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Historically one of the great successes of model theory has been Shelah’s stability theory:

a program, described in [17], of showing that the arrangement of first-order theories into

complexity classes according to a priori set-theoretic criteria (e.g. counting types over sets)

in fact pushes down to reveal a very rich and entirely model-theoretic structure theory for

the classes involved: what we now call stability, superstability, and ω-stability, as well as

the dichotomy between independence and strict order in unstable theories. The success of

the program may be measured by the fact that the original set-theoretic criteria are now

largely passed over in favor of definitions which mention ranks or combinatorial properties

of a particular formula.

Because of this shift, Keisler’s 1967 order (defined below) may strike the modern reader as

an anachronism. It too seeks to coarsely classify first-order theories in terms of a more set-

theoretic criterion, the difficulty of producing saturated regular ultrapowers, but its structure

has remained largely open. Partial results from the 70s suggest a mine of perhaps comparable

richness, one which has remained largely inaccessible to current tools.

Keisler’s criterion of choice, saturation of regular ultrapowers, is natural for two reasons.

First, when the ultrapower is regular, the degree of its saturation depends only on the theory

and not on the saturation of the index models. Second, ultrapowers are a natural context for

studying compactness, and Keisler’s order can be thought of as studying the fine structure

of compactness by asking: what families of consistent types are realized or omitted together

in regular ultrapowers? Thus the relative difficulty of realizing the types of T1 versus those

of some T2 in regular ultrapowers gives a measure of the combinatorial complexity of the

types each Ti is able to describe.

Definition 1. (Keisler’s order [7]) T1 ≤ T2 if for all infinite λ, D regular on λ, M1 |=

T1, M2 |= T2, we have: if (M2)
λ/D is λ+-saturated then (M1)

λ/D is λ+-saturated.
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Shelah in the 1970s gave a beautiful and surprising series of results showing deep links

between Keisler’s order and the underlying structure of first-order theories. His dividing

lines will be familiar to model theorists who have not worked on ultrapowers:

Theorem A. (Shelah [17]) In the Keisler order we have: T1 < T2 < ...?... ≤ Ts, where:

(1) T1 is the set of countable theories without the finite cover property, which form the

minimum Keisler equivalence class.

(2) T2 is the set of countable theories which are stable but have fcp, which form the second

Keisler equivalence class.

(3) Ts is the maximum class, which is known to exist and to include theories with the

strict order property.

(4) and the intermediate structure of the unstable ...?..., as well as the question of deter-

mining the boundary of the maximum class, remains open.

Notice the coarseness of the order. Stability is a classic model-theoretic frontier, but the

finite cover property crosscuts all of its usual refinements. Recent work of Shelah [18] and

Shelah and Usvyatsov [19] has shown that SOP3, a weakening of strict order, is sufficient for

maximality; however, the identity of the maximal class, as well as the structure of the order

on unstable theories without SOP3, has remained open.

Notice also that stability, fcp and strict order are all properties of formulas. In the first

chapter of this thesis we show that this is paradigmatic: the Keisler order reduces to the study

of types in a single formula ([12]). In other words, the combinatorial barriers to saturation

are contained in the parameter spaces of the formulas of T . This mirrors the crucial move

of stability theory in reducing questions of a priori infinitary combinatorics to properties of

formulas. But proof itself suggests the importance of a new kind of combinatorial structure.

Namely, we associate to each formula ϕ a countable sequence of hypergraphs, called the

“characteristic sequence,” which describe incidence relations on the parameter space of ϕ.

We then begin the investigation of the model-theoretic complexity of ϕ in terms of the graph-

theoretic complexity of its characteristic sequence, that is, the distribution and recurrence

of complex configurations around the base set of a ϕ-type under analysis.
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Definition 2. The characteristic sequence 〈Pn : n < ω〉 associated to a formula ϕ of T is

given by: for n < ω, Pn(z1, . . . zn) := ∃x
∧

i≤n ϕ(x; zi). Write (T, ϕ) 7→ 〈Pn〉.

