand, if ϕ is simple
unstable then P1 contains elements y, z with ¬P2(y, z).

Proof. Theorem 2.10(1) says that when ϕ is stable, after localization P1 is a
P2-complete graph, so a fortiori there are no edges omitted between disjoint
components. The second clause is Theorem 2.10(2).

Definition 3.2. Define α : ω → ω by putting, for each n ∈ ω,

α(n) := max {ê(G) : G ⊂ P1, |G| = n}

i.e. the largest number of P2-edges omitted over an n-size subset of P1. When
we are given some localization X ⊆ P1, α is understood to be computed on
G ⊂ X.

Claim 3.3. Suppose ϕ is simple, i.e., ϕ does not have the tree property.
Then after localization, for all sufficiently large n, α(n) < n(n−1)

2
.

Proof. The maximum possible value n(n−1)
2

of any α(n) is attained on a P2-
empty graph, on which x 6= y =⇒ ¬P2(x, y). Apply Theorem 2.12 which
says that when ϕ does not have the tree property then we have, after local-
ization, a uniform finite bound k on the size of a P2-empty graph X ⊂ P1.
So the function α is eventually strictly below the maximum.

Corollary 3.4. The function α(n) is meaningful, i.e. after localization for
all sufficiently large n

n(n− 1)

2
> α(n) ≥ 0

precisely when ϕ is simple, and moreover α(n) > 0 precisely when ϕ is un-
stable on the given localization.

Since the goal is to bound the number of possible inconsistencies, we will
be mainly interested in the nondegenerate case of a simple unstable formula
which remains unstable in all localizations around some given positive base
set (i.e. α(n) > 0). So let us define:
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Definition 3.5. Suppose (T, ϕ) 7→ 〈Pn〉. The formula ϕ is eventually simple
unstable if for some positive base set A ⊂ P1 there is a localization X with
A ⊂ X ⊂ P1 such that ϕ is simple on X but ϕ remains unstable on every
localization Y with A ⊂ Y ⊂ X.

Convention 3.6. Throughout this section, “if ϕ is eventually simple un-
stable, then after localization, α(n) =...” is understood to mean “either
α(n) = 0, or ...”. We will not explicitly consider the trivial case, but it
may happen that localizing around some positive base set renders the formula
stable.

With some care we can restrict the range from Corollary 3.4 further. A
famous theorem of Turán says:

Theorem A. (Turán, [3]:Theorem 2.2) If Gn is a graph with n vertices and

e(G) >

(
1− 1

k − 1

)
n2

2

then Gn contains a complete subgraph on k vertices.

Definition 3.7. X = 〈at
i : t < 2, i < ω〉 where at

i ∈ P1 for all i, t is an
(ω, 2)-array if for all n < ω,

Pn(at1
i1
, . . . atn

in
) ⇐⇒ (∀j, ` ≤ n) (ij = i` =⇒ tj = t`)

Claim 3.8. (Claim 4.5 of [5]) The following are equivalent, for a formula ϕ
with characteristic sequence 〈Pn〉:

1. ϕ has the independence property.

2. 〈Pn〉 has an (ω, 2)-array.

Observation 3.9. Suppose that 〈Pn〉 has an (ω, 2)-array. Then α(n) ≥
⌊

n
2

⌋
.

Corollary 3.10. When ϕ is eventually simple unstable, then after localiza-
tion (

1− 1

k − 1

)
n2

2
≥ α(n) ≥

⌊n
2

⌋
Proof. If ϕ is simple unstable on some localizationX, ϕ has the independence
property and so X contains an (ω, 2)-array; thus the righthand side is Ob-
servation 3.9. For the lefthand side, let k > 1 be the uniform finite bound on
the size of a P2-empty graph from Theorem 2.12, and apply Turán’s theorem
to the complement of this graph.
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At the end of Section 4 we will give a proof of the following:

Theorem 3.11. When ϕ is eventually simple unstable, then after localiza-
tion, either(

1− 1

1− k

)
n2

2
≥ α(n) ≥ n2

4
or O(n2) > α(n) ≥

⌊n
2

⌋
where k is the integer given in the proof of Corollary 3.10.

The proof will follow from Theorem 4.13 below, which will show more,
namely that for ϕ eventually simple unstable, either O(n2) > α(n) or there
exists an infinite empty pair in P1. In other words, if we cannot find two
disjoint infinite sets of instances of ϕ such that no pair of instances from
distinct sets is consistent, then the overall number of inconsistencies between
instances of ϕ is relatively small.

Our strategy is going to be to show that in the absence of such an “infinite
empty pair” we can repeatedly partition sufficiently large graphs into many
pieces of roughly equal size in such a way that, at each stage, the bulk of the
omitted edges must occur inside the (eventually, much smaller) pieces. The
main tool will be Theorem B below.

4. Szemerédi regularity

We begin with a review of Szemerédi’s celebrated regularity lemma. Recall
that ε, δ are real numbers, 0 < ε < 1 and 0 ≤ δ ≤ 1, following Convention
2.1.

Definition 4.1. ([9], [3]) The finite 2-partite graph (X, Y ) is ε-regular if for
every X ′ ⊂ X, Y ′ ⊂ Y with |X ′| ≥ ε|X|, |Y ′| ≥ ε|Y |, we have: |δ(X, Y ) −
δ(X ′, Y ′)| < ε.

The regularity lemma says that sufficiently large graphs can always be
partitioned into a fixed finite number of pieces Xi of approximately equal
size so that almost all of the pairs (Xi, Xj) are ε-regular.

Theorem B. (Szemerédi’s Regularity Lemma [3], [9]) For every ε,m0 there
exist N = N(ε,m0), m = m(ε,m0) such that for any graph X, N ≤ |X| < ℵ0,
for some m0 ≤ k ≤ m there exists a partition X = X1 ∪ · · · ∪Xk satisfying:

• ||Xi| − |Xj|| ≤ 1 for i, j ≤ k

13



• All but at most εk2 of the pairs (Xi, Xj) are ε-regular.

Remark 4.2. The original or “old” version of the regularity lemma was
stated for 2-partite graphs: given a 2-partite graph X, Y , we may partition
each of X, Y into at most m pieces of approximately equal size so that almost
all of the pairs (Xi, Yj) are ε-regular. This version will be useful in Section
5.

One important consequence is that we may, approximately, describe large
graphs G as random graphs where the edge probability between xi and xj

is the density di,j between components Xi, Xj in some Szemerédi-regular
decomposition. We will need a definition.

Definition 4.3. [3] (The reduced graph)

1. Let G = X1, . . . Xk be a partition of the vertex set of G into disjoint
components. Given parameters ε, δ, define the reduced graph R(G, ε, δ)
to be the graph with vertices xi (1 ≤ i ≤ k) and an edge between xi, xj

just in case the pair (Xi, Xj) is ε-regular of density ≥ δ.

2. Let R(t) be the graph with k components X1, . . . Xk, each with t vertices,
such that e(Xi) = 0, and δ(Xi, Xj) = 1 if there is an edge between xi

and xj in R and 0 otherwise. So R(t) is the “full” graph of height t
with reduced graph R.

The following lemma (called the “Key Lemma” in [3]) says that suffi-
ciently small subgraphs of the reduced graph must actually occur in the
original graph G. Note that in the statement of the following theorem, “sub-
graph” is used in the graph-theoretic sense; see the discussion following, in
particular Corollary 4.4.

Theorem C. (Key Lemma, [3]:Theorem 2.1) Given δ > ε > 0, a graph R,
and a positive integer m, let G be any graph whose reduced graph is R, and
let H be a subgraph of R(t) with h vertices and maximum degree ∆ > 0. Set
d = δ− ε and ε0 = d∆/(2+∆). Then if ε ≤ ε0 and t−1 ≤ ε0m, then H ⊂ G.
Moreover the number of copies of H in G is at least (ε0m)h.

As noted above, the statement of the Key Lemma mentions two sub-
graphs: “H ⊂ R[t]” and “H ⊂ G”, and in both cases graph-theoretic, i.e.
not necessarily induced subgraph, is meant. For our purposes, it will be im-
portant to know that the second, “H ⊂ G”, has the model-theoretic meaning,

14



i.e. is an induced subgraph. We will also not need the full strength of the
first, “H ⊂ R[t],” which amounts to “any graph on the given vertex set”:
rather, it will suffice to have the result for graphs H ′ defined on some subset
of the vertices of R[t] which satisfy: for all x1

i , x
2
i in the same component of

R[t] and x3
j in a different component, there is an edge between x3

j and x1
i

iff there is an edge between x3
j and x2

i . That is, edges are uniform between
components. Call such H ′ uniform subgraphs of R[t].

