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Abstract. Our investigations are framed by two overlapping problems: find-

ing the right axiomatic framework for so-called cofinality spectrum problems,
and a 1985 question of Dow on the conjecturally nonempty (in ZFC) region

of OK but not good ultrafilters. We define the lower-cofinality spectrum for a

regular ultrafilter D on λ and show that this spectrum may consist of a strict
initial segment of cardinals below λ and also that it may finitely alternate. We

define so-called ‘automorphic ultrafilters’ and prove that the ultrafilters which

are automorphic for some, equivalently every, unstable theory are precisely the
good ultrafilters. We axiomatize a bare-bones framework called “lower cofinal-

ity spectrum problems”, consisting essentially of a single tree projecting onto

two linear orders. We prove existence of a lower cofinality function in this
context and show by example that it holds of certain theories whose model

theoretic complexity is bounded.

Dedicated to Alan Dow on the occasion of his birthday.

1. Introduction

Recall that two models M , N are elementarily equivalent, M ≡ N , if they
satisfy the same sentences of first-order logic. A remarkable fact is that elementary
equivalence may be characterized purely algebraically, without reference to logic:

Theorem A (Keisler 1964 under GCH; Shelah unconditionally). M ≡ N if and
only if M,N have isomorphic ultrapowers, that is, if and only if there is a set I and
an ultrafilter D on I such that M I/D ∼= N I/D.

To prove this theorem, Keisler established that ultrafilters which are both reg-
ular and good exist on any infinite cardinal and that they have strong saturation
properties. For transparency in this introduction, all languages (e.g. vocabularies)
are countable and all theories are (first-order) complete. Regularity is an existential
property of filters, showing a kind of strong incompleteness: a filter on I is regular
if there exists a family X = {Xi : i < |I|} ⊆ D, called a regularizing family, such
that the intersection of any infinitely many elements of X is empty. To motivate
the definition of good, 1.1 below, we finish outlining the proof of Theorem A in
the GCH case. If D is regular and good, and |M | ≤ |I|, then M I/D is of size 2|I|

(since D is regular) and is |I|+-saturated (since D is in addition good). So choosing
|I| ≥ max{|M |, |N |} and assuming the relevant instance of GCH, the ultrapowers
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by a Sloan research fellowship. Shelah was partially supported by European Research Council
grant 338821. This is manuscript 1070 in Shelah’s list of publications.

1
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M I/D, N I/D are elementarily equivalent, of the same cardinality, and saturated
in that cardinality, therefore isomorphic.

Given a model M and an ultrafilter D, let us abbreviate ‘M I/D is |I|+-saturated’
by writing ‘D saturates M ’. In the proof just sketched, the saturation properties of
good ultrafilters are tempered by regularity as follows. A good ultrafilter on I will
saturate any M which is itself |I|+-saturated (this may be taken as a definition of
good ultrafilter, but see also 1.1 below). If D is regular, then D saturates a model
M if and only if it saturates all N ≡ M (see Keisler [8] Theorem 2.1a). Since a
good ultrafilter saturates some model in every elementary class (e.g. any one which
is sufficiently saturated), a good regular ultrafilter saturates all models.

The usual definition of good filters is combinatorial. Call a function monotonic
if u ⊆ v implies f(v) ⊆ f(u), and multiplicative if f(u) ∩ f(v) = f(u ∪ v). In the
following definition, it would suffice to consider all monotonic functions.

Definition 1.1 (Good filters, Keisler). Let D be a filter on I. We say D is κ-good
if for every ρ < κ, every function f : [ρ]<ℵ0 → D has a multiplicative refinement,
i.e. there is g : [ρ]<ℵ0 → D which is multiplicative and such that g(u) ⊆ f(u) for
all u ∈ [ρ]<ℵ0 . We say D is good if it is |I|+-good.

This has proved to be a very fruitful definition. The existence of good regular
ultrafilters, proved by Keisler under GCH and by Kunen unconditionally, may be
understood as asserting existence of ultrafilters which are ‘maximal’ or ‘complex’ in
at least two senses: in the sense that all functions have multiplicative refinements,
or in the sense of being strong enough to saturate any model. As a result, proposed
weakenings of this definition have traditionally taken either a more set-theoretic
form or a more model-theoretic form. An interesting example of the first is the
notion of an ‘OK’ ultrafilter; see Dow 1985 [4] p. 146 for the history. Note that the
cardinal parameter differs from Definition 1.1, i.e. a κ+-good filter is κ-O.K.

Definition 1.2 (OK filters). Let D be a filter on I. We say D is κ-OK if every
monotonic function f : [κ]<ℵ0 → D which satisfies |u| = |v| =⇒ f(u) = f(v) has
a multiplicative refinement. We say D is OK if it is |I|-OK.

It has been surprisingly difficult to distinguish OK from good. It follows from
the existence of an ℵ1-complete (non-principal) ultrafilter that there exist regular
ultrafilters on any sufficiently large λ which are OK but not good (see for example
Theorem 4.2 (4) 6→ (5) and Theorem 7.4 of [15]). We do not know of any ZFC
proofs.

However, in his paper Dow raises a stronger question: “the question of whether
there can be α+-OK ultrafilters which are not α+-good.”

Question 1.3 (Dow, cf. [4] 4.7). Do there exist α+-OK ultrafilters which are not
α+-good?

This question frames much of our present work. The theorem already quoted
answers it assuming a measurable cardinal, and in fact allows for an arbitrary
separation:

Theorem B ([15] 7.4, in the present language). Assume ℵ0 < κ < λ, 2κ ≤ λ,
κ measurable. Then there exists a regular ultrafilter D which is λ-O.K. but not
(2κ)+-good.
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However, Question 1.3 remains open in ZFC. One of the themes of this paper
will be the apparent richness of the region between OK and good. To explain this,
we return to the second direction mentioned after Definition 1.1, weakenings of
goodness arising from model theory.

