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Abstract. This paper contributes to the set-theoretic side of understanding Keisler’s order. We
consider properties of ultrafilters which affect saturation of unstable theories: the lower cofinality
lcf(ℵ0,D) of ℵ0 modulo D, saturation of the minimum unstable theory (the random graph), flexi-
bility, goodness, goodness for equality, and realization of symmetric cuts. We work in ZFC except
when noted, as several constructions appeal to complete ultrafilters thus assume a measurable car-
dinal. The main results are as follows. First, we investigate the strength of flexibility, known to
be detected by non-low theories. Assuming κ > ℵ0 is measurable, we construct a regular ultrafilter
on λ ≥ 2κ which is flexible but not good, and which moreover has large lcf(ℵ0) but does not even
saturate models of the random graph. This implies (a) that flexibility alone cannot characterize
saturation of any theory, however (b) by separating flexibility from goodness, we remove a main
obstacle to proving non-low does not imply maximal. Since flexible is precisely OK, this also shows
that (c) from a set-theoretic point of view, consistently, ok need not imply good, addressing a prob-
lem from Dow 1985. Second, under no additional assumptions, we prove that there is a loss of
saturation in regular ultrapowers of unstable theories, and also give a new proof that there is a loss
of saturation in ultrapowers of non-simple theories. More precisely, for D regular on κ and M a
model of an unstable theory, Mκ/D is not (2κ)+-saturated; and for M a model of a non-simple
theory and λ = λ<λ, Mλ/D is not λ++-saturated. In the third part of the paper, we investigate
realization and omission of symmetric cuts, significant both because of the maximality of the strict
order property in Keisler’s order, and by recent work of the authors on SOP2. We prove that if D
is a κ-complete ultrafilter on κ, any ultrapower of a sufficiently saturated model of linear order will
have no (κ, κ)-cuts, and that if D is also normal, it will have a (κ+, κ+)-cut. We apply this to prove
that for any n < ω, assuming the existence of n measurable cardinals below λ, there is a regular
ultrafilter D on λ such that any D-ultrapower of a model of linear order will have n alternations of
cuts, as defined below. Moreover, D will λ+-saturate all stable theories but will not (2κ)+-saturate
any unstable theory, where κ is the smallest measurable cardinal used in the construction.

Introduction

The motivation for our work is a longstanding, and far-reaching, problem in model theory:
namely, determining the structure of Keisler’s order on countable first-order theories. Introduced
by Keisler in 1967, this order suggests a way of comparing the complexity of first-order theories in
terms of the difficulty of producing saturated regular ultrapowers. Much of the power of this order
comes from the interplay of model-theoretic structure and set-theoretic constraints. However, this
interplay also contributes to its difficulty: progress requires advances in model-theoretic analysis on
the one hand, and advances in ultrapower construction on the other. Our work in this paper is of
the second kind and is primarily combinatorial set theory, though the model-theoretic point of view
is fundamental.
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This is paper 996 in Shelah’s list of publications. The authors thank Simon Thomas for very helpful organizational
remarks.
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As might be expected from a problem of this scope, surprising early results were followed by many
years of little progress. Results of Shelah in [19], Chapter VI (1978) had settled Keisler’s order for
stable theories, as described in §1.2 below. Apart from this work, and the result on maximality of
SOP3 in [22], the problem of understanding Keisler’s order on unstable theories was dormant for
many years and seemed difficult.

Very recently, work of Malliaris and Shelah has led to considerable advances in the understanding
of how ultrafilters and theories interact (Malliaris [12]-[14], Malliaris and Shelah [16]-[17]). In
particular, we now have much more information about properties of ultrafilters which have model-
theoretic significance. However, the model-theoretic analysis gave little information about the
relative strength of the ultrafilter properties described. In the current paper, we substantially
clarify the picture. We establish various implications and non-implications between model-theoretic
properties of ultrafilters, and we develop a series of tools and constraints which help the general
problem of constructing ultrafilters with a precise degree of saturation. Though we have framed
this as a model-theoretically motivated project, it naturally relates to questions in combinatorial
set theory, and our results answer some questions there. Moreover, an interesting and unexpected
phenomenon in this paper is the relevance of measurable cardinals in the construction of regular
ultrafilters, see 2.8 below.

This paper begins with several introductory sections which frame our investigations and collect
the implications of the current work. We give two extended examples in §1, the first historical, the
second involving results from the current paper. Following this, we give definitions and fix notation
in §2. §3 gives an overview of our main results in this paper. §4 includes some summary theorems
for our constructions. Sections §5-§11 contain the main proofs.

In this paper, we focus on product constructions and cardinality constraints. In a related paper
in preparation [15] we will focus on constructions via families of independent functions.

We thank the anonymous referee for many helpful comments on the paper.
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CONSTRUCTING REGULAR ULTRAFILTERS... 3

1. Background and examples

.

In this section we give two extended examples. The first is historical; we motivate the problem
of Keisler’s order, i.e. of classifying first-order theories in terms of saturation of ultrapowers, by
explaining the classification for the stable case. The second involves a proof from the current
paper: we motivate the idea that model-theoretic properties can give a useful way of calibrating
the “strength” of ultrafilters by applying saturation arguments to prove that consistently flexible
(=OK) does not imply good.

Some definitions will be given informally; formal versions can be found in §2 below.

1.1. Infinite and pseudofinite sets: Theories through the lens of ultrafilters. This first
example is meant to communicate some intuition for the kinds of model-theoretic “complexity” to
which saturation of ultrapowers is sensitive.

First, recall that questions of saturation and expressive power already arise in the two fundamental
theorems of ultrapowers.

Theorem A. ( Los’ theorem for first-order logic) Let D be an ultrafilter on λ ≥ ℵ0, M an L-
structure, ϕ(x) an L-formula, and a ⊆ N = Mλ/D, `(a) = `(x). Fixing a canonical representative
of each D-equivalence class, write a[i] for the value of a at index i. Then

N |= ϕ(a) ⇐⇒ {i ∈ λ : M |= ϕ(a[i])} ∈ D

Theorem B. (Ultrapowers commute with reducts) Let M be an L′-structure, L ⊆ L′, D an
ultrafilter on λ ≥ ℵ0, N = Mλ/D. Then(

Mλ/D
)
|L = (M |L)λ /D

That is: By itself, Theorem A may appear only to guarantee that M ≡ Mλ/D. Yet combined
with Theorem B, it has consequences for saturation of ultrapowers, as we now explain.

Consider the following three countable models in the language L = {E,=}, for E a binary relation
symbol, interpreted as an equivalence relation.

• In M1, E is an equivalence relation with two countable classes.
• In M2, E is an equivalence relation with countably many countable classes.
• In M3, E is an equivalence relation with exactly one class of size n for each n ∈ N.

What variations are possible in ultrapowers of these models? That is, for Ni = Mλ
i /D, what

can we say about: (a) the number of ENi-classes, (b) the possible sizes of ENi-classes, (b)′ if two
ENi-classes can have unequal sizes?

Observation 1.1. For any index set I and ultrafilter D on I,

(1) N1 = (M1)
I/D will have two E-classes each of size |N1|

(2) N2 = (M2)
I/D will have |N2| E-classes each of size |N2|

Proof. (1) Two classes follows by  Los’ theorem, so we prove the fact about size. By Theorem B
(Mλ

11/D)|L = Mλ
1 /D, where M11 is the expansion of M1 to L′ = L ∪ {f} and f is interpreted as

a bijection between the equivalence classes. By  Los’ theorem, f will remain a bijection in N1, but
Theorem B means that whether we forget the existence of f before or after taking the ultrapower,
the result is the same.

(2) Similarly, M2 admits an expansion to a language with a bijection f1 between M2 and a set
of representatives of E-classes; a bijection f2 between M2 and a fixed E-class; and a parametrized
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family f3(x, y, z) where for each a, b, f3(x, a, b) is a bijection between the equivalence class of b
and that of b. So once more, by Theorems A and B, the ultrapowers of M2 are in a sense one-
dimensional: if N2 = Mλ

2 /D is an ultrapower, it will be an equivalence relation with |N2| classes
each of which has size |N2|. �

Now for M3, the situation is a priori less clear. Any nonprincipal ultrapower will contain infinite
(pseudofinite) sets by  Los’ theorem, but it is a priori not obvious whether induced bijections between
these sets exist. It is easy to choose infinitely many distinct pseudofinite sets (let the nth set project
a.e. to a class whose size is a power of the nth prime) which do not clearly admit bijections to each
other in the index model M , nor to M itself.

We have reached the frontier of what Theorem B can control, and a property of ultrafilters comes
to the surface:

Definition 1.2. ([20] Definition III.3.5) Let D be an ultrafilter on λ.

µ(D) := min

{∏
t<λ

nt/D : nt < ℵ0,
∏
t<λ

nt/D ≥ ℵ0

}
be the minimum value of the product of an unbounded sequence of cardinals modulo D.

Observation 1.3. Let D be an ultrafilter on λ, let M3 be the model defined above, and N3 =
(M3)

λ/D. Then:

(1) N3 will have |N3| E-classes.
(2) EN3 will contain only classes of size ≥ µ(D), and will contain at least one class of size µ(D).

Proof. (1) As for the number of classes, Theorem B still applies.

(2) Choose a sequence of cardinals nt witnessing µ(D), and consider the class whose projection
to the tth index model has cardinality nt. �

Definition 1.2 isolates a well-defined set-theoretic property of ultrafilters, and indeed, an early
theorem of the second author proved that one could vary the size of µ(D):

Theorem C. (Shelah, [20].VI.3.12) Let µ(D) be as in Definition 1.2. Then for any infinite λ and
ν = νℵ0 ≤ 2λ there exists a regular ultrafilter D on λ with µ(D) = ν.

Whereas the saturation of (M1)
λ/D and of (M2)

λ/D will not depend on µ(D), N3 = (M3)
λ/D

will omit a type of size ≤ κ of the form {E(x, a)} ∪ {¬x = a′ : N3 |= E(a′, a)} if and only if
µ(D) ≤ κ. Restricting to regular ultrafilters, so that saturation of the ultrapower does not depend
on saturation of the index model but only on its theory, the same holds if we replace each Mi by
some elementarily equivalent model, and is thus a statement about their respective theories.

This separation of theories by means of their sensitivity to µ(D) is, in fact, characteristic within
stability. Recall that a formula ϕ(x; y) has the finite cover property with respect to a theory T if for
all n < ω, there are a0, . . . an in some model M |= T such that the set Σn = {ϕ(x; a0), . . . ϕ(x; an)}
is inconsistent but every n-element subset of Σn is consistent.

Theorem D. (Shelah [20] VI.5) Let T be a countable stable theory, M |= T , and D a regular
ultrafilter on λ ≥ ℵ0. Then:

(1) If T does not have the finite cover property, then Mλ/D is always λ+-saturated.
(2) If T has the finite cover property, then Mλ/D is λ+-saturated if and only if µ(D) ≥ λ+.

Thus Keisler’s order on stable theories has exactly two classes, linearly ordered.
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Proof. (Sketch) This relies on a characterization of saturated models of stable theories: N is λ+-
saturated if and only if it is κ(T )-saturated and every maximal indiscernible set has size ≥ λ+.
[This relies heavily on uniqueness of nonforking extensions: given a type p one hopes to realize over
some A, |A| ≤ λ, restrict p to a small set over which it does not fork, and use κ(T )-saturation
to find a countable indiscernible sequence of realizations of the restricted type. By hypothesis, we
may assume this indiscernible sequence extends to one of size λ+, and by uniqueness of nonforking
extensions, any element of this sequence which does not fork with A will realize the type.]

Returning to ultrapowers: for countable theories, κ(T ) ≤ ℵ1 and any nonprincipal ultrapower is
ℵ1-saturated. So it suffices to show that any maximal indiscernible set is large, and the theorem
proves, by a coding argument, that this is true whenever the size of every pseudofinite set is large. �

Discussion. As mentioned above, in this paper we construct ultrafilters with “model-theoretically
significant properties.” The intent of this example was to motivate our work by showing what
“model-theoretically significant” might mean. However, the example also illustrates what kinds of
properties may fit the bill. We make two general remarks.

(1) “Only formulas matter”: The fact that µ(D) was detected by a property of a single formula,
the finite cover property, is not an accident. For D a regular ultrafilter and M |= T any
countable theory, Mλ/D is λ+-saturated if and only if it is λ+-saturated for ϕ-types, for all
formulas ϕ, Malliaris [11] Theorem 12. Thus, from the point of view of Keisler’s order, it
suffices to understand properties of regular ultrafilters which are detected by formulas.

(2) The role of pseudofinite structure is fundamental, reflecting the nature of the objects involved
(regular ultrapowers, first-order theories). On one hand, pseudofinite phenomena can often
be captured by a first-order theory. On the other, saturation of regular ultrapowers depends
on finitely many conditions in each index model, since by definition regular ultrafilters D
on I, |I| = λ contain regularizing families, i.e. {Xi : i < λ} such that for each t ∈ I,
|{i < λ : t ∈ Xi}| < ℵ0.