We will therefore use the following modification of the Key Lemma with-
out further comment:

Corollary 4.4. (induced-subgraph Key Lemma) In the statement of the Key
Lemma, by replacing “H ⊂ R[t] with “H a uniform subgraph of R[t]” and
assuming the threshold density d is bounded away from 0 and 1, we may
assume that in the penultimate sentence H is an induced subgraph of G.
[We will not use the final sentence about number of copies.]

Proof. Suppose first that for some fixed ε, δ that X1, . . . Xk are equally sized
components of a graph G and for i 6= j, each pair (Xi, Xj) is ε-regular with
density δ. The reduced graph (for d = δ) will be complete, so if G is large
enough relative to ε, δ, any complete graph on no more than k vertices will
occur as an induced subgraph of G. Moreover, for d = 1 − δ the reduced
graph of the complement of G (where edges contained within components
remain the same) is complete so if G is large enough relative to ε, 1 − δ,
any empty graph on no more than k vertices will also occur as an induced
subgraph of G.

More generally, given any graph C on k vertices z1, . . . zk, construct a
graph GC with the same vertex set as G, satisfying: there is an edge between
x, y in GC iff

• (1) x, y are both in the same component Xi

• (2) x ∈ Xi, y ∈ Xj for i 6= j and there is an edge between zi, zj in C

• (3) x ∈ Xi, y ∈ Xj for i 6= j, there is no edge between zi, zj in C and
there is an edge between x, y in G

That is, GC agrees with G except when there is no edge between zi, zj in
C: if this happens, replace (Xi, Xj) with its complement. Let d = min(δ, 1−
δ). Then the reduced graph of GC is complete, guaranteeing the existence of
a complete graph on k vertices in GC , which corresponds to an isomorphic
copy of C on those same vertices in G.
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Note that it is only possible to control the existence or nonexistence of
edges between regular components of density bounded away from 0 and 1.
If the notation is familiar, a slightly cleaner statement of the case t = 1 is:

Theorem D. (from Gowers [1]) For every α > 0 and every k there exists
ε > 0 with the following property. Let V1, . . . Vk be sets of vertices in a graph
G, and suppose that for each pair (i, j) the pair (Vi, Vj) is ε-regular with
density δij. Let H be a graph with vertex set (x1, . . . xk) and let vi ∈ Vi

be chosen uniformly at random, the choices being independent. Then the
probability that for all i, j vivj is an edge of G iff xixj is an edge of H differs
from Πxixj∈HδijΠxixj /∈H(1− δij) by at most α.

We now work towards a proof of Theorem 3.11.

Convention 4.5. (Interstitial edges, bε,`, Nε,`)

1. Let G be a graph and let G = X1 ∪ · · · ∪ Xn be a decomposition into
disjoint components, for instance as given by Theorem B. Call any
edge between vertices x ∈ Xi, z ∈ Xj, i 6= j an interstitial edge.

2. Let bε,` denote the upper bound on the necessary number of components,
given by the regularity lemma as a function of ε, ` (so the value of m
in Theorem B).

3. Write (ε, `)∗-decomposition to denote any Szemerédi-regular decompo-
sition into k components, for any ` ≤ k ≤ bε,`.

4. Let Nε,` denote the threshold size given by the regularity lemma as a
function of ε, `, such that any graph X with |X| > Nε,` admits an
(ε, `)∗-decomposition.

Remark 4.6. On Definition 4.5(2)-(4): As Corollary 4.8(3) suggests, for the
purposes of our asymptotic argument it is usually sufficient to know that the
number of components fluctuates in a certain fixed range, as given by the
Regularity Lemma.

We now apply this analysis to the characteristic sequence of a given for-
mula ϕ. By “subgraph” we mean model-theoretic, i.e. induced subgraph.
The Key Lemma shows that if for arbitrarily small ε there are arbitrarily
large ε-regular pairs whose density remains bounded away from 0 and 1, we
may extract an empty pair:
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Lemma 4.7. Suppose that for some η ∈ (0, 1
2
), for all ε > 0 and all N ∈

N there exist disjoint subsets XN , YN ⊂ P1, |XN | = |YN | ≥ N such that
(XN , YN) is ε-regular with density δ ∈ (0 + η, 1 − η). Then P1 contains an
infinite empty pair.

Proof. Apply the Key Lemma to each complement graph (XN , YN)′, which
is still regular and whose density remains bounded away from 0 and 1. For
each t < ω, for all N sufficiently large and ε sufficiently small relative to
the given bound 1− η and the given maximum degree t, the lemma ensures
that (XN , YN)′ contains a complete 2-partite graph with t vertices in each
part. The bound ensures that we can freely choose ε and N . Note that
the construction remains agnostic on whether edges hold between elements
x, x′ ∈ XN or y, y′ ∈ YN .

Lemma 4.8. Suppose that P1 does not contain an infinite empty pair.

1. There is a function f : (0, 1) × ω → (0, 1) which approaches 1 as
ε → 0 and N → ∞ and such that if (X, Y ) is an ε-regular pair with
|X| = |Y | = N then δ(X,Y ) ≥ f(ε,N).

2. There is a function g : ((0, 1) × ω) × ω → (0, 1), which is defined
on all ((ε, `), n) for which n ≥ Nε,`, and which approaches 1 as (ε, `)
stays fixed and n → ∞, such that if |X| = n then the density between
any two regular components in an (ε, `)∗-decomposition of X is at least
g((ε, `), n).

3. For every constant c > 0, and for all ε0 > 0, there exist 0 < ε < ε0 and
for each such ε, cofinally many ` < ω such that: for all n sufficiently
large and all graphs X with |X| = n, the number of missing interstitial
edges in any (ε, `)∗-decomposition of X is strictly less than cn2.

Proof. (1) This restates Lemma 4.7: the density cannot remain bounded
away from 0 and 1, and if the density approaches 0, extracting an empty
pair becomes even easier. In other words, for any d ∈ (0, 1), there must be
some pair (Nd, εd) such that for all n > Nd, ε < εd any ε-regular pair of size
n will have density greater than d.

(2) The regularity lemma provides a decomposition in which all compo-
nents are approximately the same size (±1), so the density of each ε-regular
pair will be at least f(ε, n

bε,`
).
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It remains to prove (3). For the moment, let ε, ` be arbitrary and suppose
that |X| > Nε,`. Then |X| = n admits an ε-regular decomposition into k-
many pieces, each of size approximately m = n

k
, where

(†) ` ≤ k ≤ `′ := bε,`

Writing δ := g((ε, `), n
`′
), the contribution of the interstitial edges is at most:

εk2m2 + (1− ε)(k)2 (1− δ)m2

where the term on the left assumes the irregular pairs are empty (all missing),
and the term on the right counts the expected number of interstitial edges
missing from the regular pairs. By (†), this in turn is bounded by:

≤ ε(`′)2m2 + (1− ε)(`′)2 (1− δ)m2

≤ ε(`′)2
(n
l

)2

+ (1− ε)(`′)2 (1− δ)
(n
l

)2

≤ n2

(
`′

`

)2 (
ε+ (1− ε) (1− δ)

)
Thus our claim will hold whenever ε + (1 − ε)(1 − δ) < c( `

`′
)2. To obtain

this, choose ε > 0 sufficiently small (say, less than half the right-hand side).
Notice that for any given `, `

`′
will be less than 1; the only other place `

appears is in δ = g((ε, `), n
`′
). By (2), for any fixed (ε, `), g approaches 1 as

n→∞. So it suffices to choose n large for the (1− δ) term to be sufficiently
small.

Lemma 4.7(3) says that for any constant c, the number of missing inter-
stitial edges eventually falls below cn2. We can leverage this fact to show
that there must be comparatively few missing edges of any kind.

Definition 4.9. (Successive decompositions)

1. Let G be a finite graph and 1 ≤ t < ω. Say that G admits an (ε, `)∗-
decomposition to depth t if:

(1) There is an (ε, `)∗-decomposition of G.
(2) Each of the components from the decomposition at stage (1) admit

an (ε, `)∗-decomposition.
...
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(t) Each of the components from a decomposition at stage (t-1) admit
an (ε, `)∗-decomposition.