Recall that a regular ultrafilter D saturates a model M iff D saturates all N ≡M .
This means we can simply speak of D saturating a complete theory T (if D saturates
one, equivalently all, of its models), and we may naturally compare theories T ,
T ′, by asking whether any regular D which saturates T must saturate T ′. If so,
following [8], we say that T ′ E T in Keisler’s order. Among the regular ultrafilters,
the good ultrafilters are those which can saturate any theory; moreover, there exist
theories which are only saturated by good ultrafilters. This tells us Keisler’s order
has a maximum class. An early surprise was that this maximum class includes all
theories of infinite linear order.1

Theorem C (Shelah 1978 [24] VI.2.6, in our language). If D is a regular ultrafillter
on I and D saturates (ω,<), then D is good.

In particular, following [17], one can define the cut spectrum of a regular ultra-
filter D on I. Say that N = (ω,<)I/D has a (κ1, κ2)-cut if κ1, κ2 are regular and
there exist sequences (〈aα : α < κ1〉, 〈bβ : β < κ2〉) of elements of N such that for
all α < α′ < κ1 and β < β′ < κ2, aα < aα′ < bβ′ < bβ , but there does not exist c
such that aα < c < bβ for all α < κ1 and β < κ2.

Definition 1.4 (The cut spectrum of D [17] 2.1). For D a regular ultrafilter on I,

C(D) = {(κ1, κ2) : κ1 + κ2 ≤ |I| and (ω,<)I/D has a (κ1, κ2)-cut.}

Then when D is regular, C(D) = ∅ if and only if D is good, and we may try
to understand the possible distance of a given ultrafilter from goodness by asking
whether its cut spectrum is nonempty (and if so how).

Here too model theory can help in proposing weakenings of goodness, by again
leveraging Keisler’s order. Choose a theory or a family of theories which appear
to be, at least a priori, less difficult to saturate than linear order (or any other
theory in the maximum class). Identify a property of ultrafilters which corresponds
to saturation of that theory (or family of theories) and try to compare this new
property to goodness. This was the approach taken in our recent paper [17], which
also led to a proof that the cardinal invariants p and t are equal. That work began
from the question of whether theories with a certain model-theoretic tree property,
called SOP2, were maximal in Keisler’s order. We first proved that a necessary
condition for a regular ultrafilter D on I to saturate some theory with SOP2 is
the following: whenever T is a tree (i.e. a partially ordered set such that the set
of predecessors of any given element is well ordered), any strictly increasing |I|-
indexed path in the ultrapower N = T I/D has an upper bound in N . When this
holds, say that D has treetops (really, |I|+-treetops). We then investigated the
distance of this property from goodness by asking: if D has treetops, is C(D) = ∅?

The surprising answer was yes [17, Theorem 10.1]. Its proof involved a system-
atic analysis of properties of cuts in C(D) with the local aim of eventually ruling all
cuts out. We believe, however, that in contexts much more general than that paper,
carefully revisiting this analysis under weaker hypotheses than treetops may give

1A consequence of regularity, requiring a brief argument, is that a regular ultrafilter D saturates
(ω,<) if and only if it saturates (X,<) where X is any infinite linear order.
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much more information. A property of particular interest appears to be “unique-
ness,” essentially the property that if (κ, θ) and (κ, θ′) belong to C(D) then θ = θ′.
This property motivated many of the problems in our recent open questions paper
[23], and it is the focus of Sections 2 and 4 of the present paper. Its conjectural
relation to the existence of internal maps (another key driver of problems in [23],
which will be explained in due course below) will connect it to our remaining topic
and to Section 3.

Towards explaining this remark, we now discuss how a further open question in
this framework fits an interesting model theoretic picture into Dow’s question 1.3
above. To begin, here is a partial map of classes of theories in Keisler’s order. The
filled-in regions are classified, and the lines represent some known divisions. Along
the top are some properties of theories, and along the bottom are some properties
of ultrafilters.

After [17] established the maximality of SOP2, a key question is whether or not
all non-simple theories are maximal. This amounts to asking whether there are
theories with a model theoretic property called TP2 which are non-maximal. By
Tfeq we will mean the model completion of the theory of a parametrized family of
independent equivalence relations, as in [30] Definition 1.7. (Any non-simple theory
has at least one of SOP2 or TP2.) We know that among the TP2 theories Tfeq is
minimal, and that the following property of a regular ultrafilter is necessary and
sufficient for saturating Tfeq [13, Lemma 6.7–Theorem 6.10]. (Given an ultrapower
N = M I/D, fix in advance a lifting M I/D → M I so that for a ∈ N , t ∈ I the
coordinate projection a[t] is well defined.)

Definition 1.5 (Good for equality, defined in [13] and named in [14]). Call the
regular ultrafilter D on I good for equality if whenever M is an infinite model and
A ⊆M I/D, |A| ≤ I, there is a map f : A→ D such that for all t ∈ I, the sequence
〈a[t] : a ∈ A satisfies t ∈ f(a)〉 is without repetition.