This move is a natural consequence of the localization result for ultrapowers described

above. Classification theory typically isolates particular configurations which signal com-

plexity (the order property, the independence property...); an interest in saturation of ultra-

powers shifts the emphasis onto understanding how the many fragments of configurations

are distributed in the parameter space of the formula and how they cluster into larger con-

stellations, into constellations of constellations, etc. Once observed and made precise, this

relation of questions of “presence” as seen in the formula ϕ to questions of “persistence” as

seen in the hypergraphs is an interesting structural issue beyond the context of ultrapowers.

We apply the characteristic sequence to the analysis of consistent partial ϕ-types, which

correspond to complete P∞-graphs, i.e. sets A ⊆ M such that An ⊆ Pn for all n. A first

goal is to definably restrict the predicate P1 around A so that the localized graph is as

“uncomplicated” as possible. A combinatorial configuration will be called persistent around

A if it appears in every finite localization around the complete graph A under analysis. We

give natural characterizations of stability and simplicity in terms of persistence.

We next restrict attention to some fixed localization and consider what the complexity

of configurations there imply for T . This provides a second motivation for characteristic

sequences: linking classification theory for ϕ to structural issues of distributions of edges in

the characteristic sequence of hypergraphs is potentially quite powerful, because as properties

like edge density, randomness, and regularity of the graphs are shown to give meaningful

model-theoretic information about ϕ, this opens up the possibility of using a deep collection

of structure theorems for graphs, for instance Szemerédi-type regularity lemmas [20], to give

model-theoretic information. In the notation of [9],

Definition 3. ([20], [9]) Fix 0 < ε < 1, and write δ(X, Y ) for the edge density e(X, Y )/|X||Y |.

The finite bipartite graph (X, Y ) is ε-regular if for every X ′ ⊆ X, Y ′ ⊆ Y with |X ′| ≥ ε|X|,

|Y ′| ≥ ε|Y |, we have: |δ(X, Y )− δ(X ′, Y ′)| < ε.

Theorem B. (Szemerédi [20]) For every 0 < ε < 1, m0 ∈ N there exist N = N(ε, m0),

m = m(ε, m0) such that: for any graph X, |X| ≥ N , for some m0 ≤ k ≤ m there exists a

partition X = X1 ∪ · · · ∪Xk satisfying:
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• ||Xi| − |Xj|| ≤ 1 for i, j ≤ k

• All but at most εk2 of the pairs (Xi, Xj) are ε-regular.

Analogous lemmas for hypergraphs exist, e.g. [5], though the issue of how to extend

regularity to hypergraphs is a subtle one [6].

The organizing principle is the question of how subsets of the parameter space can gener-

ically interrelate, i.e., what densities can occur between sufficiently large ε-regular pairs

A, B ⊆ P1, in the sense of Szemerédi. We obtain an interesting picture. When the formula is

stable, after localization the density must always be 1. In a class including simple theories,

after localization the density must approach either 0 or 1. We may assume NSOP as strict

order is already Keisler-maximal; with this hypothesis, we characterize the property that P1

contains large disjoint ε-regular sets of any reasonable density δ in terms of instability of P2,

in the sense of model theory, and obtain several corollaries.

In a slightly more technical interlude, we observe a gap between the kind of bipartite

randomness given by model theory (i.e. the independence property) and that given by Sze-

merédi regularity. This gap has to do with the way in which the finite subgraphs approximate

the infinite. We formalize this gap and use it to describe a general principle: what might

be called “the depth of independence” of an infinite k-partite graph. We show that graphs

which are partially, but not fully, independent in this sense give rise to SOP3. This gives a

new motivation for the property, which is known to imply maximality in the Keisler order.

We conclude with several arguments necessary to apply the technology of the characteristic

sequence to the analysis of types in ultrapowers.
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