2. The components obtained at stage t are called terminal components.
The components obtained at all other stages are called non-terminal
components.

3. Say that the (ε, `)∗-decomposition to depth t respects the constant c
if for each of the non-terminal components X, the number of missing
interstitial edges in any (ε, `)∗-decomposition of X is strictly less than
c|X|2.

Remark 4.10. Given c, ε, `, n satisfying Lemma 4.7(3), choose N such that
N

(`′)t > n, where `′ = bε,`. Then for any graph G with |G| > N , any (ε, `)∗-
decomposition of G to depth t respects the constant c.

Lemma 4.11. Fix a constant c ∈ (0, 1) and suppose G admits an (ε, `)∗-
decomposition to depth t. Let |G| = n, and suppose all of the terminal
components in this decomposition are empty graphs. Then the total number
of omitted edges from all the terminal components is at most n2

`t .

Proof. To avoid aggregious indexing, let us work from the bottom up. Sup-
pose we are given a component Xt−1 from stage t−1, that is, Xt−1 admits an
(ε, `)∗-decomposition whose components are the terminal components. The
cardinality of Xt−1 will be given by n

k1···kt−1
for some sequence of integers

with ` ≤ ki ≤ `′ for all 1 ≤ i ≤ t− 1. Suppose that the (ε, `)∗-decomposition
of Xt−1 has kt components. Then the number of missing edges contributed
by terminal components in Xt−1 is no more than:(

n

k1 · · · kt−1kt

)2

kt =
n2

k1
2 · · · kt−1

2kt

Now we step back a level. The component Xt−1 was itself one of kt−1

members of an (ε, `)∗-decomposition of some prior stage component Xt−2.
Let us acknowledge this by renaming Xt−1 as Xt−1,1 and kt as kt,1. That
is, the components of the decomposition of Xt−2 are Xt−1,1, . . . Xt−1,kt−1 , and

the terminal components contained in Xt−1,i contribute at most n2

k1
2···kt−1

2kt,i

missing edges to the total count. Now the edges missing from all terminal
components in Xt−2 is at most

n2

k1
2 · · · kt−1

2kt,1

+ · · ·+ n2

k1
2 · · · kt−1

2kt,kt−1
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By assumption, each of the integers kt,i satisfy ` ≤ kt,i ≤ `′, so we may
replace each of them by `. This gives a further upper bound(

n2

k1
2 · · · kt−1

2`

)
kt−1 =

n2

k1
2 · · · kt−2

2kt−1`

Continuing, we find that if in a component Xt−r of depth t − r, the
contribution of missing edges from terminal components contained in Xt−r

is at most
n2

k1
2 · · · kt−r

2kt−r+1`r−1

then writing Xt−r−1 for the enveloping component at the immediately prior
stage, and once again renaming Xt−r as Xt−r,1 and kt−r+1 as kt−r+1,1, a bound
on missing edges from terminal components contained in Xt−r−1 is given by

n2

k1
2 · · · kt−r

2kt−r+1,1`r−1
+ · · ·+ n2

k1
2 · · · kt−r

2kt−r+1,kt−r`
r−1

≤ n2

k1
2 · · · kt−r

2``r−1
+ · · ·+ n2

k1
2 · · · kt−r

2``r−1

≤
(

n2

k1
2 · · · kt−r

2`r

)
kt−r

≤ n2

k1
2 · · · kt−r−1

2kt−r`r

When r = t, the component under consideration is the entire graph, and we
obtain the bound n

`t as desired.

Lemma 4.12. Fix a constant c ∈ (0, 1) and suppose G admits an (ε, `)∗-
decomposition to depth t which respects the constant c. Let |G| = n and
1 ≤ m ≤ t − 1. Then the total number of omitted edges which occur as
interstitial edges at stage m of the decomposition of G is at most c n2

`m−1 .

Proof. Essentially the same proof as that of Lemma 4.11. The differences
are first, that the length of the induction is shorter by one, and second that
rather than taking as basic units the terminal components, we take as basic
units the components at stage m of the decomposition, which adds a factor of
c. More precisely, let Xm be any such component and suppose as usual that
it is one of finitely many components of a prior decomposition of Xm−1. By
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Lemma 4.7(3) and the hypothesis that the successive decompositions respect
c, we know that there are no more than c|X|2 interstitial edges missing in any
(ε, `)∗-decomposition of Xm. In other words, the number of interstitial edges
omitted in decompositions of the stage m components contained in Xm−1 is
no more than

c

(
n

k1 · · · km−1

)2

km−1

Compare the first displayed equation of the previous lemma. By applying
that proof, it is straightforward to inductively combine these “basic” counts,
by replacing the appropriate family of partition numbers ki with ` at each
inductive step as previously described, to obtain a bound of c

`m−1 on missing
edges which occur as interstitial edges at stage m across the whole graph.

We are now prepared to prove:

Theorem 4.13. Suppose ϕ is simple on some given localization X ⊆ P1. If
there does not exist an infinite empty pair Y, Z ⊂ X, then on X, α(n) <
O(n2).

Proof. Given a positive real constant c0 > 0, choose c, k, t such that 0 < c <
1, 2 < k, t ∈ N and c0 > 2c+ 1

kt . Fix a pair (ε, `) such that ` > k and (ε, `) is
one of the cofinally many pairs described in Lemma 4.8(3) for the constant c.
By Remark 4.10, we may assume that all sufficiently large graphs G admit
an (ε, `)∗-decomposition of to depth t which respects the constant c.

We now apply the two previous lemmas to bound the number of missing
edges in G. Note that the point of the decomposition is that any edges must
occur either as interstitial edges at some stage of the decomposition or else
occur in some terminal component. Applying the bounds obtained in Lemma
4.11 and Lemma 4.12 gives that for all sufficiently large n:

α(n) < cn2

(
1 +

1

`
+

1

`2
+ · · ·+ 1

`t−1

)
+

(
n2

`t

)
< n2

(
`c

`− 1
+

1

`t

)
<

(
2c+

1

`t

)
n2 < c0n

2

by summing the convergent series. We have shown that for any constant c0
and for all n sufficiently large, α(n) < c0n

2. This completes the proof.
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Proof. (of Theorem 3.11) This is now an immediate corollary of Corollary
3.10 and Theorem 4.13, n2

4
being the number of edges omitted in an empty

pair.

Remark 4.14. Theorem 4.13, and thus Theorem 3.11, are more natural
than might appear. On one hand, as Szemerédi regularity deals with density,
it cannot (in this formulation) give precise information about edge counts
below O(n2). On the other, the random graph contains many infinite empty
pairs, for instance ({(a, z) : z ∈ M, z 6= a}, {(y, a) : y ∈ M, y 6= a}) when
ϕ(x; y, z) = xRy∧¬xRz. One could imagine a future use for such theorems in
suggesting ways of decomposing the parameter spaces of simple formulas into
parts whose structure resembles random graphs (with many overlapping empty
pairs) and parts whose structure is more cohesive, indicated by α(n) < O(n2).

5. Order and genericity

Conclusion 2.9 shows a lag between the classification-theoretic complexity
of ϕ and that of the formulas in its characteristic sequence: for a class of
unstable theories strictly containing the simple theories, and for each n, after
localization Pn will be stable. This section gives a first explanation for this
phenomenon, relating instability of P2 to the complexity of the interaction
between pairs of arbitrarily large P∞-complete graphs (base sets for types)
in what might be called “generic position.”

Much of the technology around the regularity lemma is built to extract
configurations. To avoid appeal to machinery (and to be clear that the
subgraphs involved are induced), let us extract the order property explicitly.

Observation 5.1. Let T be a theory in a language containing a symmetric
binary relation R. Suppose that for some 0 < δ < 1 and for all ε, n with
0 < ε < 1, n ∈ N there exists a 2-partite R-graph (X, Y ), |X| = |Y | ≥ n,
such that (X, Y ) is ε-regular with density d, where |d − δ| < ε. Then R has
the order property.

Proof. It suffices to show that for arbitrarily small ε0 and arbitrarily large k0

there is a Szemerédi-regular decomposition of X and of Y into k0 pieces each
such that all but k0(ε0)

2 of the pairs Xi, Yi are ε0-regular with density near
some given δ. Then the Key Lemma implies, roughly speaking, that we may
think of the reduced graph as a random graph with edge probability δ and

22



that any configuration which occurs in such a random graph with positive
probability will occur in our original graph R. (See Corollary 4.4.)