The picture above also reflects that in [13] a property of ultrafilters called ‘flex-
ible’ which is equivalent to OK, and which has model theoretic content, was dis-
covered. Moreover, good for equality implies flexible (= OK) [13, Lemma 8.7
and 8.8]. For our present purposes, this tells us that the conjectural distance be-
tween good for equality and good is contained in that between OK (=flexible) and
good.2 So Dow’s question 1.3 may be illuminated by advances in understanding
the structure of Keisler’s order. For example, recently [20, Theorem 8.2], which
separated the simple from the non-simple theories in Keisler’s order under a large
cardinal hypothesis, also gave a new OK but not good for equality – thus, not good
– ultrafilter; and moreover the so-called optimal ultrafilters built there yield a new

2Note that the line corresponding to “OK” is not if-and-only-if. That is, it is necessary that
any regular ultrafilter which saturates a theory to the right of the drawn line (in model-theoretic

language, a non-low simple theory or a non-simple theory) be OK. However, this is not sufficient.
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family of examples answering 1.3, assuming existence of a supercompact cardinal,
as explained in [20, Conclusion 5.18].3

Having explained these three interrelated areas arising from the problem of weak-
ening goodness – the question of good versus OK, the problem of the cut spectrum
of D and in particular the question of uniqueness, and the question of good versus
good for equality – we now outline our main results. In Section 2, we formalize and
investigate uniqueness spectra, primarily of regular ultrapowers. We prove that
uniqueness can hold precisely on certain initial segments of cardinals and that it
may alternate. In Section 3, we show that in the distance between good for equality
and good there arises an automorphism problem which aligns the increasing com-
plexity of first order theories with the increasing complexity of internal maps in
ultrapowers. Investigating this problem we are able to give a new characterization
of goodness: D is good if and only if D is so-called automorphic for all unstable
theories (defined below). As a result we can re-frame several open questions. In
Sections 4–5, we present an axiomatic approach, showing that even under very
weak notions of order and filters one can recover certain uniqueness phenomena.
We discuss some model-theoretic examples and limitations of such results.

We thank the referee for a careful reading and for many comments which have
significantly improved the presentation of the paper.

2. The uniqueness spectrum

In this section we define and investigate lower cofinality spectra in ultrapow-
ers. The specific phenomenon we study is the following. Specializing to the case
of ultrapowers, [17, Theorem 3.2] says that under the hypothesis of treetops the
following ‘uniqueness’ phenomenon arises.4

Fact 2.1 (cf. [17] Theorem 3.2). Let D be a regular ultrafilter on I, with |I|+-
treetops. Then for each regular κ ≤ |I|, there is precisely one θ such that (ω,<)I/D
has a (κ, θ)-cut.

Note that regularity of D implies that (ω,<)I/D has a (κ, θ)-cut iff it has a
(θ, κ)-cut so without loss of generality we have focused on the first coordinate.

Definition 2.2 (Internal, in ultrapowers). Let N = M I/D be an ultrapower. Let
M+ denote the expansion of the theory of M by adding all possible relations,
functions, and constant symbols. Then the internal functions and relations are
precisely those definable in N+ := (M+)I/D, recalling that ultrapowers commute
with expansion and reduction.5

3Somewhat more is currently known about the structure of Keisler’s order that what is shown

on the map above: for example, on the simple theories, in the region to the left of the “OK” line:
see [21]. A further discussion of connections between model-theoretic properties of theories and

set-theoretic properties of ultrafilters may be found in [15] §4.
4Fact 2.1 and Corollary 2.3 both translate a result originally stated for so-called cofinality

spectrum problems to ultrafilters. The specifics of such a translation are justified in [17] 10.17–

10.21. Regarding ‘treetops,’ recall from the introduction that this means: whenever T is a tree,
any strictly increasing |I|-indexed path in the ultrapower N = T I/D has an upper bound in N .

5Equivalently, we say that a relation R ⊆ Nk is internal if for each t ∈ I we may expand

M = Mt by interpreting a new k-ary relation symbol P in such a way that
∏
t(Mt, P )/D = (N,R).

We say that a partial function f : Nk → N is internal if its graph is an internal relation which is
the graph of a function.
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One strong reason that uniqueness can arise is if there is an internal order pre-
serving map between any two monotonic κ-indexed sequences in the ultrapower.
This may seem like a lot to ask, but in fact when the ultrafilter is good this is what
happens:6

Fact 2.3 (special case of [17] Corollary 3.8). Let D be a good regular ultrafilter on
I. Suppose κ is regular and κ ≤ |I|, and let N = (ω,<)I/D. Let a = 〈aα : α < κ〉
and b = 〈bα : α < κ〉 be two strictly monotonic sequences of elements of N . Then
there is a monotonic, internal partial one-to-one map f in N whose domain includes
{aα : α < κ}, and such that f(aα) = bα for all α < κ.

Remark 2.4. The proof of Fact 2.3, i.e. of [17] Corollary 3.8, also shows that
existence of the map f corresponds to realization of a type in a larger language.
Let M = (ω,<). Let M+ be M expanded to a model of sufficient set theory: in
this model, we have not only ω but also the set of all partial functions with domain
an initial segment of ω, and range a subset of ω × ω strictly increasing in both
coordinates. This set naturally has the structure of a tree, partially ordered by
inclusion; call it (T , /). Note that given an element of T , its range may be thought
of as the graph of a partial function between two strictly increasing subsequences
of ω. Ultrapowers commute with reducts, so we have that N = M I/D expands
naturally to N+ ≡M+. In this ultrapower, ω is nonstandard and so is T . Consider
the type of an element of T whose range is the graph of a partial function extending
aα 7→ bα. For a more general argument, see 3.11 below.

This discussion directs our attention to three related spectra.

Convention 2.5. For the remainder of the section, fix some sufficiently large (so
uncountable) regular χ. By H(χ) we mean7 the sets hereditarily of cardinality < χ.
Let A = (H(χ),∈). We use M to denote a sufficiently saturated model of Th(A).
In this case “internal” has the usual meaning.

Definition 2.6 (Lower cofinality spectra of ultrafilters or models of set theory).

(1) For M as in 2.5 and ` = 0, 1, 2, let LcfSp`(M) be the set of κ = cf(κ) such
that κ is an ordinal of M and whenever ā, b̄ are two strictly increasing
sequences of length κ in M:
(a) (if ` = 0) ā, b̄ have the same coinitiality in M.
(b) (if ` = 2) there is an internal order preserving map π in M such that

π(aα) = bα for α < κ.
(c) (if ` = 1) there is an internal order preserving map in M such that for

some unbounded U ⊆ κ we have: if α < δ are from U , then π(aα) < bδ
and π−1(bα) < aδ.