1.2. Flexibility without goodness: Ultrafilters through the lens of theories. Our second
example takes the complementary point of view. The following is a rich and important class of
ultrafilters introduced by Keisler:

Definition 1.4. (Good ultrafilters, Keisler [4]) The filter D on I is said to be µ+-good if every
f : Pℵ0(µ) → D has a multiplicative refinement, where this means that for some f ′ : Pℵ0(µ) → D,
u ∈ Pℵ0(µ) =⇒ f ′(u) ⊆ f(u), and u, v ∈ Pℵ0(µ) =⇒ f ′(u) ∩ f ′(v) = f ′(u ∪ v).

We may assume the functions f are monotonic (11.6).

D is said to be good if it is |I|+-good.

It is natural to ask for meaningful weakenings of this notion, e.g. by requiring only that certain
classes of functions have multiplicative refinements. An important example is the notion of OK,
which appeared without a name in Keisler [4], was named and studied by Kunen [9] and investigated
generally by Dow [3] and by Baker and Kunen [1]. We follow the definition from [3] 1.1.

Definition 1.5. (OK ultrafilters) The filter D on I is said to be λ-OK if each monotone function
g : Pℵ0(λ)→ D with g(u) = g(v) whenever |u| = |v| has a multiplicative refinement f : Pℵ0(λ)→ D.

It is immediate that λ+-good implies λ-OK. Though OK is an a priori weaker notion, the relative
strength of OK and good was not clear. For instance, in [3] 3.10 and 4.7, Dow raises the problem of
constructing ultrafilters which are λ+-OK but not λ+-good; to our knowledge, even the question of
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constructing λ-OK not λ+-good ultrafilters on λ was open. Before discussing how a model-theoretic
perspective can help with such questions, we define the main objects of interest in this paper:

Definition 1.6. (Regular filters) A filter D on an index set I of cardinality λ is said to be λ-regular,
or simply regular, if there exists a λ-regularizing family 〈Xi : i < λ〉, which means that:

• for each i < λ, Xi ∈ D, and
• for any infinite σ ⊂ λ, we have

⋂
i∈σXi = ∅

Equivalently, for any element t ∈ I, t belongs to only finitely many of the sets Xi.

Now we make a translation. As Keisler observed, good regular ultrafilters can be characterized as
those regular ultrafilters able to saturate any countable theory. (By “D saturates T” we will always
mean: D is a regular ultrafilter on the infinite index set I, T is a countable complete first-order
theory and for any M |= T , we have that M I/D is λ+-saturated, where λ = |I|.) We state this as
a definition and an observation, which together say simply that the distance between consistency
of a type (i.e. finite consistency, reflected by  Los’ theorem) and realization of a type in a regular
ultrapower can be explained by whether or not certain monotonic functions have multiplicative
refinements.

Definition 1.7. Let T be a countable complete first-order theory, M |= T , D a regular ultrafilter on
I, |I| = λ, N = Mλ/D. Let p(x) = {ϕi(x; ai) : i < λ} be a consistent partial type in the ultrapower
N . Then a distribution of p is a map d : Pℵ0(λ)→ D which satisfies:

(1) For each σ ∈ [λ]<ℵ0, d(σ) ⊆ {t ∈ I : M |= ∃x
∧
{ϕi(x; ai[t]) : i ∈ σ}}. Informally speaking,

d refines the  Los map.
(2) d is monotonic, meaning that σ, τ ∈ [λ]<ℵ0, σ ⊆ τ implies d(σ) ⊇ d(τ)
(3) The set {d(σ) : σ ∈ [λ]<ℵ0} is a regularizing family, i.e. each t ∈ I belongs to only finitely

many elements of this set.

Observation 1.8. Let T be a countable complete first-order theory, M |= T , D a regular ultrafilter
on λ, N = Mλ/D. Then the following are equivalent:

(1) For every consistent partial type p in N of size ≤ λ, some distribution d of p has a multi-
plicative refinement.

(2) N is λ+-saturated.

Proof. The obstacle to realizing the type is simply that, while  Los’ theorem guarantees each finite
subset of p is almost-everywhere consistent, there is no a priori reason why, at an index t ∈ I
at which M |= ∃x

∧
{ϕi(x; ai[t]) : i ∈ σ}, M |= ∃x

∧
{ϕi(x; aj [t]) : j ∈ τ}, these two sets should

have a common witness. The statement that d has a multiplicative refinement is precisely the
statement that there is, in fact, a common witness almost everywhere, in other words t ∈ d(σ) ∩
d(τ) =⇒ t ∈ d(σ ∪ τ). When this happens, we may choose at each index t an element ct such that
σ ∈ [λ]<ℵ0 ∧ t ∈ d(σ) =⇒ M |=

∧
{ϕi(ct : ai[t]) : i ∈ σ}, by 1.7(1). Then by  Los’ theorem and

1.7(1),
∏
t<λ ct will realize p in N .

The other direction is clear (choose a realization a and use  Los’ theorem to send each finite subset
of the type to the set on which it is realized by a). �

Keisler’s characterization of good ultrafilters then follows from showing that there are first order
theories which can “code” enough possible patterns to detect whether any f : Pℵ0(λ)→ D fails to
have a multiplicative refinement.

Note that first-order theories correspond naturally to monotonic functions of a certain kind
(depending, very informally speaking, on some notion of the pattern-complexity inherent in the
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theory) and thus, were one to succeed in building ultrafilters which were able to saturate certain
theories and not saturate others, this would likewise show a meaningful weakening of goodness.

In this context we mention a property which arose in the study of certain unstable simple theories,
called non-low. The original definition is due to Buechler.

Definition 1.9. The formula ϕ(x; y) is called non-low with respect to the theory T if in some
sufficiently saturated model M |= T , for arbitrarily large k < ω, there exists an infinite indiscernible
sequence {ai : i < ω}, with i < ω =⇒ `(ai) = `(y), such that every k-element subset of

{ϕ(x; ai) : i < ω}
is consistent, but every k + 1-element subset is inconsistent.

Here we make a second translation. Recall from Definition 1.6 above that the characteristic
objects of regular filters D on λ are (λ)-regularizing families, i.e. sets of the form {Xi : i < λ} with
t ∈ I =⇒ |{i < λ : t ∈ Xi}| = nt < ℵ0. Malliaris had noticed in [12] that non-low formulas could
detect the size (i.e. the nonstandard integer whose tth coordinate is nt) of the regularizing families
in D, and thus had defined and studied the “flexibility” of a filter, Definition 1.10.

Definition 1.10. (Flexible ultrafilters, Malliaris [12], [13]) We say that the filter D is λ-flexible if
for any f ∈ IN with n ∈ N =⇒ n <D f , we can find Xα ∈ D for α < λ such that for all t ∈ I

f(t) ≥ |{α : t ∈ Xα}|
Informally, given any nonstandard integer, we can find a λ-regularizing family below it.

Specifically, Malliaris had shown that if D is not λ-flexible then it fails to λ+-saturate any theory
containing a non-low formula. (Note that by Keisler’s observation about good ultrafilters, any
property of ultrafilters which can be shown to be detected by formulas must necessarily hold of
good ultrafilters.) Moreover, there is a useful convergence. Kunen had brought the definition of
“OK” filters to Malliaris’ attention in 2010; “λ-flexible” and “λ-OK” are easily seen to be equivalent,
Claim 6.1 below.

We now sketch the proof from §7 below that consistently, flexible need not imply good. (This
paper and its sequel [15] contain at least three distinct proofs of that fact, of independent interest.)
The numbering of results follows that in §7.

To begin, we use a diagonalization argument to show that saturation decays in ultrapowers of
the random graph, i.e. the Rado graph, Definition 2.15 below. (“The random graph” means, from
the set-theoretic point of view, that the function which fails to have a multiplicative refinement
will code the fact that there are two sets A,B in the final ultrapower N, |A| = |B| = λ, which are
disjoint in N but whose projections to the index models cannot be taken to be a.e. disjoint.)

Claim 5.2. Assume λ ≥ κ ≥ ℵ0, T = Trg, M a λ+-saturated model of T , E a uniform ultrafilter
on κ such that |κκ/E| = 2κ Then Mκ/E is not (2κ)+-saturated.

Note that the hypothesis of the claim will be satisfied when E is regular, and also when E is
complete. Our strategy will be to take a product of ultrafilters D×E, where D is a regular ultrafilter
on λ and E is an ultrafilter on κ. (The idea of taking such a product goes back at least as far as
Keisler’s work on ultraproducts of finite sets.) Then D × E will be regular, and if λ ≥ 2κ, it will
fail to saturate the random graph, thus fail to be good. What remains is to ensure flexibility, and
for this we will need E to be ℵ1-complete. In the following Corollary, lcf(ℵ0,D) is the coinitiality
of N in (N, <)I/D, i.e. the cofinality of the set of D-nonstandard integers.

Corollary 7.3 Let λ, κ ≥ ℵ0 and let D1, E be ultrafilters on λ, κ respectively where κ > ℵ0 is
measurable. Let D = D1 × E be the product ultrafilter on λ× κ. Then:
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(1) If D1 is λ-flexible and E is ℵ1-complete, then D is λ-flexible.
(2) If λ ≥ κ and lcf(ℵ0,D1) ≥ λ+, then lcf(ℵ0,D) ≥ λ+, so in particular, D = D × E will

λ+-saturate any countable stable theory.

Proof. (Sketch) (1) We first show that the following are equivalent: (i) any D-nonstandard integer
projects E-a.e. to a D1-nonstandard integer, (ii) E is ℵ1-complete. Then, since we have assumed
(ii) holds, let some D-nonstandard integer n∗ be given. By (ii), for E-almost all t ∈ κ, n∗[t] is
D1-nonstandard and by the flexibility of D1 there is a regularizing family {Xt

i : i < λ} ⊆ D1 below
any such n∗[t]. Let Xi = {(s, t) : s ∈ Xt

i} ⊆ D. It follows that {Xi : i < λ} is a regularizing family
in D below m∗ and thus below n∗.

(2) From the first sentence of (1), we show that if E is ℵ1-complete and in addition lcf(ℵ0,D) ≥ λ+,
then the D1-nonstandard integers (under the diagonal embedding) are cofinal in the D-nonstandard
integers. This suffices. For the second clause, see Theorem F, §4 below. �

Thus we obtain:

Theorem 7.4. Assume ℵ0 < κ < λ = λκ, 2κ ≤ λ, κ measurable. Then there exists a regular
ultrafilter D on λ such that D is λ-flexible, yet for any model M of the theory of the random graph,
Mλ/D is not (2κ)+-saturated. Thus D is not good, and will fail to (2κ)+-saturate any unstable
theory. However, D will λ+-saturate any countable stable theory.

Note that the model-theoretic failure of saturation is quite strong, more so than simply “not
good.” The random graph is known to be minimum among unstable theories in Keisler’s order
(meaning that any regular D which fails to saturate the random graph will fail to saturate any
other unstable theory). This is the strongest failure of saturation one could hope for given that
lcf(ℵ0,D) is large, see Section 4 for details.

Theorem 7.4 has the following immediate corollary in the language of OK and good:

Corollary 1.11. Assume ℵ0 < κ < 2κ ≤ µ1 ≤ µ2 < λ = λκ and κ is measurable. Then there exists
a regular ultrafilter D on λ such that D is λ-flexible, thus λ-OK, but not (2κ)+-good. In particular,
D is (µ2)

+-OK but not (µ1)
+-good.

In particular, this addresses the problem raised by Dow in [3] 3.10 and 4.7, namely, the problem
of constructing ultrafilters which are α+-OK and not α+-good.

Discussion. The intent of this example was to show that model theory can contribute to calibrating
ultrafilters. Note that in terms of determining the strength of a priori weakenings of goodness, the
model-theoretic perspective has given both positive and negative results:

(1) On one hand, Theorem 7.4 applies model-theoretic arguments to show that multiplicative
refinements for size-uniform functions f : Pℵ0(λ) → D are not enough to guarantee multi-
plicative refinements for all such functions.

(2) On the other, the second author’s proof of the maximality of strict order (see Theorem
F(6) below) does isolate an a priori weaker class of functions which have such a guarantee
– namely, those corresponding to distributions of types in linear order. The set-theoretic
question of why these functions suffice appears to be deep. The model-theoretic formulation
of “determine a minimum such set of functions” is: determine a necessary condition for
maximality in Keisler’s order.

This concludes our two examples. We now fix definitions and notation, before giving a summary
of our results in §3.
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2. Definitions and conventions

This section contains background, most definitions, and conventions. Note that the definition
of µ(D) was given in Definition 1.2, and the definitions of good, regular and flexible filters were
Definitions 1.4, 1.6 and 1.10 above. (Recall that a filter is said to be λ-regular if it contains a family
of λ sets any countable number of which have empty intersection, 1.6 above.)

Let I = λ ≥ ℵ0 and fix f : Pℵ0(λ)→ I. Then {{s ∈ I : η ∈ f−1(s)} : η < λ} can be extended to
a regular filter on I, so regular ultrafilters on λ ≥ ℵ0 always exist, see [2].

Keisler proposed in 1967 [5] that saturation properties of regular ultrapowers might be used to
classify countable first-order theories. His preorder E on theories is often thought of as a partial
order on the E-equivalence classes, and so known as “Keisler’s order.”