The subtlety is to ensure that the densities of the regular pairs are all
approximately the same. Given ε0, k, let k0, N0 be the number of components
and threshold size, respectively, given by the regularity lemma. Choose ε so
that 1

k0
> ε and n > N0. Let (X, Y ) be the ε-regular pair of size at least n

and density near δ, given by hypothesis.
By regularity applied to the 2-partite graph (X, Y ) (Remark 4.2), n >

N0 means that there is a decomposition X = ∪i≤k0Xi, Y = ∪i≤k0Yi into
disjoint pieces of near equal size and that all but ε0(k0)

2 of the pairs (Xi, Yj)
are ε0-regular. However any one of these regular pairs (Xi, Yj) will satisfy
|Xi|, |Yj| = n/k0 > εn, so |d(Xi, Yj)− d(X, Y )| = |d(Xi, Yj)− δ ± ε| < ε and
|d(Xi, Yj)− δ| < 2ε, as desired.

Remark 5.2. In the case where we can assume that each of the partitioned
graphs (X, Y ) mentioned in the previous proof have the property that X and
Y are each P∞-complete graphs, we may conclude that there is a sequence
〈aibi : i < ω〉 on which R has the order property and such that each of
A :=

⋃
i ai and B :=

⋃
i bi are P∞-complete graphs.

A key dividing line in classification theory is Shelah’s strict order prop-
erty, usually called SOP (not to be confused with the more recent strong
order properties SOPn, Definition 7.5). For the purposes of analyzing the
characteristic sequence, it is usually most interesting to consider theories
without strict order, because of the characterization given in Theorem 2.10.

Definition 5.3. ([6] Definition 4.3 p. 69) The formula ϕ(x; y) has the strict
order property, or SOP , if there exists an indiscernible sequence 〈ai : i < ω〉
on which ∃x(¬ϕ(x; aj) ∧ ϕ(x; ai)) ⇐⇒ j < i.

The main step in Shelah’s classic proof that any unstable theory which
does not have the independence property must have the strict order property
can be characterized as follows:

Theorem E. (Shelah) Let c be a finite set of parameters and 〈ai : i < ω〉 a c-
indiscernible sequence. For n < ω, any formula θ(x; z) and relations R(x; y),
R1, . . . Rn where `(y) = `(ai) and Ri ∈ {R(x; y),¬R(x; y)} for i ≤ n, if

i1 < · · · < in =⇒ ∃x
(
θ(x; c) ∧R1(x; ai1) ∧ · · · ∧Rn(x; ain)

)
then either
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• ∃x
(
θ(x; c) ∧R1(x; aiσ(1)

) ∧ · · · ∧Rn(x; aiσ(n)
)
)

for any permutation σ :
n→ n

• some formula of T has the strict order property.

The idea is to express the permutation σ as a sequence of swaps of suc-
cessive elements (in the sense of the order <), and use the first instance, if
any, where the swap produces inconsistency to obtain a sequence witnessing
strict order. For details, see [6], Theorem II.4.7, pps. 70–72.

The subtlety of the lemma below is to obtain not just the independence
property but a 2-partite random graph. See Definition 7.2 for a definition of
“2-partite random graph.”

Lemma 5.4. Suppose that R(x; y) has the order property. If T does not have
the strict order property, then there exist infinite disjoint sets A,B on which
R is a 2-partite random graph.

Proof. We first fix a template. Let M be a countable model of the theory
of a 2-partite random graph with two sorts P,Q and a single binary edge
relation E(x; y) with E(x; y) =⇒ P (x)∧Q(y). Let 〈xi : i < ω〉, 〈yi : i < ω〉
be an enumeration of P and Q, respectively.

Now let 〈aibi : i < ω〉 be an indiscernible sequence on which R has the
order property, i.e. R(ai, bj) ⇐⇒ i < j. Suppose that for every i < ω we
could find an element ci such that for all j < ω, R(ci, bj) ⇐⇒ E(xi, yj) in
the template. Then setting C :=

⋃
i<ω ci, B :=

⋃
j<ω bj, (C,B) is a 2-partite

random graph for R.
So it remains to show that any finite subset p of the type pi(x) ∈ S(B)

of any such ci is consistent. Let η, ν be disjoint finite subsets of ω, and let
p(x) =

∧
j∈η R(x; bj) ∧

∧
k∈ν ¬R(x; bk). We are now in a position to apply

Theorem E; as T is NSOP , p(x) must be consistent.

The next definition will be most useful in the case where R = P2, but we
give the general statement.

Definition 5.5. Let T be a given theory, R a binary relation symbol in the
language of T and suppose that T implies R is symmetric.

1. Call a density 0 ≤ δ ≤ 1 attainable for R w.r.t. T if for all ε there
exists a sequence 〈Sδ

ε = 〈(Xi, Yi) : i < ω〉 of finite 2-partite R-graphs
in some model of T such that for all n < ω, ε > 0 there is N < ω such
that for all i > N ,
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• |Xi| = |Yi| ≥ n,

• (Xi, Yi) is ε-regular with density di, where |di − δ| < ε.

Attainable densities exist, e.g. 1
2
: consider subgraphs of an infinite

random 2-partite graph.

2. Say that R asymptotically realizes the density δ, with respect to T , if for
all N, ε there exists a 2-partite R-graph (X, Y ) in some model M |= T
with |X| = |Y | ≥ N such that (X, Y ) is ε-regular with density d, where
|d− δ| < ε.

3. In the special case where R = P2 and the X, Y can be chosen so that X
and Y are both P∞-complete graphs, say that P2 asymptotically realizes
δ on complete graphs.

Lemma 5.6. Assume the ambient theory T does not have the strict order
property. Then the following are equivalent for a symmetric binary relation
R(x, y) in the language of T :

1. For some 0 < δ < 1, R asymptotically realizes δ.

2. For any attainable 0 < δ < 1, R asymptotically realizes δ.

3. R has the order property.

Proof. (1) → (3) Graph theory, i.e., Observation 5.1.
(2) → (1) This condition is not vacuous, as attainable densities exist.
(3) → (2) Model theory, i.e., suppose that R has the order property but

T does not have the strict order property. Then Lemma 5.4 gives infinite
disjoint sets A,B on which R is a 2-partite random graph. Given an infinite
2-partite random graph, we can construct finite subgraphs of any attainable
density.

In other words, regularity plus compactness implies that density bounded
away from 0, 1 allows us to eventually construct any 2-partite graph, and so,
a fortiori, construct the order property. Model theory implies that the order
property is enough to reverse the argument, i.e. to obtain a 2-partite random
graph.

Corollary 5.7. Assume T does not have the strict order property, and
(T, ϕ) 7→ 〈Pn〉. Then the following are equivalent:

1. After localization, P2 does not have the order property.
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2. After localization, the density of any sufficiently large P2-regular pair
(X,Y ) must approach either 0 or 1.
More precisely, there exists f : N×(0, 1)→ [0, 1

2
] increasing as n→∞,

ε → 0 such that if X, Y ⊂ P1, |X|, |Y | ≥ n and (X, Y ) is ε-regular,
then either d(X, Y ) < f(n, ε) or d(X, Y ) > 1− f(n, ε).

Proof. (1) → (2) Suppose that we can localize, i.e., restrict the parameter
set of ϕ so that on the restricted set X ⊂ P1, P2 does not have the order
property. Then P2 cannot asymptotically realize any attainable density δ on
this set X, lest it come under the scope of Lemma 5.6. (2) is the statement
that for any given δ, Definition 5.5 eventually does not apply.

(2) → (1) Suppose that in every localization X ⊂ P1, P2 has the order
property. Then by Lemma 5.6, P2 asymptotically realizes some attainable
density δ on parameters in X, and therefore (2) fails.

Corollary 5.8. If T is simple, then any characteristic sequence associated
to one of its formulas satisfies the equivalent conditions of Corollary 5.7.

Proof. Conclusion 2.9.

Remark 5.9. The class of theories satisfying the equivalent conditions of
Corollary 5.7 strictly contains the simple theories. Example 3.6 of [5] gives
a formula with the tree property whose P2 does not have the order property.
This is essentially T ∗

feq from [8]; basic examples of TP2 will work.