(2) Let D be a regular ultrafilter on I. For ` = 0, 1, 2, let LcfSp`(D) be the set
of κ = cf(κ) ≤ |I| such that κ ∈ LcfSp`((ω,<)I/D).

We write LcfSp for LcfSp0.

Discussion 2.7. In Definition 2.6(2), the assumption that D is a regular ultrafilter
entails that we could replace (ω,<) there by M, or by another infinite model of

6By [17, Theorem 10.1], the hypothesis “D has with |I|+-treetops” is here replaced by “D is

good” in the quotation of 2.3.
7More precisely, define H(χ) to be the set of all x such that the cardinality of the transitive

closure of x is < χ. Then A = (H(χ),∈) will be a model of ZFC minus the power set axiom.
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linear order. The reason to cut off LcfSp`(D) at |I| is because we are often interested
in measuring how far the ultrafilter is from good, as explained in the introduction.
In general, however, we might simply have said:
“Given D a not necessarily regular ultrafilter on I, ` = 0, 1, 2 and any regular
cardinal κ, we say that κ ∈ LcfSp`(D) when (for ` = 0, 2, 1 respectively) 2.6(1)(a),
(b) or (c) hold in the case where M there is assumed to be of the form BI/D for
some κ+-saturated B ≡ A.”

Observation 2.8.

(1) Let D be an ultrafilter8 on I. Then

LcfSp2(D) ⊆ LcfSp1(D) ⊆ LcfSp0(D).

(2) If D is κ+-good, κ = cf(κ), then κ ∈ LcfSp2(D).
(3) If D is not ℵ1-complete, then ℵ0 ∈ LcfSp2(D).
(4) If M is κ+-saturated then κ ∈ LcfSp2(M).

Proof. (1) follows from the definitions. To see that the second inclusion holds, let π
be as in Definition 2.6, let A = {aα : α < κ} and let C = {c : c > aα for all α < κ}
be the set of A-nonstandard elements. Likewise let B = {bα : α < κ} and let D be
the set of B-nonstandard elements. Let C≤c denote {x ∈ C : x ≤ c}. Observe that
for no c ∈ C can we have that dom(π) ∩ C≤c ⊆ A, as then {x : (∃y ∈ dom(π))(y >
x)} would define the cut given by (A,C≤c). Likewise, for no c ∈ C can we have
that for some d ∈ D, range(π � C≤c) ∩D≤d ⊆ B, as then we could define the cut
(B,D≤d). This shows that for any (c, d) with c ∈ C and d ∈ D there is (c′, d′)
with c > c′ ∈ C, d > d′ ∈ D and π(c′) = d′, which is enough to show that the
co-initiality of C and of D are the same.

(2) is by Fact 2.3 above.
In (3), we can always build a monotonic partial internal map between any two

monotonic ω-indexed sequences.
(4) follows from the observation that the existence of such a map may be ex-

pressed as a partial type, see Remark 2.4. �

Next we prove that LcfSp can be any cofinite initial segment of the regular
cardinals ≤ |I|. This requires two ingredients. The first is a theorem of the second
author that explains how to set the coinitiality of the diagonal embedding9 of κ in
(|I|, <)I/D, denoted lcf(κ,D), for finitely many values of κ (all regular and ≤ |I|).

Definition 2.9 (see [24] Definition 3.5 p. 357). For an ultrafilter D on I and a
regular cardinal κ we define lcf(κ,D) to be the smallest cardinality λ such that
there is a subset of

{a ∈ κI/D : κI/D |= α < a for each α < κ}
which is unbounded from below, and has cardinality λ.

Theorem D ([24] Theorem VI.3.12). Suppose ℵ0 = λ0 < λ1 < · · · < λn = λ+,
each λi is regular, and λ`+1 ≤ µ` ≤ 2λ, µ` regular, for ` < n. Then for some
regular λ1-good but not (λ1)+-good ultrafilter D over λ, lcf(κ,D) = µ` whenever
λ` ≤ κ < λ`+1.

8See previous discussion for the non regular case.
9By regularity of D, the cut spectrum computed with (ω,<) or (|I|, <) is the same, but the

meaning of ‘the diagonal embedding of κ’ is clearer in the second case.
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The second ingredient is our recent proof that the failure of goodness is always
witnessed by a symmetric cut.

Theorem E (from [17] Theorem 10.26). Let D be a regular ultrafilter on λ which
is λ-good and not λ+-good. Then C(D) has a (λ, λ)-cut.

In other words, recalling from the introduction that λ ≤ |I| implies C(D) is
λ-good if and only if C(D) ∩ (λ× λ) = ∅, “the first cut is symmetric”:

Corollary 2.10 ([17] Theorem 10.25). For D a regular ultrafilter, if κ = min{κ1 +
κ2 : (κ1, κ2) ∈ C(D)} then (κ, κ) ∈ C(D).

The interaction of Theorems D and E gives the result about initial segments.

Claim 2.11. Suppose ℵ0 < κ < λ where κ is regular and λ = κ+n for some finite
n ≥ 1. Then there exists a regular ultrafilter D on λ such that

LcfSp(D) = {µ : µ = cf(µ) and µ < κ}.
Proof. Apply Theorem D in the case where for each 0 ≤ ` < n, λ1+` := κ+` and
for each 0 ≤ ` < n, µ1+` = κ+`+1. In this ultrafilter D, we know that (κ`, κ+`+1) ∈
C(D) for 0 ≤ ` < n. Since D is κ-good, every regular µ < κ belongs to LcfSp(D).
By Theorem D D is not κ+-good, so by Theorem E we know that C(D) has a (κ, κ)-
cut. Since (κ, κ+) ∈ C(D), this proves κ /∈ LcfSp(D). For 1 < ` < n, we have that
both (κ+`, κ+`+1) and (κ+`+1, κ+`+2) belong to C(D), so clearly κ+` /∈ LcfSp(D),
which completes the proof. �

Corollary 2.12. For any uncountable κ there is a regular ultrafilter D on κ such
that κ /∈ LcfSp(D) witnessed by the existence of a (κ, ρ1)-cut and a (κ, ρ2)-cut
where ρ1 6= ρ2 and min{ρ1, ρ2} ≥ κ.