Definition 2.1. (Keisler [5]) Given countable theories T1, T2, say that:

(1) T1 Eλ T2 if for any M1 |= T1,M2 |= T2, and D a regular ultrafilter on λ,
if Mλ

2 /D is λ+-saturated then Mλ
1 /D must be λ+-saturated.

(2) (Keisler’s order) T1 E T2 if for all infinite λ, T1 Eλ T2.

Question 2.2. Determine the structure of Keisler’s order.

The hypothesis regular justifies the quantification over all models: when T is countable and D is
regular, saturation of the ultrapower does not depend on the choice of index model.

Theorem E. (Keisler [5] Corollary 2.1 p. 30; see also Shelah [20].VI.1) Suppose that M0 ≡ M1,
the ambient language is countable, and D is a regular ultrafilter on λ. Then M0

λ/D is λ+-saturated
iff M1

λ/D is λ+-saturated.

More information on Keisler’s order, including many examples and a summary of all known
results through early 2010, may be found in the introduction to the first author’s paper [13].

Definition 2.3. (Complete ultrafilters) The ultrafilter E on κ is said to be µ-complete if for any
{Xi : i < µ′ < µ} ⊆ E,

⋂
{Xi : i < µ′} ∈ E.

Working with complete ultrafilters, we are obliged to make large cardinal hypotheses. We will
use measurable, normal and to a lesser extent, weakly compact cardinals. Their utility for our
arguments will be clear from the choice of definitions:

Definition 2.4. (Measurable, weakly compact)

(1) The uncountable cardinal κ is said to be measurable if there is a κ-complete nonprincipal
ultrafilter on κ.

(2) The uncountable cardinal κ is said to be weakly compact if κ→ (κ)22.

Fact 2.5. If κ > ℵ0 is weakly compact, n < ℵ0 and ρ < κ, then for any α : [κ]n → ρ there exists
U ⊆ κ, |U| = κ such that 〈α(ε1, . . . εn) : ε1 < · · · < εn from U〉 is constant.

Definition 2.6. (Normal ultrafilters) A filter D on κ is normal when, for any sequence 〈Ai : i < κ〉
with i < κ =⇒ Ai ∈ D,

{α < κ : (∀j < 1 + α)(α ∈ Aj)} ∈ D

Fact 2.7. Let κ be a measurable cardinal. Then

(1) there exists a normal, κ-complete, uniform ultrafilter D on κ.
(2) for any f : κ → κ which is regressive on X ∈ D, there is a set Y ∈ D, Y ⊆ X on which f

is constant.
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Discussion 2.8. An interesting and unexpected phenomenon visible in this work is the relevance
of measurable cardinals, and in particular κ-complete nonprincipal ultrafilters, in the construction
of regular ultrafilters. In the 1960s, model theorists pointed out regularity as a central property of
ultrafilters, and generally concentrated on this case. Regularity ensures that saturation [of ultrapow-
ers of models of complete countable theories] does not depend on the saturation of the index model,

and that the cardinality of ultrapowers can be settled (M I/D = M |I|). Meanwhile, the construction
of various non-regular ultrafilters was investigated by set theorists. However, many questions about
regular ultrafilters remained opaque from the model-theoretic point of view. For example, from the
point of view of Theorem D, p. 4 above, the regular ultrafilters with large lcf(ℵ0) – a condition which
implies that these ultrafilters saturate ultrapowers of stable theories – appeared to look alike. More-
over, it was not clear whether various a priori weakenings of goodness (e.g. flexible/ok) were indeed
weaker. Here, in several different constructions, we combine both lines of work, using κ-complete
ultrafilters to construct regular ultrafilters on λ > κ with model-theoretically meaningful properties,
i.e. presence or absence of some specific kind of saturation.

Definition 2.9. (Good for equality, Malliaris [14]) Let D be a regular ultrafilter. Say that D is
good for equality if for any set X ⊆ N = M I/D, |X| ≤ |I|, there is a distribution d : X → D such
that t ∈ λ, t ∈ d(a) ∩ d(b) implies that (M |= a[t] = b[t]) ⇐⇒ (N |= a = b).

Definition 2.10. (Lower cofinality, lcf(κ,D)) Let D be an ultrafilter on I and κ a cardinal. Let
N = (κ,<)I/D. Let X ⊂ N be the set of elements above the diagonal embedding of κ. We define
lcf(κ,D) to be the cofinality of X considered with the reverse order.

Definition 2.11. (Product ultrafilters) Let I1, I2 be infinite sets and let D1, D2 be ultrafilters on
I1, I2 respectively. Then the product ultrafilter D = D1 ×D2 on I1 × I2 is defined by:

X ∈ D ⇐⇒ {t ∈ I2 : {s ∈ I1 : (s, t) ∈ X} ∈ D1} ∈ D2

for any X ⊆ I1 × I2.

Finally, it will be useful to have a name for functions, or relations, to which  Los’ theorem applies
since they are visible in an expanded language:

Definition 2.12. (Induced structure) Let N = Mλ/D be an ultrapower and X ⊆ Nm. Say that
X is an induced function, or relation, if there exists a new function, or relation, symbol P of the
correct arity, and an expansion M ′t of each index model Mt to L ∪ {P}, so that PN ≡ X mod D.

Equivalently, X is the ultraproduct modulo D of its projections to the index models.

Definition 2.13. (Cuts in regular ultrapowers of linear orders)

(1) For a model M expanding the theory of linear order, a (κ1, κ2)-cut in M is given by sequences
〈ai : i < κ1〉, 〈bj : j < κ2〉 of elements of M such that
• i1 < i2 < κ1 =⇒ ai1 < ai2
• j1 < j2 < κ2 =⇒ bj2 < bj1
• i < κ1, j < κ2 implies ai < bj and
• the type {ai < x < bj : i < κ1, j < κ2} is omitted in M .

(2) For D a (regular) ultrafilter on I we define:

C(D) =
{

(κ1, κ2) ∈ (Reg∩|I|+)× (Reg∩|I|+) : (N, <)I/D has a (κ1, κ2)-cut
}

Here we list the main model-theoretic properties of formulas used in this paper. For TP1/SOP2

and TP2, see §8. The finite cover property is from Keisler [5] and the order property, independence
property and strict order property are from Shelah [20].II.4.



CONSTRUCTING REGULAR ULTRAFILTERS... 11

Definition 2.14. (Properties of formulas) Let ϕ = ϕ(x; y) be a formula of T and M |= T be any
sufficiently saturated model. Note that `(x), `(y) are not necessarily 1. Say that the formula ϕ(x; y)
has:

(1) not the finite cover property, written nfcp, if there exists k < ω such that: for any A ⊆M
and any set X = {ϕ(x; a) : a ∈ A} of instances of ϕ, k-consistency implies consistency.
(This does not depend on the model chosen.)

(2) the finite cover property, written fcp, if it does not have nfcp.
(3) the order property if there exist elements ai (i < ω) such that for each n < ω, the following

partial type is consistent:

{¬ϕ(x; ai) : i < n} ∪ {ϕ(x; aj) : j ≥ n}

Formulas with the order property are called unstable.
(4) the independence property if there exist elements ai (i < ω) such that for each σ, τ ∈ [ω]<ℵ0

with σ ∩ τ = ∅, the following partial type is consistent:

{¬ϕ(x; ai) : i ∈ σ} ∪ {ϕ(x; aj) : j ∈ τ}

Note that the independence property implies the order property.
(5) the strict order property if there exist elements ai (i < ω) such that for all j 6= i < ω,

(∃x(¬ϕ(x; aj) ∧ ϕ(x; ai)) ⇐⇒ j < i)

Note that (4), (5) each imply (3).

A theory T is said to have the finite cover property, the order property, the independence property
or the strict order property iff one of its formulas does, and to have nfcp if all of its formulas do.

The “random graph” is known to be minimum in Keisler’s order among the unstable theories,
and so will feature in our proofs with some regularity.

Definition 2.15. The random graph, i.e. the Rado graph, is (the unique countable model of) the
complete theory in the language with equality and a binary relation R axiomatized by saying that
there are infinitely many elements, and that for each n, and any two disjoint subsets of size n, there
is an element which R-connects to all elements in the first set and to none in the second set.

We conclude this section with some conventions which hold throughout the paper.

Convention 2.16. (Conventions)

• The letters D,E,D, E are used for filters. Generally, we reserve D for a regular filter or
ultrafilter, and E for a κ-complete ultrafilter where κ ≥ ℵ0, though this is always stated in
the relevant proof.
• Throughout, tuples of variables may be written without overlines, that is: when we write
ϕ = ϕ(x; y), neither x nor y are necessarily assumed to have length 1.
• For transparency, all languages are assumed to be countable.
• As mentioned in §1.2, by “D saturates T” we will always mean: D is a regular ultrafilter

on the infinite index set I, T is a countable complete first-order theory and for any M |= T ,
we have that M I/D is λ+-saturated, where λ = |I|.
• We will also say that the ultrafilter D is “good” (or: “not good”) for the theory T to mean

that D saturates (or: does not saturate) the theory T .
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• We reserve the word cut in models of linear order for omitted types. A partial type in a
model M given by some pair of sequences (〈aα : α < κ1〉, 〈bβ : β < κ2〉) with α < α′ <
κ1, β < β′ < κ2 =⇒ M |= aα < aα′ < bβ′ < bβ, which may or may not have a realization
in M , is called a pre-cut. See also Definition 2.13.

3. Description of results

In this section, we describe the main results of the paper.

Some notes: For relevant definitions and conventions (“D saturates T ,” “good for,” “pre-cut”)
see §2 above, in particular 2.16. Lists of the properties mentioned from the point of view of Keisler’s
order can be found in Theorems F-G, §4. The reader unused to phrases of the form “not good for
the random graph therefore not good” is referred to §1.2, especially following 1.6.

The first main result, Theorem 7.4, was discussed in §1.2 above. We first show that for E an
ultrafilter on κ, if E is κ-regular or E is κ-complete then Mκ/E will not be (2κ)+-saturated for any
κ+-saturated model of Trg, the theory of the random graph. Note that this gives a useful way of
producing regular ultrafilters which are not good: for any λ-regular D1 on λ, the product ultrafilter
D = D1 × E will remain regular but will not be good for Trg when 2κ ≤ λ. We then show, as
sketched above, that when E is ℵ1-complete and lcf(ℵ0,D1) is large the nonstandard integers of D1

will be cofinal in those of D (under the diagonal embedding) and thus that D will inherit both the
large lcf(ℵ0) and the flexibility of D1.

This yields Theorem 7.4: for any λ ≥ 2κ, κ measurable there is a regular ultrafilter on λ which
is flexible but not good, which has large lcf(ℵ0) and thus saturates all stable theories, but does not
saturate any unstable theory. In at least one sense, this is a surprising reversal. From the model-
theoretic point of view, flexible ultrafilters had appeared “close” in power to ultrafilters capable
of saturating any first-order theory. By Theorem 7.4, consistently flexibility cannot guarantee the
saturation of any unstable theory, since the random graph is minimum among the unstable theories
in Keisler’s order. Thus the space between flexible and good is potentially quite large.

Discussion. In fact we obtain several different flexible-not-good theorems, including Conclusion
10.4 and a related theorem in [15]. These results have other advantages, and less dramatic failures
of saturation. In fact, if the stated failures of saturation can be shown to be sharp, this could be
quite useful for obtaining further dividing lines within the unstable theories.

Second, we give a new proof that there is a loss of saturation in ultrapowers of non-simple
theories, Conclusion 8.6. Specifically, we show that if M is a model of a non simple theory and
D a regular ultrafilter on λ = λ<λ, then for some formula ϕ Mλ/D is not λ++-saturated for ϕ-
types. (The second author’s book [20].VI contains a first proof of this result.) The argument uses
a combinatorial principle from [7] against the definition of the tree property.

The remainder of the paper focuses on realization and omission of symmetric cuts, and here
complete ultrafilters are very useful; see Discussion 2.8 above. Relatively little was known about
the possible spectrum of cofinalities of cuts in ultrapowers of linear order, and our theorems here
contribute to these investigations. The specific model-theoretic importance of symmetric cuts in
ultrapowers has come to light in subsequent results of the authors [17], [18].

We prove in Claim 9.1 that if the ultrafilter E is κ-complete not κ+-complete, any E-ultrapower
of a sufficiently saturated model of linear order will have no (κ, κ)-cuts. This is a fairly direct
proof, and we also show there that if we further assume that E is normal then it follows that E is
good (though not regular: see the Appendix e.g. 11.7). We then prove, in Claim 10.1, that if E is
κ-complete and normal on κ, then any ultrapower of a sufficiently saturated model of linear order
will contain a (κ+, κ+)-cut.
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Finally, we leverage these proofs for a last existence result, Theorem 11.3. There, assuming n
measurable cardinals below λ, we show how to take products of ultrafilters to produce any number
of finite alternations of cuts in an ultrafilter on λ with clearly described saturation properties. The
proof is by downward induction. Note that if the first ultrafilter in our (n+1)-fold product is regular,
the final ultrafilter will be regular. By a result mentioned at the beginning of this section, if the
first ultrafilter is flexible with large lcf(ℵ0) and all remaining ultrafilters are at least ℵ1-complete,
the final ultrafilter will inherit flexibility and large lcf(ℵ0), thus be able to saturate any stable
theory. By the result about loss of saturation for the random graph, it will fail to (2κ)+-saturate
any unstable theory, where κ is the smallest measurable cardinal used in the construction.