Remark 5.10. Any formula with SOP2, also called TP1, has the order prop-
erty in P2. For SOP2, see [8]. However, the next section suggests that more
precise order properties may be useful.

6. Two kinds of order property

When P2 has the order property, this says something about the manner
in which the family of instances of ϕ interacts. We obtain a deeper picture
if we bring more of the weight of the characteristic sequence to bear on our
definitions. If the order property for P2 occurs between two sets A,B each
of which are empty graphs, this is a statement about the interaction of (by
compactness) two dividing sequences; whereas if A,B are complete graphs,
it is a statement about the interaction of two types.

In this section we investigate the “empty” and “compatible” order prop-
erties, and show that on the level of theories, the second is equivalent to
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SOP3, Conclusion 6.15 below. This is surprising because there are signs in
the literature that SOP3 is a robust indicator of complexity for a theory; see
Remark 6.16 below.

Definition 6.1. (Two kinds of order property) Let 〈Pn〉 be the characteristic
sequence of ϕ.

1. ϕ has the n-compatible order property, for some n < ω (or n = ∞)
if there exist 〈ai, bi : i < ω〉 such that for all m ≤ n (or m < ω),
P2m(ai1 , bj1 , . . . aim , bjm) iff max{i1, . . . im} < min{j1, . . . jm}.

(1)′ When the sequence has support 2 this becomes:
there exist 〈ai, bi : i < ω〉 such that P2(ai, aj), P2(bi, bj) for all i, j and
P2(ai, bj) iff i < j.

2. ϕ has the n-empty order property, for some n ∈ ω, if:
there exist 〈ai, bi : i < ω〉 such that (i) P2(ai; bj) iff i < j and (ii)
¬Pn(ai1 , . . . ain), ¬Pn(bi1 , . . . bin) hold for all i1, . . . in < ω.

Let us briefly justify not focusing on a natural third possibility, the “semi-
compatible order property,” in which the elements 〈ai : i < ω〉 are an empty
graph and the elements 〈bi : i < ω〉 are a positive base set.

Claim 6.2. There is a formula in the random graph which has the semi-
compatible order property.

Proof. Choose two distinguished elements 0, 1 (this can be coded without
parameters). Define ψ(x; y, z) to be x = y if z = 0, xRy otherwise. Then on
any sequence of distinct elements 〈aibi : i < ω〉 ⊂M which witness the order
property (aiRbj ⇐⇒ i < j), we have additionally that

∃x
(
ψ(x; ai, 0) ∧ ψ(x; bj, 1)

)
⇐⇒ ∃x

(
x = ai ∧ xRbj

)
⇐⇒ i < j

so P2 has the order property on the sequence 〈(ai, 0), (bi, 1) : i < ω〉. On the
other hand, ∃x(x = ai ∧ x = aj) ⇐⇒ i = j, so the row of elements (ai, 0) is
a P2-empty graph. Finally, ∃x(xRbi ∧ xRbj) always holds, by the axioms of
the random graph; so the row of elements (bj, 1) is a P∞-complete graph.

Claim 6.3. There is a formula in a simple rank 3 theory which has the
2-empty order property.

Proof. Let T be the theory of two crosscutting equivalence relations, E and
F , each with infinitely many infinite classes and such that each intersection
{x : E(a, x) ∧ F (x, b)} is infinite. Let P be a unary predicate such that
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• (∀x, y)(E(x, y) ∧ F (x, y) =⇒ P (x) ⇐⇒ P (y))

• For all n < ω and y1, . . . yk, yk+1, . . . yn elements of distinct E-equivalence
classes, there exists z such that i ≤ k =⇒ (∀x)(E(x, yi)∧F (x, z) =⇒
P (x)) and k < i ≤ n =⇒ (∀x)(E(x, yi) ∧ F (x, z) =⇒ ¬P (x)))

Define

ψ(x; y, z, w) =

{
E(x, y) if z=w

F (x, y) ∧ P (y) otherwise

As usual, write ψ(x; y, 0) for the first case and ψ(x; y, 1) for the second.
Let 〈ai, bi : i < ω〉 be a sequence of elements chosen so that (∀x)(E(x, ai) ∧
F (x, bj) =⇒ P (x)) iff i < j. Then it is easy to see ψ has the 2-empty order
property on the sequence 〈(ai, 0), (bi, 1) : i < ω〉.

Remark 6.4. Assuming MA + 2ℵ0 > ℵ1, Shelah has constructed an ultra-
filter on ω which saturates (small) models of the random graph, but not of
theories with the tree property ([6] Theorem VI.3.9). This is a strong argu-
ment for the “semi-compatible order property” being less complex: it cannot,
by itself, imply maximality in the Keisler order, whereas we will see that the
∞-compatible order property does. It may still be that persistence, in the
sense of [5], of any order property in P2 creates complexity.

We return to the study of the compatible order property.

Convention 6.5. When more than one characteristic sequence is being dis-
cussed, write Pn(ϕ) to indicate the nth hypergraph associated to the formula
ϕ. Recall that ϕ` is shorthand for

∧
1≤i≤` ϕ(x; yi).

The following general principle will be useful.

Lemma 6.6. Suppose that we have a sequence C := 〈ci : i ∈ Z〉 and a
formula ρ(x; y, z) such that:

1. ∃xρ(x; ci, cj) ⇐⇒ i < j

2. ∃x
(∧

`≤n ρ(x; ci` , cj`
)
)

just in case max{i1, . . . in} < min{j1, . . . jn}

Then ρ has the ∞-compatible order property.

Proof. By compactness, it is enough to show that there are elements 〈αi, βi :
i < n〉 witnessing a fragment of the ∞-compatible order property of size n.

Define α1 . . . αn, β1, . . . βn as follows. Remark 6.7 provides a picture.
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• αi := c2i−1c4n−2i+1, 1 ≤ i ≤ n

• βi := c−2ic2i, 1 ≤ i ≤ n

Then P1(αi), P1(βi) for 1 ≤ i ≤ n by (1). For all 1 ≤ k, r ≤ n with
r + k = m, condition (2) says that Pm(αj1 , . . . αjk

, βi1 , . . . βir) iff

max{2` : ` ∈ {i1, . . . ir}} < min{2s− 1 : s ∈ {j1, . . . jk}}

that is, iff max{i1, . . . ir} < min{j1, . . . jk}, so we are done.

Remark 6.7. The ∞-compatible order property describes an interaction be-
tween two P∞-complete graphs, i.e. consistent types. The hypotheses (1)-(2)
of Lemma 6.6 are enough to allow a weak description of intervals. That is,
we choose the sequences αi, βi to each describe a concentric sequence of in-
tervals (each αi, βi corresponds to a set of matching parentheses) along the
sequence 〈ci〉:

← [−[−[−[−]−]−]−]−− · · · − −(−(−(−(−)−)−)−)→

which we can interlace to obtain ∞-c.o.p. by judicious choice of indexing:

← [− [− [− [− (−]− (−]− (−]− (−]−)−)−)−)→

In this picture, the enumeration of the αs ( ), would proceed from the outmost
pair to the inmost and the enumeration of the βs [ ] from inmost to outmost.

Definition 6.8. Given a characteristic sequence 〈Pn〉 and some set A ⊂ P1,
say that 〈Pn〉 has support k on A if for all r > k and all {a1, . . . ar} ⊆ A,
Pr(a1, . . . ar) iff Pk holds on every k-element subset of {a1, . . . ar}.

Claim 6.9. Suppose that ϕ has the strict order property, i.e. there is an
infinite sequence 〈ci : i < ω〉 on which ∃x(¬ϕ(x; ci) ∧ ϕ(x; cj)) ⇐⇒ i < j.
Then ¬ϕ(x; y) ∧ ϕ(x; z) has the ∞-compatible order property.

Proof. By compactness, we may assume that the sequence 〈ci〉 is indis-
cernible. Writing ρ(x; y, z) = ¬ϕ(x; y) ∧ ϕ(x; z),

• ∃xρ(x; ci, cj) ⇐⇒ i < j, by definition of strict order;

• ∃x(ρ(x; ci, cj) ∧ ρ(x; ck, c`)) ⇐⇒ i, k < j, `
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Furthermore, the characteristic sequence P∞(ρ) has support 2 on 〈ci〉 (Def-
inition 6.8), so condition (2) of Lemma 6.6 is also satisfied. Apply Lemma
6.6.