Proof. Just as in the proof of Claim 2.11, using λ1 = κ and µ1 = κ+. The resulting
D will be κ-good and not κ+-good so there will be a (κ, κ)-cut by Theorem E and
a (κ, κ+)-cut by construction. �

Now we ask: it possible to alternate? That is, can we find a regular ultrafilter
D on λ and λ0 < · · · < λn ≤ λ such that λn ∈ LcfSp(D) iff n is even? To obtain
alternations, we will appeal to weakly compact cardinals (which will give a clean
and direct proof that alternation is possible, though it is unlikely they are essential
to this result). Here the reason for ` = 1 appears.

Definition 2.13 (see e.g. Kanamori [7] Theorem 7.8 p. 76). The cardinal κ is said
to be weakly compact if for every f : κ × κ → {0, 1} there is U ⊆ κ, |U| = κ and
t ∈ {0, 1} such that for all ε < ζ from U , f(ε, ζ) = t. If κ is weakly compact and
uncountable, it follows that for any n < ℵ0, ρ < κ and f : [κ]n → ρ there is U ⊆ κ,
|U| = κ such that 〈f(α1, . . . , αn) : α1, . . . , αn from U〉 is constant.

First we show that for I small relative to some weakly compact κ, subsequent
ultrapowers over I cannot destroy uniqueness for κ.

Claim 2.14. Let D be an ultrafilter on I. Suppose κ > |I| is a weakly compact
cardinal and κ ∈ LcfSp1(M). Then κ ∈ LcfSp1(MI/D).

Proof. Let N = MI/D. Suppose we are given f `α ∈ IM for α < κ, ` ∈ {1, 2}, so
that for ` = 1, 2 the sequence 〈f `α/D : α < κ〉 is strictly increasing in N . By  Los’
theorem, for each pair α < β < κ let

A`α,β := {s ∈ I : f `α(s) < f `β(s)} ∈ D.
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Recall that any weakly compact cardinal is strongly inaccessible, so there are
|P(I)| < κ possible choices for A`α,β . As κ is weakly compact, we may assume

that for each ` there is A` ∈ D and U` ⊆ κ, |U`| = κ such that α < β ∧ α ∈
U` ∧ β ∈ U` =⇒ A`α,β = A`. Let A∗ = A1 ∩ A2 ∈ D. By construction and  Los’

theorem, for each s ∈ A∗, ` ∈ {1, 2} the sequence f̄ ` = 〈f `α(s) : α ∈ U`〉 is strictly in-
creasing. After renaming if necessary, we may assume each U` = κ. By hypothesis,
for some unbounded subset U of κ, in M there is an order preserving map πs such
that α < δ ∈ U implies that πs(f

1
α(s)) < f2

δ (s) and also that π−1
s (f2

α(s)) < f1
δ (s).

When s /∈ A∗, let πs be the identity. Let π be the internal order-preserving map of
N given by 〈πs : s ∈ I〉 ∈ IM. So whenever α < δ ∈ U ,

N |= “ π(f1
α/D) < f2

δ /D ∧ π−1(f2
α/D) < f1

δ /D)”

which satisfies Definition 2.6(1)(c) so completes the proof. �

Second we show that if I is small relative to some κ for which uniqueness fails
(witnessed by large λ1, λ2), subsequent ultrapowers over I will not resolve this.10

Claim 2.15. Let D be an ultrafilter on I. Suppose that M has (κ, λ1) and (κ, λ2)-
cuts where κ, λ1, λ2 are regular, |P(I)| < min{κ, λ1, λ2} and and λ1 6= λ2. Then
κ /∈ LcfSp0(MI/D).

Proof. While the claim is stated for easy quotation (“witnesses to κ /∈ LcfSp(M)
persist in an ultrapower provided the index set is small”), in fact all that we need
to prove is that (κ, λ)-cuts are not filled in an ultrapower N = MI/D provided
that κ, λ are regular and κ > 2|I| and λ > |I|. Let (ā, b̄) be a (κ, λ)-cut in M.
For each α < κ, let a∗α ∈ N be the image of aα under the diagonal embedding,
and likewise let b∗β be the image of bβ for β < λ. Suppose for a contradiction that

c ∈MI/D is such that α < κ ∧ β < λ implies N |= a∗α < c < b∗β . For each α < κ,

let Aα := {t ∈ I : M |= aα < c[t]} ∈ D. This amounts to coloring the elements of
κ with at most |P(I)| < κ colors, so by the regularity of κ, there must be some
U ∈ [κ]κ and A∗ ∈ D such that α ∈ U =⇒ Aα = A∗. Now by  Los’ theorem, for
each β < λ, there is some tβ ∈ A∗ such that M |= c[t] < bβ . By regularity of λ,
there are V ∈ [λ]λ and t ∈ A∗ ⊆ I such that β ∈ V implies tβ = t. But then c[t]
realizes the cut 〈ā, b̄〉 in M, a contradiction. �

Conclusion 2.16. Suppose µ0 < · · · < µn are regular cardinals < λ and µk is
weakly compact when k is even. Then for some regular ultrafilter D on λ we have
that for each ` ≤ bn2 c, µ2` ∈ LcfSp1(D) ⊆ LcfSp0(D) and µ2`+1 /∈ LcfSp0(D).