This completes the summary of our main results. In the appendix, we collect some easy obser-
vations and extensions of previous results relevant to these theorems.

4. Summary theorems

In this section, we state and prove several comprehensive theorems which give the picture of
Keisler’s order, Definition 2.1, in light of our current work. The results justify the phrase “properties
of ultrafilters with model-theoretic significance.” Recall our conventions in 2.16, especially with
respect to “saturates” and “good”. Minimum, maximum, etc. refer to Keisler’s order.

The first theorem collects the currently known correspondences between properties of regular
ultrafilters and properties of first-order theories.

Theorem F. In the following table, for each of the rows (1),(3),(5),(6) the regular ultrafilter D on
λ fails to have the property in the left column if and only if it omits a type in every formula with
the property in the right column. For rows (2) and (4), left to right holds: if D fails to have the
property on the left then it omits a type in every formula with the property on the right.

Set theory: properties of filters Model theory: properties of formulas

(1) µ(D) ≥ λ+ A. finite cover property
(2) lcf(ℵ0,D) ≥ λ+ ** B. order property
(3) good for Trg C. independence property
(4) flexible, i.e. λ-flexible ** D. non-low
(5) good for equality E. TP2

(6) good, i.e. λ+-good F. strict order property

Proof. (Discussion - Sketch)

(1) ↔ (A) Shelah [20].VI.5, see §1.1 above.

(2) ← (B) Shelah [20].VI.4.8, see also Theorem 11.8 below which generalizes that result.

(3)↔ (C) Straightforward by quantifier elimination, see [13]. More generally, Malliaris [14] shows
that the random graph, as the minimum non-simple theory, and Tfeq, as the minimum TP2 theory,
are in a natural sense characteristic of “independence properties” seen by ultrafilters.

(4) ← (D) Malliaris [12], see §1.2 above, or [15].

(5)↔ (E) Malliaris [13] §6, which proves the existence of a minimum TP2-theory, the theory T ∗feq
of a parametrized family of independent (crosscutting) equivalence relations.

(6) ↔ (F) Keisler observed that good ultrafilters can saturate any countable theory, and proved
that goodness is equivalent to the saturation of certain (“versatile”) formulas [5], thus establishing
the existence of a maximum class in Keisler’s order; see §1.2 above. The result (6) ↔ (F) follows
from Shelah’s proof in [20].VI.3 that any theory with the strict order property is maximum in
Keisler’s order. Thus any ultrafilter able to saturate SOP -types must be good, and by Keisler’s
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observation the reverse holds. In fact, SOP3 is known to be sufficient for maximality by [22]-[23], but
this formulation is more suggestive here given our focus on order-types and cuts. A model-theoretic
characterization of the maximum class is not known. �

Remark 4.1. Moreover, by work of the authors in [17] if D on λ has “treetops,” i.e. it realizes
a certain set of SOP2-types then it must realize all symmetric pre-cuts, that is, there can be no
(κ, κ)-cuts in ultrapowers of linear order for κ ≤ λ. So we will also be interested in the property of
realizing symmetric cuts.

As rows (2) and (4) of Theorem F suggest, there are subtleties to the correspondence. If T is not
Keisler-maximal then any formula ϕ of T with the order property has the independence property,
as does any non-low formula. Yet consistently neither (4) nor (2) imply (3), as the rest of this
section explains. So while we have model-theoretic sensitivity to properties (2) and (4), this is not
enough for a characterization: in fact it follows from the theorems below that there is consistently
no theory (and no formula ϕ) which is saturated by D if and only if (2), or (4).

Theorem G. Using the enumeration of properties of ultrafilters from Theorem F, we have that:

(1) is necessary and sufficient for saturating stable theories,
(2) is necessary for saturating unstable theories,
(3) is necessary and sufficient for saturating the minimum unstable theory,
(4) is necessary for saturating non-low theories,
(5) is necessary and sufficient for saturating the minimum TP2 theory,
(6) is necessary and sufficient for saturating any Keisler-maximum theory, e.g. Th(Q, <);

note that the identity of the maximum class is not known.

Discussion. The sources follow those of Theorem F, but we make some additional remarks.

(1) Note that Shelah’s proof of (1) in [20].VI.5, quoted and sketched as Theorem D, §1.1 above,
gives the only two known equivalence classes in Keisler’s order.

(2) By Shelah [20].VI.4.8 (or Theorem 11.8 below) if D is regular and lcf(D,ℵ0) ≤ λ+ then any
D-ultrapower will omit a λ-type in some unstable formula, i.e., a formula with the order property.
From the set-theoretic point of view, (2) 6→ (3) of Theorem 4.2 shows that lcf(ℵ0,D) ≥ λ+ is
weaker than ensuring λ+-saturation for the random graph (or equivalently, for some formula with
the independence property). From the model-theoretic point of view, since any unstable theory has
either the strict order property or the independence property, this gap is not visible.

(3), (5) In fact what the characterization in Malliaris [13] shows is that a necessary and sufficient
condition for an ultrafilter D on λ to saturate the minimum TP2 theory is that it be “good for
equality,” meaning that for any set X ⊆ N = Mλ/D, |X| = λ, there is a distribution d : X → D
such that t ∈ λ, t ∈ d(a) ∩ d(b) implies that (M |= a[t] = b[t]) ⇐⇒ (N |= a = b). By contrast,
saturation of the minimum unstable theory asks only that for any two disjoint sets X,Y ⊆Mλ/D,
|X| = |Y | = λ, there is a distribution d : X ∪ Y → D such that for any t ∈ λ, a ∈ X, b ∈ Y ,
t ∈ d(a) ∩ d(b) implies M |= a[t] 6= b[t].

(4) This was discussed in §1.2 above. Note that by work of Shelah [21] non-simple theories
have an inherent structure/randomness “dichotomy” of TP1 versus TP2, analogous to the struc-
ture/randomness dichotomy for unstable theories of SOP versus IP ; see §8 below. We know from
[13] that any ultrafilter which saturates the minimum TP2-theory must be flexible, however we do
not know whether an ultrafilter which saturates some SOP2 theory must be flexible.

(6) See the proof of Theorem F(6). �
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With the progress in this paper, and in other recent work of the authors, we may summarize the
current picture of implications as follows:

Theorem 4.2. Let properties (1)− (6) be as in Theorem F. Assume that D is a regular ultrafilter
on λ (note that not all of these properties imply regularity). Then:

(1)← (2)← (3)← (5)← (6), with (1) 6→ (2), consistently (2) 6→ (3), (3) 6→ (5), and whether (5)
implies (6) is open. Moreover (1) ← (4) ← (5) ← (6), where (3) 6→ (4) thus (2) 6→ (4), (4) 6→ (3),
consistently (4) 6→ (5), consistently (4) 6→ (6); and (4) implies (2) is open.

Proof. (6)→ (x) Since good ultrafilters saturate any countable theory and properties (1)-(5) are all
detected by formulas via Theorem F, property (6) implies all the others.

(5) → (3) By Theorem G and the fact that the random graph is minimum among unstable
theories.

(3)→ (2) By Theorem F lines (2)-(3), i.e. Shelah [20].VI.4.8.

(2)→ (1) Clearly the failure of (1) implies the failure of (2).

(1) 6→ (2) Shelah [20].VI.5, see Theorem D, §1.2 above.

(2) 6→ (3) Consistently (assuming an ℵ1-complete ultrafilter) by Theorem 7.4 below.

(5)→ (4) Malliaris [13] §6.

(4)→ (1) Proved in [15].

(3) 6→ (4) Proved in a paper of the authors on excellent ultrafilters [16].

(4) 6→ (3) Consistently (assuming an ℵ1-complete ultrafilter) by Theorem 7.4 below.

(4) 6→ (5), (6) We give several proofs of independent interest (each assuming the existence of an
ℵ1-complete ultrafilter): Theorem 7.4 proves (4) 6→ (3) thus a fortiori (4) 6→ (5), and in [15], we
give a different proof that (4) 6→ (6). See also Conclusion 10.4. �

5. Mλ/D is not (2λ)+-saturated for Th(M) unstable

In this section and the next we prove that flexibility does not imply saturation of the random
graph, and thus a fortiori that flexibility does not imply goodness for equality. This gives a proof
(assuming the existence of an ℵ1-compact ultrafilter, equivalent to the existence of a measurable
cardinal) that flexible need not mean good.

Fact 5.1. ([20] Conclusion 1.13 p. 332) If κ is an infinite cardinal and D is a regular ultrafilter on

I then κI/D = κ|I|.

Claim 5.2. Assume κ ≥ ℵ0, T = Trg, M a κ+-saturated model of T , E a uniform ultrafilter on
κ such that |κκ/E| = 2κ (i.e. we can find a sequence 〈gα : α < 2κ〉 of members of κκ such that
α < β =⇒ gα 6= gβ mod E). Then Mκ/E is not (2κ)+-saturated.

Remark 5.3. The claim is interesting when D is ℵ1-complete.

Proof. (of 5.2) Let F = {f : f : κ × κ → {0, 1}}, so |F| = 2κ, and let 〈fα : α < 2κ〉 list F .
Let 〈gα : α < 2κ〉 be the distinct sequence given by hypothesis. First, for each α < 2κ, we define
tα ∈ {0, 1} by:

tα = 1 ⇐⇒ {i : fα(i, gα(i)) = 1} /∈ E
Second, since |M | ≥ κ, we may fix some distinguished sequence 〈ai : i < κ〉 of elements of M . Let
ĝα ∈ κM be give by ĝα(i) = agα(i). Together these give a set

p(x) = {(xRĝα/E)if tα : α < 2κ}
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We check that p(x) is a consistent partial type in Mκ/E. It is clearly a set of formulas with
parameters in Mκ/E, as ĝα/E ∈ Mκ/E. Since α < β =⇒ gα/E 6= gβ/E =⇒ ĝα/E 6= ĝβ/E, the
parameters are distinct and so the type is consistent (note that for the given sequence of parameters,
any choice of exponent sequence 〈tα : α < 2κ〉 would produce a consistent partial type). Moreover,
|p| = 2κ again by the choice of 〈gα : α < 2κ〉.

We now show that p(x) is omitted in Mκ/E. Towards a contradiction, suppose that h ∈ κM
were such that h/E realized p. Let f : κ×κ→ {0, 1} be defined by f(i, j) = 1 ⇐⇒ M |= h(i)Raj .
Then f ∈ F , hence for some α∗ < 2κ we have that fα∗ = f . Thus:

tα∗ = 1 iff Mκ/E |= (h/E)R(ĝα∗/E) (by choice of p, since h/E |= p)
iff {i < κ : M |= h(i)Ragα∗ (i)} ∈ E (by  Los’ theorem)
iff {i : f(i, gα∗(i)) = 1} ∈ E (by the choice of f)
iff {i : fα∗(i, gα∗(i)) = 1} ∈ E (as fα∗ = f)

But by definition of the truth values t,

tα∗ = 1 ⇐⇒ {i : fα∗(i, gα(i)) = 1} /∈ E

This contradiction completes the proof. �

We state the following corollary, which will be improved in certain cases by Theorem 7.4 below.
Recall the independence and strict order properties from 2.14 above.

Claim 5.4. If D is a λ-regular ultrafilter on λ, then Mλ/D is not (2λ)+-saturated for M a model
of any unstable theory.

Proof. As T is unstable, it has the finite cover property. By Theorem F, Mλ/D is not µ+-saturated
where µ = µ(D), 1.2 above. (“D is not ℵ1-complete” suffices.) But µ(D) ≤ 2λ, so we are done. �

Observation 5.5. The hypothesis of Claim 5.2 is satisfied when E is a regular ultrafilter on κ and
when E is a κ-complete ultrafilter on κ.

Remark 5.6. 5.5 is also true when E is a uniform ultrafilter on κ and 2κ = κ+ or E is a uniform
ultrafilter on κ and κ = 2<κ.

That is, to prove Observation 5.5, we want to show that we can find a sequence 〈gα : α < 2κ〉 of
members of κκ so that α < β =⇒ gα 6= gβ mod E. When E is regular, this follows from Fact 5.1.
We give two proofs for the complete case, using inaccessibility of κ.