Example 6.10. The theory T of the generic triangle-free graph with edge
relation R has the ∞-c.o.p. Consider ϕ(x; y, z) = xRy∧xRz. (The negative
instances could be added but are not necessary.) Then:

• P1((y, z)) ⇐⇒ ¬yRz.

• P2((y, z), (y
′, z′)) iff {y, y′, z, z′} is an empty graph.

• The sequence has support 2, as the only problems come from a single
new edge: Pn((y1, z1), . . . (yn, zn)) iff

∃x

(∧
i≤n

xRyi ∧
∧
j≤n

xRzj

)
that is, if

⋃
i

yi∪
⋃
j

zj is a P2-empty graph.

Let 〈ai, bi : i ∈ Z〉 be a sequence witnessing the 2-empty order property
with respect to the edge relation R, say aiRbj iff j ≤ i. Then ∃x(xRai∧xRbj)
iff i < j, i.e. (ai, bj) ∈ P1 iff i < j. Also, ∃x(xRai ∧ xRbj ∧ xRak ∧ xRb`) if,
in addition, i, k < j, `. Apply Lemma 6.6.

Finally, we tie the compatible order property to SOP3, a model-theoretic
rigidity property. SOP3 will be important in the next section; the general
definition is Definition 7.5, but an equivalent definition is the following. Re-
member that, by convention, ai, x, . . . need not be singletons.

Definition 6.11. ([8]:Fact 1.3) T has SOP3 iff there is an indiscernible
sequence 〈ai : i < ω〉 and L-formulas ϕ(x; y), ψ(x; y) such that:

1. {ϕ(x; y), ψ(x; y)} is contradictory.

2. there exists a sequence of elements 〈cj : j < ω〉 such that

• i ≤ j =⇒ ϕ(cj; ai)

• i > j =⇒ ψ(cj; ai)

3. if i < j, then {ϕ(x; aj), ψ(x; ai)} is contradictory.

Lemma 6.12. Suppose that θ(x; y) has SOP3 in the sense of Definition
6.11. Let ϕr = ϕ, ψ` = ψ be the formulas from Definition 6.11. Then
ρ(x; y, z) := ϕr(x; y) ∧ ψ`(x; z) has the ∞-compatible order property.
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Remark 6.13. This is an existential assertion, and it is straightforward to
check that it remains true if we modify ρ to include the corresponding negative
instances.

Proof. (of Lemma) Let A := 〈ai : i < Q〉 be an infinite indiscernible sequence
from Definition 6.11. Then

P1((ai, aj)) ⇐⇒ ∃x (ϕr(x; ai) ∧ ψ`(x; aj)) ⇐⇒ i < j

by the choice of ϕ, ψ. More generally,

Pn((ai1 , aj1), . . . (ain , ajn)) ⇐⇒ ∃x

(∧
t≤n

ϕr(x; ait) ∧
∧
t≤n

ψ`(x; ajt)

)
which, again applying Definition 6.11, is true just in case max{i1, . . . in} <
min{j1, . . . jn}. We now apply Lemma 6.6.

Lemma 6.14. Suppose θ(x; y) has the ∞-compatible order property. Then
the formula ϕ(x; y, z) := θ(x; y) ∧ ¬θ(x; z) has SOP3.

Proof. Let 〈dibi : i < ω〉 be a sequence witnessing the ∞-compatible order
property; this will play the role of the sequence 〈ai : i < ω〉 from Definition
6.11. In the notation of that Definition, let ϕ(x; y, z) := θ(x; y) ∧ ¬θ(x; z)
and ψ(x; y, z) := θ(x; z). We check the conditions.

(1) Clearly {ϕ(x; y, z), ψ(x; y, z)} is inconsistent.
(3) When i > j, {ϕ(x; dibi), ψ(x; djbj)} = {θ(x; di) ∧ ¬θ(x; bi), θ(x; bj)} is

inconsistent because ¬P2(di, bj).
Finally, for 1 ≤ j < ω let pj(x) = {θ(x; di) : 1 ≤ i ≤ j} ∪ {θ(x; b`) : j <

` < ω}. The ∞-c.o.p. implies Pn(d1, . . . dj, bj+1, . . . bn) for all n < ω, so pj

is consistent. However, i < j =⇒ ¬P2(bi, dj) so pj(x) ` ¬θ(x; bi) for each
1 ≤ i ≤ j. Choosing cj |= pj for each j < ω gives (2).

Conclusion 6.15. The following are equivalent for a theory T :

1. T contains a formula with the ∞-compatible order property.
2. T contains a formula with SOP3.

Proof. See the two previous lemmas.

Remark 6.16. Applying Shelah’s theorem that any theory with SOP3 is
maximal in the Keisler order [7], [8], we conclude that if T contains a formula
ϕ with the ∞-compatible order property, then T is maximal in the Keisler
order. For more on Keisler’s order, see [4].
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7. Calibrating randomness

In this final section, we observe and explain a discrepancy between the
model-theoretic notion of an infinite random k-partite graph and the fini-
tary version given by Szemerédi regularity, showing essentially that a class
of infinitary k-partite random graphs which do not admit reasonable finite
approximations must have the strong order property SOP3.

7.1. A seeming paradox

Observation 7.1. Let T be the theory of the generic triangle-free graph, with
edge relation R. Then it is consistent with T that there exist disjoint infinite
sets X, Y, Z such that each pair (X, Y ), (Y, Z), (X,Z) is a 2-partite random
graph.

Proof. The construction has countably many stages. At stage 0, let X0 =
{a}, Y0 = {b}, Z0 = {c} where a, b, c have no R-edges between them. At
stage i+ 1, let Xi+1 be Xi along with 2|Yi|+|Zi|-many new elements:

1. for each subset τ ⊂ Yi, a new element xτ such that for y ∈ Y , xτRy
⇐⇒ y ∈ τ , however ¬xτRx for any x previously added to Xi+1.

2. for each subset ν ⊂ Zi, a new element xν such that for z ∈ Z, xνRz
⇐⇒ z ∈ ν, with xν likewise R-free from previous elements of Xi+1.

Yi+1, Zi+1 are defined symmetrically. As we are working in the generic
triangle-free graph, in order that the the construction be able to continue, it
is enough that the sets Xi, Yi, Zi are each empty graphs, i.e., at no point do
we ask for a triangle.

To finish, set X =
⋃

iXi, Y =
⋃

i Yi, Z =
⋃

i Zi. Each pair is a 2-partite
random graph, as desired.

But recall:

Theorem F. (weak version of Key Lemma, Theorem C) Fix 1 > δ > 0 and
a binary edge relation R. Then there exist ε′ = ε′(δ), N ′ = N ′(ε′, δ) such that:
if ε < ε′, N > N ′, X, Y, Z are disjoint finite sets of size at least N , and each
of the pairs (X, Y ), (Y, Z), (X,Z) is ε-regular with density δ, then there exist
x ∈ X, y ∈ Y, z ∈ Z so that x, y, z is an R-triangle.

32



Obviously, we cannot have anR-triangle in the generic triangle-free graph.
Nonetheless each of the pairs (X, Y ) in Observation 7.1 manifestly has finite
subgraphs of any attainable density.

The difficulty comes when we try to choose finite subgraphs X ′ ⊂ X, Y ′ ⊂
Y, Z ′ ⊂ Z so that the densities of all three pairs are simultaneously near the
same δ > 0. If (X ′, Y ′) and (Y ′, Z ′) are reasonably dense, (X ′, Z ′) will be
near 0. Put otherwise, we may choose elements of X independently over Y ,
and independently over Z, but not both at the same time.

The constructions below generalize this example, and give a way of mea-
suring the “depth” of independence in a constellation of setsX1, . . . Xn, where
any pair (Xi, Xj) is a 2-partite random graph. The example of the generic
triangle-free graph is paradigmatic: we shall see that a bound on the depth
of independence will produce the 3-strong order property SOP3.

7.2. Constellations of independence properties.

Definition 7.2. Fix a formula R(x; y).

1. Let A,B be disjoint sets of k- and n-tuples respectively, where k =
`(x), n = `(y). Then A is independent over B with respect to R just in
case for any two finite disjoint η, ν ⊂ B, there exists a ∈ A such that
b ∈ η → R(a; b) and b ∈ ν → ¬R(a; b).