Proof. Let µn+1 = λ. For each ` ≤ bn+1
2 c, let D` be a regular ultrafilter on µ` such

that:

• if ` is even, then D` is good, i.e. µ+
` -good.

• if ` is odd, then for any model M of Th(A), the ultrapower Mµ`/D` has
both a (µ`, λ`+1) and a (µ`, λ`+2)-cut for some λ`+1 6= λ`+2 > µ`−1.

Having chosen such a sequence of ultrafilters, let

D = Dn ×Dn−1 ×Dn−2 × · · · · · · × D0

where the products are taken from left to right. By Claim 2.15, the failures of
uniqueness built at odd stages persist in the product, noting that ` ≥ 2 and µ`

10Some different results on the case of (κ1, κ2)-cuts in ultrapowers where κ1 + κ2 > 2λ, and
the index model M is quite saturated, have been recently obtained by Golshani and Shelah [5].
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weakly compact implies that 2µ`−1 < µ`. By Claim 2.14 the cardinals added to
LcfSp1 at even stages persist in the product as well. This completes the proof. �

Conclusion 2.17. This analysis shows that uniqueness at a given cardinal κ is
consistently strictly weaker than κ+-goodness, since goodness cannot alternate.

To complement this, we conclude by recording the addition of the relevant new
conditions onto [17] Theorem 10.26 using the language of LcfSp just introduced.
This requires a short fact from our recent paper about open problems on ultrafilters.
Its proof checks that from an internal map between cofinal sequences of the two sides
of a symmetric cut, one can conclude the cut is definable and therefore realized.

Fact 2.18 ([23] 3.2). Let D be a regular ultrafilter on λ and let κ ≤ λ be regular.
Suppose that in (ω,<)I/D there is a monotonic partial internal map between cofinal
subsequences of any two strictly monotonic κ-indexed sequences [i.e. suppose κ ∈
LcfSp1(D)]. Then (κ, κ) /∈ C(D).

Theorem 2.19. For D a regular ultrafilter on λ the following are equivalent.

(a) D has λ+-treetops.
(b) κ = cf(κ) ≤ λ implies κ ∈ LcfSp1(D).
(c) κ = cf(κ) ≤ λ implies κ ∈ LcfSp2(D).
(d) κ ≤ λ =⇒ (κ, κ) /∈ C(D), i.e. C(D) has no symmetric cuts.
(e) D is λ+-good.

Proof. (a) iff (d) iff (e) is the full statement of [17] Theorem 10.26, quoted in part
as Theorem E above.

(e) =⇒ (c) is Fact 2.3.
(c) =⇒ (b): Observation 2.8(1).
(b) =⇒ (d): is Fact 2.18. �

We emphasize the interesting question of whether there can exist a regular ultra-
filter D on λ which is not good, yet has uniqueness for all regular κ ≤ λ (evidently
not all witnessed by the existence of internal order-preserving maps).

Problem 2.20. Prove that for some infinite cardinal λ there is a regular ultrafilter
D on λ such that {κ : κ = cf(κ) ∧ κ ≤ λ} ⊆ LcfSp0(D) but D is not λ+-good.

3. Automorphic ultrafilters

In this section we first review how the distance between good for equality and
good represents the increasing strength of internal partial automorphisms in theo-
ries. We then introduce the idea of “automorphic ultrafilters” as a way of stratifying
this conjecturally nonempty region by mapping the class of all complete countable
first order theories into it.

Using this language we prove a new characterization of good ultrafilters (via
unstable theories), and reframe several open questions.

Convention 3.1. Throughout this section,

(a) D is a regular ultrafilter on I, which we sometimes identify with λ;
(b) λ will denote |I|;
(c) if we are given a model M and A ⊆ M I/D, we will say “A is small” to

mean |A| ≤ |I|.
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Recall the definition “D is good for equality,” Definition 1.5 above. It had been
observed that this definition can be restated in terms of existence of certain internal
maps in ultrafilters.

Fact 3.2 ([14] Theorem 5.21). For a regular ultrafilter D on λ the following are
equivalent:

(1) D is good for equality.
(2) For any infinite M , N = Mλ/D and A,B ⊆ N with |A| = |B| = λ, there is

an internal partial map f : N → N which is injective and which takes A to
B (in this case we say “D admits internal maps between sets of size λ”).

Proof. For completeness, and to motivate Definition 3.6, we sketch a proof.
(2) implies (1): Fix an infinite model M . First observe that since D is regular,

it is always possible to find some small set A ⊆M I/D admitting a map h : A→ D
such that for all t ∈ I, the sequence 〈a[t] : t ∈ h(a)〉 is without repetition. Call such
a map h a “good distribution for A.” [For example, we may begin with a regularizing
family {Xi : i < λ}, so by definition for all t ∈ I, Zt := {i < λ : t ∈ Xi} is finite.
Then choose {ai : i < λ} ⊆ M I so that for each t ∈ I, 〈ai[t] : i ∈ Zt〉 is without
repetition, which is possible as M is infinite. Letting ai =

∏
t∈I ai[t]/D for each

i < λ, the set A = {ai : i < λ} and the map h taking ai 7→ Xi are as desired.]
Suppose then that (2) holds. Let A be the small set just built and let B be any
other small set. Let f : N → N be the internal map given by (2). Enumerate
B = 〈bi : i < λ〉 so that f(ai) = bi. Since f is internal, we may assume that we can
find Ft (t ∈ I) such that each Ft : M →M and

∏
t∈I(M,Ft)/D = (N, f). (We can

also ask only that the Ft are relations and let X = {t : Ft is a function } ∈ D. So
in the first case, X = I.) Then the map g : B → D taking bi 7→ X ∩h(ai) is a good
distribution for B. Since B was arbitrary, this proves (1).