First proof of Obs. 5.5 – counting functions. Suppose then that κ is measurable, thus inaccessible.
For each α < κ, let Γα = 〈γη : η ∈ α2〉 be a sequence of pairwise distinct ordinals < κ. For each
η ∈ κ2 let gη : κ→ κ be given by gη(α) = γη|α . So {gη : η ∈ κ2} ⊆ κκ. By construction, all we need
is one point of difference to know the functions diverge: η 6= ν ∈ κ2, η(β) 6= ν(β) =⇒ {α < κ :
gη(α) = gν(α)} ⊆ {α : α < β} = ∅ mod E as E is uniform. �

Second proof of Obs. 5.5 – realizing types. Suppose then that κ is measurable, thus inaccessible. So
we may choose M , |M | = κ to be a κ-saturated model of the theory of the random graph. To show
that |Mκ/E| ≥ 2κ, it will suffice to show that 2κ-many distinct types over the diagonal embedding
of M in the ultrapower N are realized. Let p(x) = {xRf0α ∧ ¬xRf1α : α < κ} be such a type, with
each f iα = κ{m} for some m ∈ M and of course α, β < κ =⇒ f0α 6= f1β . For each t ∈ κ, let

pt(x) = {xRf0α(t)∧¬xRf1α(t) : α < t}. Note that since the elements f iα are constant, for each t ∈ κ
we have that pt(x) is a consistent partial type in M . Choose a new element h ∈ κM so that t ∈ κ
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implies h(t) satisfies pt(x) in M . By the saturation of M , some such h exists. By uniformity of E
h realizes the type p(x), that is, for α < κ,

|κ \ {t ∈ κ : M |= h(t)Rf0α(t) ∧ ¬h(t)Rf1α(t)}| ≤ α < κ

As no such h can realize two distinct types over M in N , we finish. �

Discussion 5.7. We may wonder: for D an ultrafilter on λ, M saturated enough, T = Th(M), how
saturated is Mλ/D? How locally saturated? Let κ = κ(D) be the completeness of D. In questions
of saturation, we naturally assume |T | < κ(D), or that D is (|T |, κ)-good.

Claim 5.8 is a result addressing 5.7. Further work in this direction appears in a paper in prepa-
ration of the authors.

Claim 5.8. Suppose that:

(1) D is an ultrafilter on λ
(2) D is κ-complete not κ+-complete (so κ is measurable),
(3) M is a κ-universal model

(which means that every type with ≤ κ formulas and ≤ κ variables, but no parameters, is
realized in M ; if κ ≥ |τ(M)|, this means every N ≡ M of cardinality ≤ κ is elementarily
embeddable in M .)

(4) Th(M) is independent, i.e. some formula has the independence property.

Then Mλ/D is not (µ∗)+-saturated, where

µ∗ = µ∗(D) = min{
∏
i<λ

κi/D :
∧
i

κi < κ and
∏
i

κi/D ≥ κ and
∏
i

2κi/D < 2
∏
i κi/D}

Remark 5.9. (a) If D is (λ, κ)-regular, then there is such µ∗(D) and it is ≤ 2λ, as 2λ =
∏
i κi/D

for some κi < κ. Otherwise, it is not immediately clear whether µ∗ is well defined. (b) In 5.8, could
just use < κ-universal.

Proof. (of 5.8) Let κ = 〈κi : i < λ〉 be a sequence witnessing µ∗(D), i.e.
∏
i κi/D = µ∗(D). Without

loss of generality, M is a model of the random graph, so τ(M) = {R} and xRy has the independence
property. 1 For i < α < κ, let aα,i ∈ M be such that 〈aα,iRx : i < α〉 is an independent sequence
of formulas, using the (< κ)- universality of M . For each i, choose Ai ⊆ M , Ai = {aκi,ε : ε < κi}.
We then choose Bi ⊆ M , |B| = 2κi such that for every A ⊆ Ai there is b = biA ∈ Bi such that
(∀a ∈ A)(aRMb ⇐⇒ a ∈ A). Let τ∗ = {R,P,Q} where P,Q are unary predicates. Let Mi be
the τ∗-model expanding M with PMi = Ai, Q

Mi = Bi. Let N = Mλ/D, N∗ =
∏
i<λMi/D, so

N = N∗ � τ . Let A = PN∗ , so |A| = µ∗.

Now we claim there is A′ ⊆ A such that no b ∈ N realizes p(x) = {aRx : a ∈ A′} ∪ {¬aRx : a ∈
A \ A′}, which is a consistent partial type in N (e.g. by  Los’ theorem, since {xRa : a ∈ PMi} is
independent in each Mi). First, notice that it suffices to show there is no realization b ∈ QN∗ , since
for every b1 ∈ N there is b2 ∈ QN∗ such that a ∈ PN =⇒ aRNb1 ≡ aRNb2 [by  Los’ theorem and

the choice of Mi]. Second, |{A′ : A′ ⊆ A}| = 2|P
N∗ | =

∏
i κi/D, whereas the number of b ∈ QN∗

is |QN∗ | =
∏
i 2κi/D. Moreover, each such b determines an A′ uniquely. But by the choice of

〈κi : i < λ〉, |QN∗ | < 2|P
N∗ |. This completes the proof. �

1It is straightforward to translate omission of a type in the random graph to omission of a type in a formula with
the independence property, see e.g. [13] §5.
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6. Flexible and ok ultrafilters

In this section we verify that “OK” may be substituted for “flexible” in our theorems below. We
repeat here thanks to Kunen for suggesting the connection to the first author. The direction 6.1
(2) → (1) is in Malliaris’ paper [13], Claim 8.4.

Claim 6.1. Suppose that D is an ℵ1-incomplete ultrafilter on I. Then the following are equivalent.

(1) D is λ-O.K.
(2) D is λ-flexible.

Proof. (1) → (2) Let M be given with (N, <) � M and let h0 ∈ IM be any D-nonstandard
integer. Let {Zn : n < ω} ⊆ D witness that D is ℵ1-incomplete. Without loss of generality,
n < n′ =⇒ Zn ⊇ Zn′ . Let h1 ∈ IN be given by h1(t) = max{n : t ∈ Zn}. Define h ∈ IN by

h(t) = min{h0(t), h1(t)}
Then for each n ∈ N, Xn := {t : h(t) ≥ n} ∈ D and Xn ⊆ Zn, thus

⋂
{Xn : n ∈ N} = ∅.

Define a function f : Pℵ0(λ) → D by f(u) = X|u|. As D is λ-OK, we may choose g to be a
multiplicative refinement of f , and consider Y = {Yi : i < λ} given by Yi = g({i}).

First, we verify that Y is a regularizing family, by showing that each t ∈ I can only belong to
finitely many elements of Y. Given t ∈ I, let m = h(t) + 1 < ω, so t /∈ Xm. Suppose there were
i1 < · · · < im < λ such that t ∈ g({i1}) ∩ · · · ∩ g({im}). As g is multiplicative and refines f , this
would imply t ∈ g({i1, . . . im}) ⊆ f({i1, . . . im}) = Xm, a contradiction. Thus Y is a regularizing
family. Moreover, as t was arbitrary, we have shown that

|{i < λ : t ∈ g({i})}| ≤ h(t) ≤ h0(t)
and thus that Y is a regularizing family below h0. As h0 was an arbitrary nonstandard integer, this
completes the proof.

(2) → (1) Let f : Pℵ0(λ) → D be such that |u| = |v| =⇒ f(u) = f(v), and we will construct
a multiplicative refinement for f . Let 〈Zn : n < ω〉 witness the ℵ1-incompleteness of D, and
as before, we may assume n < n′ =⇒ Zn ⊇ Zn′ . For each t ∈ I, let ρ ∈ IN be given by
ρ(t) = max{n ∈ N : t ∈ f(n) ∩ Zn}, which is well defined by the choice of the Zn. Now for each
m ∈ N, recalling that m is an element of [λ]m via the convention m = {0, . . . ,m− 1},

{t ∈ I : ρ(t) > m} ⊇
⋂
{f(n) ∩ Zn : n ≤ m} ∈ D

so ρ is D-nonstandard. Applying the hypothesis of flexibility, let {Yi : i < λ} be a λ-regularizing
family below ρ. Let g : Pℵ0(λ) → D be given by g({i}) = f({i}) ∩ Yi and for |u| > 1, g(u) =⋂
{g({i}) : i ∈ u}. Thus g is multiplicative, by construction. Let us show that it refines f .

Given any n < ω and i1 < · · · < in < λ, observe that by definition of “below ρ” we have t ∈
Yi1 ∩ · · · ∩ Yin =⇒ ρ(t) ≥ n. Applying this fact and the definitions of g and f ,

g({i1, . . . in}) ⊆
⋂
{Yij : 1 ≤ j ≤ n} ⊆ {t ∈ I : ρ(t) ≥ n} ⊆ f(n) = f({i1, . . . in})

thus g refines f , which completes the proof. �

7. For κ measurable, λ ≥ 2κ there is D on λ flexible but not good for Trg

We begin by characterizing when flexibility is preserved under products of ultrafilters, Defi-
nition 2.11. The first observation says that λ-flexibility of the first ultrafilter ensures there are
λ-regularizing families in D below certain nonstandard integers, namely those which are a.e. D1-
nonstandard.
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Observation 7.1. Let λ, κ ≥ ℵ0 and let D1, E be ultrafilters on λ, κ respectively. Let D = D1 ×E
be the product ultrafilter on λ× κ. Suppose that we are given n∗ ∈ λ×κN such that:

(1) n ∈ N =⇒ {(s, t) ∈ λ× κ : n∗(s, t) > n} ∈ D, i.e. n∗ is D-nonstandard
(2) N := {t ∈ κ : n ∈ N =⇒ {s ∈ λ : n∗(s, t) > n} ∈ D1} ∈ E

i.e. E-almost all of its projections are D1-nonstandard

Then (a) =⇒ (b), where:

(a) D1 is λ-flexible
(b) there is a regularizing set 〈Xi : i < λ〉 ⊆ D below n∗,

i.e. such that for all (s, t) ∈ λ× κ, |{i < λ : (s, t) ∈ Xi}| ≤ n∗(s, t)

Proof. For each t ∈ N , let 〈Xt
i : i < λ〉 ⊆ D1 be a regularizing family below n∗(−, t), that is, such

that for each s ∈ λ, |{i < λ : s ∈ Xt
i}| ≤ n∗(s, t). Such a family is guaranteed by the λ-flexibility

of D1 along with the definition of N , since the latter ensures that n∗(−, t) ∈ λλ is D1-nonstandard.
Now define 〈Xi : i < λ〉 by Xi = {(s, t) : s ∈ Xt

i}. We verify that:

• 〈Xi : i < λ〉 ⊆ D, as {t ∈ κ : {s ∈ λ : (s, t) ∈ Xi} ∈ D1} ⊇ N and N ∈ E by hypothesis.
• 〈Xi : i < λ〉 is below n∗, since for each (s, t) ∈ λ× κ,
|{i : (s, t) ∈ Xi}| = |{i : (s, t) ∈ Xt

i}| ≤ n∗(s, t) by construction.

This completes the proof. �

The next claim shows that D-nonstandard integers project E-a.e. to D1-nonstandard integers
precisely when the second ultrafilter E is at least ℵ1-complete.

Claim 7.2. Let λ, κ ≥ ℵ0 and let D1, E be uniform ultrafilters on λ, κ respectively. Let D = D1×E
be the product ultrafilter on λ× κ. Then the following are equivalent.

(1) If n∗ ∈ λ×κN is such that n ∈ N =⇒ {(s, t) ∈ λ× κ : n∗(s, t) > n} ∈ D,
then N ∈ E where N := {t ∈ κ : n ∈ N =⇒ {s ∈ λ : n∗(s, t) > n} ∈ D1}.

(2) E is ℵ1-complete.

Proof. (1) → (2) Suppose E is not ℵ1-complete, so it is countably incomplete and we can find
〈Xn : n < ω〉 ⊆ E such that

⋂
{Xn : n ∈ ω〉} = ∅ mod D. Without loss of generality, n < ω →

Xn+1 ( Xn. Let n∗ ∈ λ×κN be given by:

t ∈ κ ∧ t ∈ Xn \Xn+1 =⇒ n∗(−, t) = λ{n}
Then n∗ is D-nonstandard but its associated set N is empty (as a subset of κ, so a fortiori empty
modulo D).

(2) → (1) Suppose on the other hand that E is ℵ1-complete, and let some D-nonstandard n∗ be
given. For each n ∈ N, define Xn = {t ∈ κ : {s ∈ λ : n∗(s, t) > n} ∈ D1}. Then by completeness,
N ⊇

⋂
{Xn : n ∈ N} ∈ E. �

Corollary 7.3. Let λ, κ ≥ ℵ0 and let D1, E be ultrafilters on λ, κ respectively where κ > ℵ0 is
measurable. Let D = D1 × E be the product ultrafilter on λ× κ. Then:

(1) If D1 is λ-flexible and E is ℵ1-complete, then D is λ-flexible.
(2) If λ ≥ κ and lcf(ℵ0,D1) ≥ λ+, then lcf(ℵ0,D) ≥ λ+, so in particular, D = D × E will

λ+-saturate any countable stable theory.

Proof. (1) By Claim 7.2 and Observation 7.1.

(2) Let us show that the D1-nonstandard integers are cofinal in the D-nonstandard integers.
Let M = (N, <)λ/D1, N = Mκ/E. Let n∗ ∈ N be D-nonstandard. By Claim 7.2, the set
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X = {t ∈ κ : n∗(t) is a D1-nonstandard element of M} ∈ E. Since lcf(ℵ0,D1) ≥ λ+ > κ, there is
m∗ ∈ M which is D1-nonstandard and such that t ∈ X =⇒ M |= n∗(t) > m∗. Then the diagonal
embedding of m∗ in N will be D-nonstandard but below n∗, as desired. The statement about stable
theories follows by §4, Theorem G and Theorem 4.2(2)→(1). �

Theorem 7.4. Assume ℵ0 < κ < λ, 2κ ≤ λ, κ measurable. Then there exists a regular ultrafilter
D on λ such that D is λ-flexible, yet for any model M of the theory of the random graph, Mλ/D is
not (2κ)+-saturated. However, D will λ+-saturate any countable stable theory.