2. Let A1, . . . Ak be disjoint sets (of m-tuples, where m = `(x) = `(y)).
Then A1 is independent over A2, . . . Ak with respect to R just in case
A1 is independent over B :=

⋃
2≤i≤k Ai in the sense of (2).

3. If there exist disjoint infinite sets A,B such that A and B are each
independent over the other wrt R, then R(x; y) is a 2-partite random
graph on A,B. Often we will not name A,B explicitly and simply say
R(x; y) is a 2-partite random graph.

4. R(x; y) is Im
k , for some 2 ≤ k ≤ m, if there exist disjoint infinite sets

〈Ai : i < m〉 such that for any distinct i1, . . . ik < ω, Ai1 is indepen-
dent over

⋃
2≤j≤k Aij w.r.t. R. Note that k refers to the depth of the

independence, and not the size of the finite disjoint η, ν.

Remark 7.3. The statement that R is In+1
n with respect to a background

theory T is expressible as an infinitary partial type.

Proof. We will build p as a type in the variables {xi
j : i < ω, 0 ≤ j ≤ n} in

the language with equality and the binary edge relation R. Note that the
partition into clusters is not part of the language, and the type will not specify
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the edge relations between variables with the same subscript. At stage 0, let
p0 := {x0

0 = x0
0}. At stage t + 1, suppose t ≡ m (mod(n + 1)). The partial

type pt will mention at most finitely many variables with subscript j 6= m:
call this finite set of variables Vt,m. We construct pt+1 in finitely many stages.
Set pt+1,0 := pt. Denote by h(t+ 1, i) the smallest integer h such that xh

m is
not mentioned in pt+1,i. Enumerate the subsets Vt,m,i ⊆ Vt,m, and let

pt+1,i+1 := pt+1,i ∪ {R(xh(t+1,i)
m , v) : v ∈ Vt,m,i} ∪ {¬R(xh(t+1,i)

m , v) : v /∈ Vt,m,i}

Let pt+1 :=
⋃

i pt+1,i, completing the inductive step. Finally, let p :=
⋃

t<ω pt.

Observation 7.4. Let R(x; y) be a symmetric formula. The following are
equivalent.

1. R is Iω
ω .

2. There is an infinite subset of the monster model on which R is a random
graph. (Certainly this need not be definable or interpretable in any
way).

Definition 7.5. (Shelah, [7]:Definition 2.5) For n ≥ 3, the theory T has
SOPn if there is a formula ϕ(x; y), `(x) = `(y) = k, M |= T and a sequence
〈ai : i < ω〉 with each ai ∈Mk such that:

1. M |= ϕ(ai, aj) for i < j < ω

2. M |= ¬∃x1, . . . xn(
∧
{ϕ(xm, xk) : m < k < n and k = m+ 1 mod n})

Compare Definition 6.11 above.

Theorem G. (Shelah, [7]: (1) is Claim 2.6, (2) is Theorem 2.9)

1. For a theory T , SOP =⇒ SOPn+1 =⇒ SOPn, for n ≥ 3 (not
necessarily for the same formula).

2. If T is a complete theory with SOP3, then T is maximal in the Keisler
order.

The novelty of the following argument is not the result that the generic
triangle-free graph has SOP3, which is known by [7], Claim 2.8(2); Example
6.10 and Lemma 6.12 above give an alternative proof. Rather, it illustrates
the key ideas from the more elaborate construction of Theorem 7.7.
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Example 7.6. Let T be the generic triangle-free graph, with edge relation
R. Then R is I3

2 but not I3
3 , and T has SOP3.

Proof. Let us prove the final clause (for the rest see Observation 7.1 and the
discussion following).

Suppose A,B,C are disjoint infinite sets witnessing I3
2 . Let us construct

a sequence of triples 〈ai, bi, ci : i < ω〉 such that, for i < ω,

• For all j ≤ i, biRaj.

• For all j ≤ i, ciRbj.

• For all j ≤ i, ai+1Rcj.

Let γi := (aibici) and S := 〈γi : i < ω〉. In other words, we construct
a helix of elements which approximate the forbidden configuration in the
following sense. The elements fall into three clusters, A0, A1, A2, and given
elements xi, xj with xi ∈ Ai, xj ∈ Aj and i > j, the edge between xi, xj

agrees with the forbidden configuration except when j = i+ 1 modulo 3.
Define a binary relation <` on triples by:

(x, y, z) ≤` (x′, y′, z′) ⇐⇒ ((xRy′ ∧ yRz′ ∧ zRx′))

While <` need not be a partial order on the model, it does linearly order the
sequence S by construction. Looking towards Definition 6.11, let us define
two new formulas (the variables t stand for triples):

• ϕ(t0; t1, t2) = t1 <` t2 <` t0

• ψ(t0; t1, t2) = t0 <` t1 <` t2

Let us check that these formulas give SOP3. For condition (1), notice that
ϕ(t0; t1, t2), ψ(t0; t1, t2) means that (x0, y0, z0) <` (x1, y1, z1) <` (x2, y2, z2) <`

(x0, y0, z0). Then xiRyj, yjRzk, zkRxi which gives a triangle, contradiction.
It is straightforward to satisfy (2) by compactness (e.g. by choosing S

codense in a larger indiscernible sequence).
Finally, for condition (3), suppose i < j but ϕ(t; γi), ψ(t; γj) is consistent,

where t = (x, y, z). This means that (x, y, z) <` (ai, bi, ci) <` (aj, bj, cj) <`

(x, y, z) (where the middle <` comes from the behavior of <` on the sequence
S). As in condition (1), this gives a triangle, contradiction.
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We now extend this idea to a much larger engine for producing enough
rigidity for SOP3 from a forbidden configuration.

Theorem 7.7. Suppose that for some 2 ≤ n < ω, the formula R of T is
In+1
n but not In+1

n+1 . Then T is SOP3.

Proof. The construction is arranged into four stages.

Step 1: Finding a universally forbidden configuration G.

Let p(X0, . . . Xn) be the infinitary type given by Remark 7.3 which de-
scribes n + 1 infinite sets Xi which are In+1

n+1 . By hypothesis, R is not In+1
n+1 ,

so p is not consistent with T . Let G be a finite inconsistent subset in the
variables VG = {xi

j : 1 ≤ i ≤ h, 0 ≤ j ≤ n}, and described by the edge map
EG : {((i, j), (i′, j′)) : i, i′ ≤ h, j 6= j′ ≤ n} → {0, 1}. As the inconsistency of
p is a consequence of T , G will be a universally forbidden configuration:

T ` ¬(∃x1
0, . . . x

h
n)

( ∧
i,i′≤h, j 6=j′≤n

R(xi
j, x

i′

j′) ⇐⇒ E((i, j), (i′, j′)) = 1

)
(1)

Note that the configuration remains agnostic on edges between elements in
the same column, in keeping with the definition of Im

` .
In what follows G will appear as a template which we shall try to ap-

proximate using In+1
n . Here are the vertices of G arranged as they will be

visually referenced (the edges are not drawn in):

xh
0 xh

k xh
n

...
...

...
xρ

0 xρ
k xρ

n
...

...
...

x1
0 . . . x1

k . . . x1
n

Figure 1: Vertices of the forbidden configuration G, arranged in columns. When comparing
this configuration to an array whose rows are indexed modulo h, the superscript of the
top column becomes 0.

Step 2: Building an array A of approximations to G.

Let A0, . . . An be disjoint infinite sets witnessing In+1
n for R. As in Ex-

ample 7.6, we will use elements from these columns Ai to build an array
A = 〈aρ

i : 1 ≤ ρ < ω, 0 ≤ i ≤ n〉. Fixing notation,
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• aρ
0, . . . a

ρ
n is called a row.

• Col(i) = {j : j 6= i, i + 1 (modn + 1)} is the set of column indices
associated to the column index i.

• Define a relation on pairs of indices (β for “before”):

β((t′, i′), (t, i)) ⇐⇒ def(
(t′ < t ∧ i′ ∈ Col(i)) ∨ (t′ = t ∧ i′ < i)

)

Claim 7.8. We may build the array A to satisfy:

1. For all ρ, aρ
k ∈ Ak.

2. For any ρ′, ρ, k, k′ such that β((ρ′, k′), (ρ, k)),

aρ
k R aρ′

k′ ⇐⇒ EG((r, k), (r′, k′)) = 1

where r ≡ ρ (mod h), r′ ≡ ρ′ (mod h).