(1) implies (2): Let A and B be as in the claim, |A| = |B| = κ ≤ λ. Let
{ai : i < κ} list A with no repetition, and let {bi : i < κ} list B with no repetition.
Let h : A → D be a good distribution for A and let g : B → D be a good
distribution for B. For each t ∈ I, the map ai[t] 7→ bi[t] is a bijection from
{ai[t] : t ∈ h(ai) ∩ g(bi)} to {bi[t] : t ∈ h(ai) ∩ g(bi)}, so let ft : M → M be any
bijection extending this one. Then the map f :=

∏
t∈I ft/D is as desired. �

Remark 3.3. Notice that the proof of 3.2 shows something stronger, namely that
we may choose the map f to take ai 7→ bi after fixing any enumeration of A, B
without repetition.

Convention 3.4. We will say D is κ+-good for equality, κ not necessarily equal
to λ, when we may take |A| = |B| = κ in Fact 3.2.

Compare Fact 2.3 above.
Now we introduce a way of studying this region via model theory. A natural

question, suggested by Scanlon, following a talk of the first author, is the following:

Question 3.5. What can be said about regular ultrafilters which admit internal
maps between small elementary submodels in any ultrapower of M |= T , for a given
complete countable T?

We will first make this problem concrete and then give an answer in the case
where T is unstable, Theorem 3.23.
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Definition 3.6 (Automorphic ultrafilters). Let D be a regular ultrafilter on λ and
T a complete countable theory.

(1) We say that D is automorphic for T if whenever M |= T , ||M || ≤ λ, N =
Mλ/D, M0,M1 are elementary submodels of N with ||M0|| = ||M1|| ≤ λ
and f ′ : M0 → M1 is an (external) isomorphism, then there exists an
internal function f such that:
(a) f extends f ′, thus f maps M0 to M1.
(b) f is an internal partial one-to-one map which respects all formulas of

the language.
(c) dom(f) and range(f) are internal sets.

(2) Let ∆ be a finite set of formulas of T . We say that D is ∆-automorphic
for T if (1) above holds with condition (1)(b) replaced by “f is an internal
one-to-one partial map which preserves the truth of all formulas in ∆.” So
automorphic is ∆-automorphic in the special case where ∆ is all formulas
of the language.

In the language of Definition 3.6, Fact 3.2 is naturally restated as follows.

Conclusion 3.7. Let D be a regular ultrafilter on λ. Then D is good for equality
if and only if it is automorphic for the theory of an infinite set.

Corollary 3.8. If D is automorphic for any theory with infinite models it is nec-
essarily automorphic for the theory of an infinite set, and thus, good for equality.

The analogous restatement of Fact 2.3 will require some intermediate claims.
First, we will use the following saturation properties of ultrafilters which are good

for equality. (In fact, more is true, namely, D being good for equality is necessary
and sufficient for saturating Tfeq. However, we will use this fact only indirectly, in
the language of 3.7 and 3.8 and of the next Fact.)

Fact 3.9. If D is a regular ultrafilter which is good for equality then D saturates
the theory of the random graph, and in addition D saturates any countable stable
theory.

Proof. See the summary theorem [15] Theorem 4.2 p. 8154, specifically (5) →
(3)→ (2)→ (1) of that theorem. This shows that any ultrafilter which is good for
equality has three other properties. In Theorem G p. 8153 of the same paper, it
is recorded that those properties called (3) and (1) are sufficient for saturating the
theory of the random graph and for saturating all stable theories, respectively. �

Recall that in model-theoretic terminology, a ϕ-type is a partial type consisting
of positive and negative instances of a single formula.

Fact 3.10 (Local saturation suffices, [11] Theorem 12). Suppose D is a regular
ultrafilter on I and T a countable complete first order theory. Then for any M I/D,
the following are equivalent:

(1) M I/D is λ+-saturated.
(2) M I/D realizes all ϕ-types over sets of size ≤ λ, for each formula ϕ in the

language of T .

Observation 3.11. Let D be a regular ultrafilter on λ, T a complete first-order
theory of cardinality ≤ λ, M |= T , N = Mλ/D, and ∆ a finite set of formulas of
LT . Let M0,M1 be two elementary submodels of N of size ≤ λ which are externally
isomorphic via some function f . Then the existence of an internal partial map
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g such that M0 ⊆ dom(g), M1 ⊆ range(g), g : M0 →M1 and g is a
partial one-to-one map which extends f and respects all formulas
in ∆

can be expressed in terms of a partial ϕ-type [i.e. a type in positive and negative
instances of a single formula] over a set of size ≤ λ in a related first-order theory.
Thus, internal maps of this kind will exist in any good regular ultrafilter.

Proof. We sketch two different ways to represent the existence of g in terms of
realization of a type (over a set of size ≤ λ) in an expansion of the model M to
a model M+ in a larger, countable language. Since ultrapowers commute with
reducts, we may then expand N naturally to N+ ≡ M , and any good ultrafilter
will ensure that N+ is saturated, therefore that g exists. This justifies the last
clause of the observation.

First, let M+ be a model of sufficient set theory, say, (H(χ),∈) for some suf-
ficiently large χ, so ω ∈ M+ and M ∈ M+. Consider the set T of partial one
to one maps which respect all formulas in ∆ (since ∆ is finite this is a first order
statement). Similarly to 2.4 above, T is partially ordered by inclusion, and the
existence of a map g as in the statement of the claim corresponds to realizing a
type describing a certain element of T .