A fortiori, D is neither good nor good for equality, and it will fail to (2κ)+-saturate any unstable
theory.

Proof. Let E be a uniform ℵ1-complete ultrafilter on κ. Let D1 be any λ-flexible (thus, λ-regular)
ultrafilter on λ, e.g. a regular λ+-good ultrafilter on λ. Let D = D1 × E be the product ultrafilter
on I = λ× κ. Then |I| = λ, and we have that D is λ-flexible, thus regular, by Corollary 7.3(1). D
saturates countable stable theories by 7.3(2).

Since for any model M , ∏
λ×κ

M/(D1 × E) ∼=
∏
κ

(∏
λ

M/D1

)
/E

the right hand side shows, by Claim 5.2, that the resulting ultrafilter will not (2κ)+-saturate the
random graph.

Finally, the “a fortiori” clause holds by Theorem 4.2. �

Corollary 7.5. In the construction just given, by Claim 7.2, lcf(ℵ0,D) = lcf(ℵ0,D1) ≥ λ+ since
D1 is λ+-good and the nonstandard integers of D1 are cofinal in the nonstandard integers of D.
Thus consistently, a regular ultrafilter on λ > κ may have large lower cofinality of ℵ0 while failing
to (2κ)+-saturate the random graph.

By [20].VI.4, a necessary condition for a regular ultrafilter D on λ to saturate some unstable
theory is that lcf(ℵ0,D) ≥ λ+; Corollary 7.5 shows it is not sufficient.

8. Mλ/D is not λ++-saturated for λ regular and Th(M) non-simple

In this section we prove that there is a loss of saturation in ultrapowers of non-simple theories. As
mentioned above, this is a new proof of a result from [20].VI.4.7, which reflects an interest (visible
elsewhere in this paper e.g. 10.1) in controlling the distribution of sets of indices.

Definition 8.1. A first-order theory has the tree property (more precisely, the 2-tree property) if
there is a formula ϕ(x; y) which does, where this means that in any ℵ1-saturated model M |= T
there exist 〈aη : η ∈ ℵ0>2〉 such that:

(1) for η ∈ ℵ0>2 and i, j < ω, {ϕ(x; aηai), ϕ(x; aηaj)} is inconsistent.

(2) for η ∈ ℵ02, {ϕ(x; aη|i) : i < ℵ0} is a consistent partial ϕ-type.

If T has the tree property, we say it is not simple, otherwise it is simple.

We will use E to indicate comparability in the tree, i.e. η E ρ means η is before ρ in the partial
tree order.

Remark 8.2. Definition 8.1 remains agnostic about whether {ϕ(x; aη), ϕ(x; aρ)} is consistent when
η, ρ are incomparable but not necessarily successors of the same node. Theorem H says, in some
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sense, that we may additionally assume (perhaps after changing the formula) the answer to this
question is either always yes or always no.

Theorem H. ([20] III.7.11, in our language, or [21]) If T is not simple then T contains either a
formula with TP1 (equivalently SOP2) or a formula with TP2, where this means:

(1) T has TP1, or equivalently SOP2, if there is a formula ϕ(x; y) which does, where this means
that in any ℵ1-saturated model M |= T there exist 〈aη : η ∈ ℵ0>2〉 such that:

(a) for η, ρ ∈ ℵ0>2 incomparable, i.e. ¬(η E ρ)∧¬(ρ E η), we have that {ϕ(x; aη), ϕ(x; aρ)}
is inconsistent.

(b) for η ∈ ℵ02, {ϕ(x; aη|i) : i < ℵ0} is a consistent partial ϕ-type.
(2) T has TP2 if there is a formula ϕ(x; y) which does, where this means that in any ℵ1-saturated

model M |= T there exists an array A = {aij : i < ω, j < ω} of tuples, `(aij) = `(y) such
that: for any finite X ⊆ ω × ω, the partial type

{ϕ(x; aij) : (i, j) ∈ X}

is consistent if and only if

(i, j) ∈ X ∧ (i′, j′) ∈ X ∧ i = i′ =⇒ j = j′

Observe that the tree property is strong enough to ensure that all instances at a given level are
inconsistent:

Observation 8.3. Let T have the tree property and M be a λ++-saturated model of T . Then there

is a formula ϕ in T and a sequence 〈aη : η ∈ λ+>λ〉 of elements of M such that:

(1) for γ < λ and η, ρ ∈ γλ, i.e. lg(η) = lg(ρ), {ϕ(x; aη), ϕ(x; aρ)} is inconsistent.
(2) for η ∈ ω2, {ϕ(x; aη|i) : i < ω} is a consistent partial ϕ-type.

Proof. Apply Theorem H and in either case, we argue by compactness that we can find such a tree
for {η : η ∈ nm} for n,m finite. If some ϕ has TP1, this is immediate from the definition. Otherwise,
some ϕ has TP2, so let A be an array {ai,j : i < ω, j < ω} as in Theorem H(2). For each k < n, let

{Xk
` : ` ∈ km} be a partition of {ak,j : j < ω} into disjoint infinite sets. Then choose 〈aη : η ∈ nm〉

so that a∅ = a0,0 and for each η ∈ n−1m, {aηai : i < m} are distinct elements of X
lg(η)
η . �

Fact 8.4. Suppose that D is a regular ultrafilter on λ, λ = λ<λ or just (ℵ1,ℵ0)→ (λ+, λ) (see [6]).
Let κ = ℵ0. Then for each ε < λ we may choose a sequence of sets uε = 〈uε,α : α < λ+〉 such that:

(1) uε,α ⊆ α
(2) |uε,α| < λ
(3) α ∈ uε,β =⇒ uε,α = uε,β ∩ α
(4) if u ⊆ λ+, |u| < κ then

{ε < λ : ∃α(u ⊆ uε,α)} ∈ D

Proof. By Kennedy-Shelah-Vaananen [7] p. 3 this is true when λ satisfies the stated hypothesis and
D is regular. Note that as briefly mentioned there, in the case of singular λ, the claim may be true;
but it is also consistent that it may fail. �

Claim 8.5. Suppose D and λ satisfy the hypotheses of Fact 8.4. Suppose T is not simple and let
M |= T be λ++-saturated. Then Mλ/D is not λ++-saturated, and in particular is not λ++-saturated
for ϕ-types for some formula ϕ with the tree property.
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Proof. Let ϕ and 〈aη : η ∈ λ+>λ〉 be given by Observation 8.3, so this is a tree in the index model
M . Let u be given by Fact 8.4. For each ε < λ, α < λ+ let ηε,α list uε,α ∪ {α} in increasing order.

So ηε,α is an element of (λ>)λ+, and by our choice of tree,

(1) otp(uε,α) = otp(uε,β) =⇒ {ϕ(x, aηε,α), ϕ(x, aηε,β )} is inconsistent.

From this tree in the index model, we now build an omitted type in the ultrapower. For each
α < λ+, define a function fα from I to lg(y)C by fα(ε) = aηε,α . Now, for each α0 < α1 < λ+, the set

{ε < λ : (∃α)({α0, α1} ⊆ uε,α} ∈ D
which implies that for each such α, uε,α ∩ α1 = uε,α1 . Thus, α0 ∈ uε,α1 on this large set. More
generally, for n < ω and α0 < · · · < αn < λ+, the set

{ε < λ : ` < n =⇒ α` ∈ uε,α`+1
} ∈ D

Thus for any n < ω and any α0 < · · · < αn < λ+, {ε < λ : ηε,α0 /ηε,α1 / · · ·/ηε,αn} ∈ D and therefore

{ε < λ : M |= ∃x
∧
`

ϕ(x; aε,α`)} ∈ D

Since n, α0, . . . αn were arbitrary, this shows

p = {ϕ(x; fα/D) : α < λ+}
is a consistent partial type.

Assume for a contradiction that p is realized, say by f∗ ∈ λM . For each α < λ+, define Jα =
{ε < λ : M |= ϕ(f∗(ε), fα(ε))} to be the set of indices on which the supposed realization satisfies
the α-th formula of the type. We assumed f∗ |= p, so α < λ+ implies Jα ∈ D thus Jα 6= ∅ and we
may choose some εα ∈ Jα. Since λ+ > λ is regular, there is some ε∗ < λ such that |S0| = λ+, where
S0 = {α < λ+ : εα = ε∗} ⊆ λ+. As the set {otp(uε,α) : α ∈ S0} has cardinality λ, there is γ < λ
such that |S1| = λ+, where

S1 = {α ∈ S0 : otp(uε,α) = γ}
In particular, |S1| ≥ 2, so let α 6= β be distinct elements of S1. Then by choice of ε∗, f(ε∗) realizes

(2) {ϕ(x, fα(ε∗)), ϕ(x, fα(ε∗))} i.e. {ϕ(x, aηε∗,α), ϕ(x, aηε∗,β )}
But (1) contradicts the consistency of (2). So p is not realized, which completes the proof. �

Conclusion 8.6. Let λ = λ<λ and let D be a regular ultrafilter on λ. If T is not simple and
M |= T , then there is ϕ such that Mλ/D is not λ++-saturated for ϕ-types.

Remark 8.7. Let D1, D2 be ultrafilters on λ, κ respectively and suppose that κ = κ<κ. If λ ≥ κ+

and D2 is regular, then by Theorem F(5) and Conclusion 8.6, D1×D2 cannot be good for equality.

9. κ-complete not κ+-complete implies no (κ, κ)-cuts

Claim 9.1. Suppose that E is a κ-complete but not κ+-complete ultrafilter on I and M1 is a κ+-
saturated model in which a linear order L and tree T are interpreted. Then in M2 = M I

1 /E :

(a) the linear order LM2 has no (κ, κ)-cut, and moreover no (θ, σ)-cut for θ, σ < κ both regular.
(b) the tree TM2 has no branch (i.e. maximal linearly ordered set) of cofinality ≤ κ.

Remark 9.2. In the statement of Claim 9.1:

(1) in (a), the κ-saturation of M1 is necessary in the following sense: if there is a sequence
θ = 〈θt : t ∈ I〉, which certainly need not be distinct, such that M has a (θt, θt)-cut for each
t ∈ I and (

∏
t∈I θt, <E) has cofinality κ, then the conclusion of Claim 9.1(a) is false.
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(2) By this Claim, we may add to the conclusion of Theorem 7.4 that (κ, κ) /∈ C(E), Definition
2.13, since in that Theorem the ultrafilter E is a κ-complete uniform ultrafilter on κ and
thus not κ+-complete.

Proof. (of Claim 9.1)

(a) The “moreover” clause in (a) follows from the fact that M1 and M2 are Lκ,κ-equivalent, by
the completeness of E , and the hypothesis on saturation of M1.

So we consider a potential (κ, κ)-cut in M2, i.e. a (κ, κ)-pre-cut given by 〈fα : α < κ〉, 〈gα : α < κ〉
where if α < β < κ then

M2 |= (fα/E) <L (fβ/E) <L< (gβ/E) <L (gα/E)

For 0 < γ < κ let

Aγ = {t : if α < β < γ then M1 |= fα(t) <L fβ(t) <L gβ(t) <L gα(t)}

Let A0 = A1 = I. Then A = 〈Aγ : γ < κ〉 is a continuously decreasing sequence of elements of E ,
i.e.:

• γ1 < γ2 =⇒ Aγ1 ⊇ Aγ2
• for limit δ < κ, Aδ =

⋂
{Aγ : γ < δ}

• each Aγ ∈ E , by choice of the functions and κ-completeness

As we assumed E is κ-complete but not κ+-complete, there is a sequence B = 〈Bγ : γ < κ〉 of

elements of E such that
⋂
{Bγ : γ < κ} = ∅. We may furthermore assume that B is a continuously

decreasing sequence (if necessary, inductively replace Bδ by
⋂
{Bγ : γ < δ} using κ-completeness).

Thus given A,B, for each t ∈ I we may define

γ(t) = min{α : t /∈ Aα+1 ∩Bα+1}

By choice of B, t 7→ γ(t) is a well-defined function from I to κ, and t ∈ Aγ(t) ∩Bγ(t). Recall that

we want to show that our given (κ, κ)-sequence is not a cut. Choose fκ, gκ ∈ IM so that first, for
each t ∈ I, fκ(t), gκ(t) ∈ LM1 , and second, for each t ∈ I and all α < γ(t),

M1 |= fα(t) ≤L fκ(t) <L gκ(t) ≤L gα(t)

This we can do by the choice of A as a continuously decreasing sequence (so the function values
fα, gβ below γ(t) in each index model are correctly ordered) and the saturation hypothesis on M1.
Thus for each α < κ, we have that

{t : fα(t) ≤L fκ(t) <L gκ(t) ≤L gα(t)} ⊇ Aα+1 ∩Bα+1 ∈ E

which completes the proof.