Proof. We choose elements in a helix (a1
0, a

1
1, . . . a

1
n, a

2
0, a

2
1, . . . ) in such a way

that β((ρ′, k′), (ρ, k)) implies that aρ′

k′ is chosen before aρ
k.

When the time comes to choose aρ
k, we look for an element of Ak which

satisfies Condition (2) of the Claim, that is, which, by Condition (1), realizes
a given R-type over disjoint finite subsets of the columns Ai (i ∈ Col(k)).
Speaking informally, as we go around the circle of clusters, a shadow follows
us which is not as long as we would like (i.e. it does not go n columns
back) but it is next best, i.e. it goes n − 1 columns back. The condition
of In+1

n says exactly that we can choose an element in the cluster at hand
which will exactly match the forbidden configuration with respect to any
elements already defined which are covered by this shadow. More formally,
as (A0, . . . An) was chosen to be In+1

n and |Col k| = n− 1, an appropriate aρ
k

exists.

Step 3: Defining the relation <`, which has no pseudo-(n+ 1)-loops.

We now define a binary relation <` on m-tuples, where m = h(n + 1).
Fix the enumeration of these tuples to agree with the natural interpretation
as blocks B` of h consecutive rows in the array A (see Figure 7.2). That is,
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...

...
−−− −−− −−− −−− −−− −−− −−−
a`nh+h

0 . . . a`nh+h
k a`nh+h

n
...

...
...

B`n = a`nh+ρ
0 a`nh+ρ

k a`nh+ρ
n

...
...

...
a`nh+1

0 a`nh+1
k a`nh+1

n

−−− −−− −−− −−− −−− −−− −−−
...

−−− −−− −−− −−− −−− −−− −−−
a`kh+h

0 . . . a`kh+h
k a`kh+h

n
...

...
...

B`k
= a`kh+ρ

0 a`kh+ρ
k a`kh+ρ

n
...

...
...

a`kh+1
0 . . . a`kh+1

k . . . a`kh+1
n

−−− −−− −−− −−− −−− −−− −−−
...

−−− −−− −−− −−− −−− −−− −−−
a2h

0 a2h
1 a2h

k a2h
n

...
...

...
...

B1 = ah+ρ
0 ah+ρ

1 ah+ρ
k ah+ρ

n
...

...
...

...
ah+1

0 ah+1
1 ah+1

k . . . ah+1
n

−−− −−− −−− −−− −−− −−− −−−
ah
0 ah

k ah
n

...
...

...
B0 = aρ

0 aρ
k aρ

n
...

...
...

a1
0 . . . a1

k . . . a1
n

Figure 2: Elements of the array A, arranged in blocks of h rows. The boldface refers to
Step 4 of the proof, when a proposed witness to G is assembled from the ith columns of
blocks Bi in a pseudo-(n + 1)-loop.
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write the variables Y := 〈yt
i : 1 ≤ t ≤ h, 0 ≤ i ≤ n〉, Z := 〈zt′

i′ : 1 ≤ t′ ≤
h, 0 ≤ i′ ≤ n〉. Define:

Y <` Z ⇐⇒ (def)∧
1≤t′,t≤h, 0≤i,i′≤n

(i′ ∈ Col(i)) =⇒
(
zt

i R yt′

i′ ⇐⇒ EG((t, i), (t′, i′)) = 1
)

Let B be a partition of the array A into blocks Bk (k < ω) each consisting
of h consecutive rows, so Bk := 〈ar

t : 0 ≤ t ≤ n, kh + 1 ≤ r ≤ (kh) + h〉,
for each k < ω (see Figure 7.2). By Claim 7.8, for any i, j < ω, i < j =⇒
Bi <` Bj.

Definition 7.9. A pseudo-(n + 1)-loop is a sequence Wi (0 ≤ i ≤ n) such
that for some m, 1 ≤ m < n: ∧

(0<j<i≤n)

Wj <` Wi

 ∧

( ∧
1≤j≤m

W0 <` Wj

)
∧

( ∧
m<j≤n

Wj <` W0

)
(2)

Although <` is not symmetric, notice that:

Remark 7.10. Let X0, . . . Xn be tuples of variables of uniform length m and
suppose S is a symmetric 2m-ary relation. Suppose that ∧

(0<j<i≤n)

S(Xj, Xi)

 ∧

( ∧
1≤j≤m

S(X0, Xj)

)
∧

( ∧
m<j≤n

S(Xj, X0)

)

Then for all 0 ≤ i < j ≤ n, S(Xi, Xj).

Claim 7.11. Pseudo-(n+ 1)-loops in <` are inconsistent with T .

Proof. Suppose it were consistent with T to have blocks of variablesW0 . . .Wn

which form a pseudo-(n+ 1)-loop. Write Wk(i) = {whk+1
i , . . . whk+h

i } for the
ith column of block Wk. Figure 7.2 gives the picture, where the elements a
are replaced by variables w and the blocks Bi become Wi.

Notice that the asymmetric relation <` between columns Wi(i),Wi(j)
gives rise to a symmetric relation between those same columns, namely the
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relation which expresses “the edges between elements of Wi(i) and those of
Wj(j) agree exactly with the edges which occur between the ith and jth
columns in the forbidden configuration.”

More formally, set WG = W0(0) ∪ W1(1) ∪ · · · ∪ Wn(n). This can be
visualized as the boldface columns in Figure 7.2. By definition of <`, the
pseudo-(n+1)-loop (2) implies that whenever

(( j ∈ Col(i)) ∧ ((0 < j < i ≤ n) ∨ (j = 0 ∧ i ≤ m) ∨ (m < j ∧ i = 0)))

we will have:(
∀ wt

k ∈ Wi(i), w
t′

k′ ∈ Wj(j)
)(

wt
k R wt′

k′ ⇐⇒ EG((t, k), (t′, k′)) = 1
)

In a pseudo-(n+1)-loop, given any distinct indices 0 ≤ i < j ≤ n, either
Wi(i) <` Wj(j) or vice versa. In either case, edges between vertices in Wi(i)
and those in Wj(j) will agree with the forbidden configuration. By Remark
7.10, WG has the forbidden configuration, which is a contradiction.

Step 4: Obtaining SOP3.

Step 3 showed that our array A of approximations had a certain rigidity,
which we can now identify as SOP3. Following Definition 6.11, let us define
ϕr(x; y1, . . . yn) and ψ`(x; y1, . . . yn), where the the variables are blocks, and
the subscripts “`” and “r” are visual aids: the element x goes to the left of
the elements yi under ψ, and to their right under ϕ.

That is, we set:

• ϕr(x; y1, . . . yn) = ∧
1≤i6=j≤n

yi <` yj ∧
∧

1≤i≤n

yi <` x

• ψ`(x; y1, . . . yn) = ∧
1≤i≤n

x <` yi ∧
∧

1≤i6=j≤n

yi <` yj
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Now let us verify that the conditions of Definition 6.11 hold. Let B be the
sequence of blocks defined in Step 3, and assume without loss of generality
that B = 〈Bk : k < ω〉 is indiscernible and moreover is dense and codense
in some indiscernible sequence B′. Let A = 〈Ai : i < ω〉 be an indiscernible
sequence of n-tuples of elements of B.

1. {ϕr(x; y1, . . . yn), ψ`(x; y1, . . . yn)} is contradictory because it gives rise
to a pseudo-(n+ 1)-loop.

2. By construction, for any k < ω, the type

{ψ`(x;Aj) : j ≤ k} ∪ {ϕr(x;Ai) : k < i}

is consistent, because we have shown that <` linearly orders B, thus
also B′. Choose the desired sequence of witnesses to be elements in the
indiscernible sequence B′ which are interleaved with B.

3. Suppose we have {ϕr(x;Aj), ψ`(x;Ai)} for some i < j, or in other
words:

{ϕr(x;Bj1 , . . . Bjn), ψ`(x;Bi1 , . . . Bin)} where {i1, . . . in} < {j1, . . . jn}

Then x <` Bi1 <` · · · <` Bin <` Bj1 <` · · · <` Bjn <` x is a pseudo-
(2n + 1)-loop (remember that <` holds between any increasing pair
of elements of B by construction). Thus a fortiori we have a pseudo-
(n+ 1)-loop, contradicting the conclusion of Step 3.

We have shown that the theory T has SOP3, so we finish.
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