(b) Similar proof, but we only need to use one sequence 〈fα : α < κ〉 which we choose to
potentially witness that the cofinality of the branch is at most κ. �

We prove a related fact for normal filters, Definition 2.6.

Claim 9.3. Assume E is a normal filter on λ and M is a λ+-saturated dense linear order. Then
M I/E is λ+-saturated.

Proof. Suppose that 〈fα/E : α < κ1〉 is increasing in M I/E , and 〈gβ/E : β < κ2〉 is decreasing in

M I/E , with κ1, κ2 ≤ λ and fα/E < gβ/E for α < κ1, β < κ2. Let

Xα,β = {t ∈ λ : fα(t) < gβ(t)} ∈ E
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for α < β < λ. Without loss of generality, suppose κ1 ≤ κ2. For each β < κ2, let

Yβ = {α ∈ λ : (∀j < (1 + α) ∩ β)(j ∈ Xα,β)} ∈ E
by normality. For β ≥ κ2, let Yβ = I. Finally, define

Z = {β ∈ λ : (∀k < (1 + β) ∩ κ2)(j ∈ Yβ)} ∈ E
Now if t ∈ Z (so t plays the role of β) we have that

pt = {fα(t) < x < gt(t) : α < t}
is a consistent partial type, realized in M by the saturation hypothesis. Choose h ∈ λM such that
for each t ∈ Z, h |= pt. Then h realizes the type. �

Note that Claim 9.3 implies by Fact 11.7 of the Appendix that the relevant E is good.

10. E normal and κ-complete on κ implies a (κ+, κ+)-cut

The use of the additional hypothesis “normal” in this section comes in Step 3 of Claim 10.1, and
consequently in later results which rely on it. Recall Definition 2.6 and Fact 2.7.

Claim 10.1. Assume κ measurable, E a normal κ-complete ultrafilter on κ, λ ≥ κ, M1 a λ-saturated
model with (LM , <M ) a dense linear order. Let M2 = Mκ

1 /E. Then LM2 has a (κ+, κ+)-cut.

Proof. The proof has several steps.

Step 1: Fixing sequences of indices. For each α < κ+ choose Uα = 〈uα,ε : ε < κ〉 so that:

(a) this sequence is ⊆-increasing and continuous, and for each α < κ+, uα,0 = ∅
(b) for each ε < κ, |uα,ε| < κ
(c)

⋃
{uα,ε : ε < κ} = α

(d) (for coherence) for β < α < κ+,

β ∈ uα,ε =⇒ uβ,ε ⊆ uα,ε
Such a sequence will always exist as |α| ≤ κ. [Details: Clearly such a sequence exists for α ≤ κ:
let uκ,ε = ε ∩ α, so for arbitrary κ ≤ α < κ+, fixing a bijection to κ let V α = 〈vα,ε : ε < κ〉 be the
preimage of the sequence for κ. Having thus fixed, for each α < κ+, a sequence satisfying (a)-(c)
we may then inductively pad these sequences to ensure coherence. For β = 0 and each ε < κ, let
uβ,ε = vβ,ε. For 0 < β < κ+, for each ε < κ let uβ,ε =

⋃
{uα,ε : α ∈ vβ,ε}, and note that this will

preserve (b), (a), (c) and ensure (d).]

Step 2: The inductive construction of the (pre-)cut. We now construct a cut. We will first describe
the construction, and then show that it is in fact a cut (i.e. we will show that we have indeed
constructed a pre-cut, and that this pre-cut is not realized).

By induction on α < κ+ we will choose fα, gα ∈ κ(LM1). The intention is that each uα,ε represents
a small set of prior functions which we take into account when choosing the values for fα, gα at the
index ε ∈ κ.

At stage α, for each index ε < κ define

wα,ε = {β ∈ uα,ε : 〈fγ(ε) : γ ∈ uα,ε ∩ (β + 1)〉 is <L(M1)-increasing,

〈gγ(ε) : γ ∈ uα,ε ∩ (β + 1)〉 is <L(M1)-decreasing,

and fβ(ε) <L(M1) gβ(ε) }
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Our aims in defining fα, gα are, on the one hand, to continue describing a pre-cut, and on the
other, to stay as close to the linearly ordered wα,ε as possible, as we now describe. That is, for fixed
α for each ε, we will choose fα, gα so that:

(e) For all β ∈ wα,ε, M1 |= fβ(ε) < fα(ε) < gα(ε) < gβ(ε)
i.e. locally we continue the pre-cut described by wα,ε.

(f) For all β < α, neither M1 |= fβ(ε) < fα(ε) < gβ(ε) < gα(ε) nor M1 |= fα(ε) < fβ(ε) <
gα(ε) < gβ(ε)

i.e. the intervals are either nested or disjoint.

(g) If γ ∈ α and fγ(ε), gγ(ε) satisfy:

β ∈ wα,ε =⇒ fβ(ε) < fγ(ε) < gγ(ε) < gβ(ε)

then the intervals [fα(ε), gα(ε)]L(M1), [fβ(ε), gβ(ε)]L(M1) are disjoint
i.e. inside the pre-cut given by wα,ε we avoid any further refinements: we realize exactly

the intitial segment given by wα,ε.

We will show in step 3 that by the hypothesis on κ, (a)-(g) imply the further condition that for
each fixed α < κ+,

(h) For all β < α, {ε : fβ(ε) < fα(ε) < gα(ε) < gβ(ε)} ∈ E , i.e. the functions chosen will
ultimately describe a pre-cut.

At each index ε < κ, we may choose fα(ε), gα(ε) to satisfy (e),(f),(g) simply because LM1 is dense
and λ+-saturated; the definition of wα,ε ensures (e) describes a pre-cut; and since (f) is inductively
satisfied, (g) is possible.

Step 3: For β < α, fβ < fα < gα < gβ. In this step we verify that for the objects constructed in
the previous step, for each α < κ+ and all β < α,

Xα,β = {ε < κ : β ∈ uα,ε, fβ(ε) < fα(ε) < gα(ε) < gβ(ε)} ∈ E

(By conditions (a)-(d) requiring β ∈ uα,ε does not affect membership in E .) Suppose this is not
the case, so let α < κ+ be minimal for which there is β < α with Xα,β /∈ E , and having fixed α, let
β < α be minimal such that Xα,β /∈ E . For the remainder of this step we fix this choice of α, β.

Since β < α, by construction (that is, by (e),(f),(g) of Step 2)

Xα,β ⊆ {ε < κ : β ∈ uα,ε \ wα,ε}

Define a function x : κ→ κ by

t 7→ max{ε ≤ t : 〈fγ(t) : γ ∈ uα,ε〉 is <L(M1)-increasing,

〈gγ(t) : γ ∈ uα,ε〉 is <L(M1)-decreasing,

and γ ∈ uα,ε =⇒ fγ(t) <L(M1) gγ(t) }

This is well defined by Step 1, condition (a): 0 belongs to the set on the righthand side, and by
continuity, there are no new conditions at limits.

For each ε < κ, the set {t < κ : x(t) > ε} ∈ E . This is because:

(1) by (c) |uα,ε| < κ
(2) by minimality of α, for any γ < γ′ < α (e.g. any two elements of uα,ε) we have that Xγ,γ′ ∈ E
(3) E is κ-complete
(4) by (a) ε′ < ε =⇒ uα,ε′ ⊆ uα,ε
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Notice that for any t < κ, x(t) = t implies uα,t = wα,t. So if x(t) = t on an E-large set, Xα,β ∈ E ,
which would finish the proof. Suppose, then, that Y = {t < κ : x(t) < t} ∈ E . By normality (Fact
2.7), there is Z ⊆ Y , Z ∈ E on which x(t) = ε∗ for some fixed ε∗ < κ. But this contradicts the first
sentence of the previous paragraph.

These contradictions prove that for no α, β can it happen that Xα,β /∈ E , which finishes the proof
of Step 3.

Step 4: The pre-cut is not realized, i.e. it is indeed a cut. In this step we assume, for a contradiction,
that there is h ∈ κM1 such that for each α < κ+

fα/E <L h/E <L gα/E
i.e. h realizes the type. Fixing such an h, let

Aα = {ε < κ : fα(ε) <L h(ε) <L gα(ε)} ∈ E
Since to each α we may associate a choice of index in Aα, by Fodor’s lemma for some ε∗ < κ,

S1 = {δ : δ < κ+, cf(δ) = κ, ε∗ ∈ Aδ}
is stationary. Furthermore, since |uε∗,α| < κ, there is some w∗ ⊆ uε,α for which

S2 = {δ ∈ S1 : wε∗,δ = w∗} ⊆ κ+

is stationary. Let δ∗ ∈ S2 be such that |δ∗ ∩ S2| = κ. As |wε∗,δ∗ | ≤ |uε∗,δ∗ | < κ, we may choose
γ∗ ∈ S2 ∩ {δ∗ \ wε∗,δ∗}.

Now wε∗,δ∗ = wε∗,γ∗ = w∗ since δ∗, γ∗ ∈ S2, and note γ∗ < δ∗. The definition of the sets w (here,
w∗) and Step 3, condition (e) means that when choosing fδ∗(ε∗), gδ∗(ε∗) we would have ensured that

β ∈ w∗ =⇒ fβ(ε∗) < fδ∗(ε∗) < gδ∗(ε∗) < gβ(ε∗)

and likewise that
β ∈ w∗ =⇒ fβ(ε∗) < fγ∗(ε∗) < gγ∗(ε∗) < gβ(ε∗)

On the other hand, γ∗ < δ∗, and γ∗ /∈ w∗. So when choosing fγ∗(ε), gγ∗(ε), Step 3, condition (g)
would have meant we chose the intervals [fδ∗(ε∗), gδ∗(ε∗)]L(M1), [fγ∗(ε∗), gγ∗(ε∗)]L(M1) to be disjoint.

But we also know that γ∗, δ∗ ∈ S1, so h(ε∗) must belong to both intervals. This contradiction
completes Step 4 and the proof. �

Remark 10.2. We know that if D is any ultrafilter on κ and M is a model whose theory is not
simple, then Mκ/D is not κ++-saturated. Still, Claim 10.1 gives more precise information about
the size of the cut: we are guaranteed a cut of type (κ+, κ+) as opposed to e.g. (κ+, κ). On the
importance of symmetric cuts, see [17].

Claim 10.3. Assume κ measurable, E a κ-complete filter on κ, λ ≥ κ, M1 a λ-saturated model
with (LM , <M ) a dense linear order. Let M2 = Mκ

1 /E. Then LM2 has no (θ, σ)-cut with θ < κ and
σ < λ.

Proof. Suppose for a contradiction that there were such a cut given by 〈fα : α < θ〉, 〈gβ : β < σ〉
with α1, α2 < θ, β1, β2 < σ =⇒ {t : M1 |= fα1(t) <L fα2(t) <L gα2(t) <L gα1(t)} ∈ E . Expand
the language to add constants {cα : α < θ} where in the tth copy of the index model M1, denoted
M1[t], cα is interpreted as fα(t). Then in the ultrapower (which in the expanded language is an
ultraproduct), 〈cα : α < θ〉 forms the lower half of the supposed cut. For each β < σ, the set

Aβ :=
⋂
{{t : M1[t] |= cα <L gβ[t]} : α < θ} ∈ E

by κ-completeness.
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But recall that M1 is a λ-saturated model, and σ < λ. Since for each t, we have

|{β < σ : t ∈ Aβ}| ≤ σ < λ

we may choose a new element h ∈ IM1 so that for each t, h(t) satisfies α < θ =⇒ M1[t] |= cα <L
h(t) and t ∈ Aβ =⇒ M1[t] |= h(t) <L gβ(t). By  Los’ theorem h realizes our cut, which is the
desired contradiction. �

In a forthcoming paper the authors have shown that:

Theorem I. (Malliaris and Shelah [17]) If D is a regular ultrafilter on λ which saturates some
theory with SOP2, and M is a model of linear order, then among other things:

(1) for all µ ≤ λ Mλ/D has no (µ, µ)-cut,
(2) for all µ ≤ λ there is at most one ρ ≤ λ such that Mλ/D has a (µ, ρ)-cut

Conclusion 10.4. Let κ < λ and suppose κ is measurable. Then there exists a regular ultrafilter
D on I, |I| = λ which is flexible but not good, specifically not good for any theory with SOP2.

Proof. Let D be a λ+-good, λ-regular ultrafilter on λ. Let E be a normal κ-complete, not κ+-
complete ultrafilter on κ. Let D = D × E be the product ultrafilter. Then D is flexible by Claim
7.3. On the other hand, by Claim 10.1, any D-ultrapower of linear order will omit a (κ+, κ+)-cut.
By Theorem I, D cannot saturate any theory with SOP2. �

Remark 10.5. On one hand, the advantage of Conclusion 10.4 over Theorem 7.4 is in the greater
range of cardinals: we ask only that κ < λ, not 2κ ≤ λ. On the other hand, Theorem 7.4 gives an
a priori stronger failure of goodness, since the random graph is minimum among unstable theories
in Keisler’s order.

11. Finite alternations of symmetric cuts

In this section we iterate the results of §9, §10 to produce regular ultrafilters D whose library of
cuts, C(D), contains any fixed finite number of alternations (or gaps). The following definition is
stated for regular ultrafilters only so that the choice of index model will not matter.

Definition 11.1. Let κ be a cardinal. Say that the regular ultrafilter D on λ ≥ ℵ0 has κ alternations
of cuts if there exist cardinals 〈µ` : ` < κ〉, 〈ρ` : ` < κ〉 such that:

• `1 < `2 < κ =⇒ ℵ0 < ρ`1 < µ`1 < ρ`2 < µ`2 < λ
• for each 0 ≤ ` < κ, (ρ`, ρ`) ∈ C(D), i.e. (N, <)λ/D has some (ρ`, ρ`)-cut
• for each 0 ≤ ` < κ, (µ`, µ`) /∈ C(D), i.e. (N, <)λ/D has no (µ`, µ`)-cut

We will start by proving a theorem for products of complete ultrafilters, Theorem 11.3, and then
extend it to regular ones in Theorem 11.4 by adding one more iteration of the ultrapower.

First we observe that taking ultrapowers will not fill symmetric cuts whose cofinality is larger
than the size of the index set.

Observation 11.2. Suppose M is a λ-saturated model of linear order, κ < λ, D an ultrafilter on
κ. If M contains a (κ∗, κ∗)-cut, where κ∗ = cf(κ∗) > κ, then Mκ/D will also contain a (κ∗, κ∗)-cut.
More precisely, the image of the cut from M under the diagonal embedding will remain unrealized
in Mκ/D.

Proof. Let the cut in M be given by (〈fα : α < κ∗〉, 〈gβ : β < κ∗〉), and we consider the pre-cut given
by (〈fα/D : α < κ∗〉, 〈gβ/D : β < κ∗〉) in the ultrapower Mκ/D. Suppose for a contradiction that
there were a realization h ∈ κM . Let x : κ∗ → κ be a function which to each α < κ∗ associates some
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index ε < κ for which M |= fα(ε) < h(ε) < gα(ε). By Fodor’s lemma, there is a stationary subset
X ⊆ κ∗ on which x is constant and equal to, say, ε∗. Then in M , (〈fα(ε∗) : α ∈ X〉, 〈gβ(ε∗) : β ∈ X〉)
will be cofinal in the original cut, but by choice of X it will be realized by h(ε∗), contradiction. �

Since the proof of Theorem 11.3 involves an inductive construction, it will be convenient to index
the cardinals κ` in reverse order of size.

Theorem 11.3. Suppose that we are given:

(a) n < ω and κn < · · · < κ0 < κ−1 = λ
(b) E` a normal κ`-complete ultrafilter on κ`, for ` ≤ n.
(c) M0 a λ-saturated model which is, or contains, a dense linear order <
(d) M`+1 = (M`)

κ`/E` for ` ≤ n
Then:

(α) for ` ≤ n, M`+1 is κ`-saturated
(β) if ` < k ≤ n+ 1 then Mk has a (κ`

+, κ`
+)-cut

(γ) for i, ` ≤ n+ 1, M` has no (κi, κi)-cut
(δ) for ` ≤ n+ 1, M` has no (θ, θ)-cut for θ < λ weakly compact

Thus, for each ` ≤ n, (κ`
+, κ`

+) ∈ C(Mn+1), and for any weakly compact θ < λ, in particular
θ = κ`, (θ, θ) /∈ C(Mn+1).

Proof. The “thus” clause summarizes (α)-(δ). Recall that for transparency all languages are count-
able. Note that condition (b) implies the cardinals κ` are measurable cardinals, thus limit cardinals,
so condition (γ) can never contradict condition (β).

(α) By induction on −1 ≤ ` ≤ n we verify that M`+1 is κ`-saturated. For ` = −1, M0 is λ-
saturated and λ > κ0. For ` > −1, use the fact that M`+1 = (M`)

κ`/E` thus M`+1 ≡L∞,κ` M` by
 Los’ theorem for Lκi,κi .

(β) By Claim 10.1 and Observation 11.2.

(γ) Follows from (δ) as measurable implies weakly compact.

(δ) We prove this by induction on ` ≤ n. For ` = −1, M0 is λ-saturated. For ` > −1, let θ < λ
be given and suppose we have a pre-cut in M`+1 given by (〈fα : α < θ〉, 〈gβ : β < θ〉). There are
three cases. If θ < κ`, then use (α). If θ = κ`, use Claim 9.1. So we may assume κ` < θ. Since θ is
weakly compact, therefore inaccessible, 2κ` < θ. For α < β < θ let

Aα,β = {ε < κ` : fα(ε) < fβ(ε) < gβ(ε) < gα(ε)} ∈ E`
As θ is weakly compact, by Fact 2.5 the function x : θ × θ → 2κ` < θ is constant on some U ∈ [θ]θ.
Call this constant value A∗. Now for ε ∈ A∗, the sequence (〈fα(ε) : α ∈ U〉, 〈gβ(ε) : β ∈ U〉) is a
pre-cut in M`, meaning that α < β ∈ U =⇒ fα(ε) < fβ(ε) < gβ(ε) < gα(ε).

Let B∗ = {ε ∈ A∗ : in M` there is c such that α ∈ U =⇒ fα(ε) <M`
c <M`

gα(ε)}. Now if
A∗ \ B∗ 6= ∅, for any ε ∈ A∗ \ B∗ we have that (〈fα(ε) : α ∈ U〉, 〈gβ(ε) : β ∈ U〉) is not just a
pre-cut but also a cut in M`, contradicting the inductive hypothesis. Thus for every ε ∈ A∗ we
may choose a realization c(ε) of the relevant pre-cut. For ε ∈ κ \ A∗, let c(ε) be arbitrary. Then
〈c(ε) : ε < κ`〉/E` ∈M`+1 realizes (〈fα : α < θ〉, 〈gβ : β < θ〉), as desired. �

By appending the construction of Theorem 11.3 to a suitable regular ultrafilter, we may produce
regular ultrapowers with n alternations of cuts for any finite n.

Theorem 11.4. Let λ be an infinite cardinal, n < ω and suppose that there exist measurable
cardinals κn < · · · < κ0 < λ. Then there is a regular ultrafilter D on I, |I| = λ such that:
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(1) (κ`
+, κ`

+) ∈ C(D) for ` ≤ n
(2) (θ, θ) /∈ C(D) for θ < λ weakly compact, in particular ` ≤ n, θ = κ`
(3) D is κn

+-good
(4) D is λ-flexible
(5) D is λ+-good for countable stable theories
(6) D is not (2κn)+-good for unstable theories

Proof. Let D1 be a λ-regular, λ+-good ultrafilter on λ. Let E be the ultrafilter on κn given by
E0× · · · × En, where the E` are as in the statement of Theorem 11.3. Let D = D1×E . We will show
that D has the desired properties.

(1)-(2) This follows from having chosen M0 in Theorem 11.3 to be a D1-ultrapower, thus λ+-
saturated by the λ+-goodness (and regularity) of D1.

(3) By Observation 11.6.
(4) By induction on ` ≤ n, using Claim 7.3(1) and the completeness of E`, ` ≤ n.
(5) By induction on ` ≤ n, using Claim 7.3(2). SinceD1 is regular and λ+-good, lcf(ℵ0,D) ≥ λ+.
(6) By Claim 5.2.

�

Question 11.5. Can Theorem 11.4 be generalized to any number of alternations, not necessarily
finite?

Appendix

In this appendix, we collect several known facts, easy proofs or extensions of proofs relevant to
the material in the paper.

Observation 11.6. (1) Any regular ultrafilter is uniform.
(2) In the definition of good ultrafilter, 1.4, we may assume the functions are monotonic.
(3) If E is a κ-complete ultrafilter on κ then E is κ+-good.

Proof. (1) Keisler [5] Theorem 1.1.

(2) By induction on |u|, replace a given function f , not necessarily monotonic, by its monotonic
refinement f ′ given by f ′(u) = f(u) ∩

⋂
v(u f

′(v).

(3) Adapt the proof of [20] Claim 3.1 p. 334 that any ultrafilter is ℵ1-good. �

Note, however, that while a good regular ultrafilter produces saturated ultrapowers, this need
not be the case when the ultrafilter is complete, unless the index models are also saturated. That
is, the goodness of the ultrafilter D on I is equivalent to saturation of the ultrapower M I/D when
(a) we have regularity of the ultrafilter, or (b) we assume the model M is saturated.

Fact 11.7. Let D be an ultrafilter on I and λ a cardinal. Then the following are equivalent:

(1) D is λ-good
(2) for any model M in a countable signature which is λ-saturated, M I/D is λ-saturated

and if D is regular, (1) is equivalent to:

(3) for any model M in a countable signature, M I/D is λ-saturated

Proof. See [20] VI.2 in particular Theorems 2.2-2.3, Claim 2.4 and Lemma 2.11. �

By re-presenting the proof of [20] Theorem VI.4.8 p. 379 to emphasize the role of incompleteness,
we obtain a more general result.
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Theorem 11.8. Let M be a λ+-saturated model of an unstable theory T , ϕ an unstable formula and
E a κ-complete, κ+-incomplete ultrafilter on λ. Let δ = lcf(κ, E). Then M I/E is not (κ+lcf(κ, E))+-
saturated for ϕ-types.

Proof. First consider the countably incomplete case. We build a correspondence between a ϕ-type
and a <-type in an expanded language.

Let ϕ = ϕ(x; y), where without loss of generality `(x) = 1 but `(y) need not be 1. Choose, for
each m < n < ω, sequences anm where `(anm) = `(y), so that ϕ has the order property over each

〈anm : m < n〉: i.e., k < n < ω implies {ϕ(x; anm)if(m>k) : m < n} is consistent.

Let 〈bn : n < ω〉 be a sequence of distinct elements. Let P be a new unary relation symbol,
< a new binary relation symbol, and for each ` < `(y) let F` be a new binary function symbol.
Let M1 denote the expansion of M by these new symbols, as follows. PM1 = {bn : n < ω} and
<M1= {〈bk, bn〉 : k < n < ω}. Finally, interpret the functions F` so that for each k < n < ω,
ank = 〈F0(bk, bn), . . . F`(y)−1(bk, bn)〉.

Now we take the ultrapower N = Mλ/E and let N1 denote the corresponding ultrapower in the
expanded language. In N1, P is a linear order and so by the hypothesis on E we have a δ-cut over
the diagonal embedding of the sequence 〈bn : n < ω〉. Choose a sequence 〈ci : i < δ〉 witnessing
this, so (1) each ci ∈ PN1 , (2) n < ω and i < j < δ implies N1 |= bn < ci < cj , (3) for no c ∈ PN1

is it the case that for each n < ω, i < δ, N1 |= bn < c < ci.

We now translate back to a ϕ-type. Consider:

q(x) = {¬ϕ(x, F0(bn, c0), . . . F`(y)−1(bn, c0)) : n < ω}∪{ϕ(x, F0(ci, c0), . . . F`(y)−1(ci, c0)) : 0 < i < δ}
This is a consistent partial ϕ-type by  Los’ theorem, since for n < ω, i < δ we have that bn < ci
mod E. We will show that q is omitted. Suppose it were realized, say by a. Let 〈Xn : n < ω〉 be a
sequence of elements of E witnessing that E is ℵ1-incomplete. Let 〈Yn : n < ω〉 be a sequence of
elements of E given by

Yn = {t ∈ λ : M |=
∧
{¬ϕ(a[t], F0(bk, c0[t]), . . . F`(y)−1(bk, c0[t])) : k ≤ n}

which exists by  Los’ theorem. (We write bk rather than bk[t] since these are essentially constant
elements. Note that in each index model, c0[t] is simply one of the bns.)

For each t ∈ I define ρ(t) = min{n : t /∈ Xn+1 ∩ Yn+1}. Then ρ is well defined by ℵ1-
incompleteness. Define b ∈ λM by: b[t] = bρ(t). By  Los’ theorem PN1(b). Where does it fit

under <N1? First, for each n < ω, we have b > bn mod E, as E is ω-complete (i.e. a filter) thus:

{t : c[t] > bn[t]} ⊇
⋂
j≤n

(Xj+1 ∩ Yj+1) ∈ D

On the other hand, suppose that for some i < δ we had ci ≤ b mod E. Then by  Los’ theorem
and definition of ρ, it would have to be the case that

N1 |= ¬ϕ(a[t], F0(ci[t], c0[t]), . . . F`(y)−1(ci[t], c0[t]))

contradicting the definition of q. So for each i < δ, we have that b < ci mod E.

Thus from a realization a |= q we could construct a realization b of the (ℵ0, δ)-cut in PN . Since
the latter is omitted, q must be as well, which completes the proof for countably incomplete filters.

Now for the general case: If λ = κ, modify the argument of Theorem 11.8 by replacing ω with
κ everywhere in the proof just given, and  Los’ theorem by  Los’ theorem for Lκ,κ. If λ > κ, begin
by choosing a surjective map h : λ → κ so that E = h(E) is a nonprincipal ultrafilter on κ, thus
κ-complete not κ+-complete. �
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