Second, we can consider T = Th(M∗) where M∗ is the following two-sorted
structure: the first sort contains a resplendent model11 M |= T , the second sort A
contains an infinite set. We add a new ternary relation symbol f∆(x, y, z) and add
infinitely many axioms to ensure the following: (1) for each x ∈ A, f∆(x, y, z) =
f∆
x (y, z) is a partial function which is a partial automorphism of M and respects

all of the formulas in ∆, and (2) for any n < ω and sets 〈b1, . . . , bn〉, 〈c1, . . . , cn〉
realizing the same ∆-type over the empty set in M , there is a ∈ A such that∧
i≤n f

∆
a (bi, ci). �

Conclusion 3.12. If D is a regular ultrafilter on λ, then D is automorphic for
every complete countable theory iff D is good.

Proof. Suppose D is good. Let T be complete and countable, and fix suitable M0,
M1 and f . By the proof of Observation 3.11, for each finite set ∆ of formulas of
the language of T we may write down a partial ϕ-type p∆ in an expanded language
expressing the existence of an internal partial one-to-one map extending f . The
union q =

⋃
∆ p∆ of these partial types is a consistent partial type whose realization

would tell us that D is automorphic (in this instance) for T . By the statement of
3.11, as D is good, each of the types p∆ are realized. By Fact 3.10, their union q is
also realized. Since M0,M1, f were arbitrary, this shows D is automorphic for T .

In the other direction, suppose D is automorphic for the theory Tdlo := Th(Q, <).
Then in the notation of Definition 2.6, κ = cf(κ) ≤ λ implies κ ∈ LcfSp2(D). By
Theorem 2.19 (c) implies (e), D is good. �

Combining Conclusion 3.7 and Conclusion 3.12, we have a possible spectrum of
complexity focused on the non-simple theories: it arises with the minimum non-
simple theory in Keisler’s order and is completely resolved by the time we get to
the Keisler-maximal theory.

11Call M resplendent if whenever a Σ1
1 formula is satisfiable in some elementary extension of

M , it is already satisfiable in M . Each model has a resplendent elementary extension of the same

cardinality. We assume this as otherwise M may be rigid.
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We now work towards a characterization of those ultrafilters which are automor-
phic for unstable theories. We will use the characteristic sequences of [12].

Definition 3.13. For a given formula ϕ and T , recall:

(1) the characteristic sequence of hypergraphs for ϕ is given by 〈Pn : n < ω〉
where

Pn(y1, . . . , yn) = (∃x)
∧

1≤i≤n

ϕ(x, yi)

(2) we call a set A a positive base set if, identifying the predicates Pn with their
interpretations in the monster model, we have that An ⊆ Pn for all n < ω.
So A is a positive base set iff {ϕ(x, a) : a ∈ A} is a consistent partial type.

(3) We call the formula ϕ 2-compact if the characteristic sequence depends on
2, or equivalently, if any set of positive instances of ϕ is consistent iff every
subset of size 2 is consistent.

Fact 3.14 (essentially 5.2 of [10]). Let T be a complete countable theory. To show
that D saturates T , it would suffice to show that for every formula ϕ(x̄, ȳ) of T and
for every A ⊆ (Mλ/D)`(ȳ) such that |A| ≤ λ and A is a positive base set for the
characteristic sequence of ϕ, there exists a map g : A→ D such that writing

mt = |{a[t] : a ∈ A, t ∈ g(a)}| < ℵ0 for t ∈ λ

we have that for all m ≤ mt, P
M
m is a complete hypergraph on the vertex set

{a[t] : a ∈ A, t ∈ g(a)}.

Proof. We start with two reductions. First, by Fact 3.10, it suffices to show we
can realize all ϕ-types over small sets. Second, we may assume that these ϕ-types
consist only of positive instances of the given formula. (Why? We can always code
ϕ as a formula θ(x; y, z, w) = (ϕ(x, y) ∧ z = w) ∨ (¬ϕ(x, y) ∧ z 6= w) with the
property that a ϕ-type may always be expressed as a set of positive instances of θ.
Since we are quantifying over all formulas, this will be enough.) So in what follows
let us fix a formula ϕ(x, y) of T (note that `(x̄), `(ȳ) need not be 1), fix M |= T ,
N = Mλ/D and let p(x) = {ϕ(x, a) : a ∈ A} be a ϕ-type we wish to realize,
which by the above we may assume consists only of positive instances of our given
formula. Let 〈Pn : n < ω〉 be the characteristic sequence of ϕ. By definition of the
characteristic sequence, A is a positive base set. Suppose A has a distribution of
the kind stated in the Fact. For each t ∈ I, the set {ϕ(x, a[t]) : a ∈ A, t ∈ g(a)} is a
consistent partial type. Let bt realize it. Then by  Los’ theorem, b := 〈bt : t ∈ I〉/D
realizes the type p(x), as desired. �

Corollary 3.15. If ϕ is a formula of T and ϕ is 2-compact, Fact 3.14 reduces to
saying: it would suffice to show that any positive base set A in Mλ/D with |A| ≤ λ,
there is a sequence 〈Ct : t ∈ I〉 such that each Ct is finite and is a complete graph
for the edge relation P2 in M and

∏
t Ct/D ⊇ A. In this case we say “A is covered

by an ultraproduct of complete P2-graphs.”

Before continuing we recall some facts about Keisler’s order. As explained in the
introduction, for D regular, “D saturates T” means that M I/D is |I|+-saturated
for some (equivalently, by regularity, every) model M of T . The reader may wish
to refer to the picture on page 4.
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Definition 3.16. Keisler’s order is the pre-order on complete countable theories
given by: T1 / T2 if and only if for all regular ultrafilters D, if D saturates T2 then
D saturates T1.

Fact 3.17 (For history and discussion of these results, see [15] §4.).

(1) The theory of (Q, <) is maximal in Keisler’s order.
In fact, any theory with a definable linear order is maximal. See [15] The-
orem F, pps. 8152-8153 or [24] Theorem 4.3 p. 371.

(2) The maximal class in Keisler’s order consists precisely of those theories T
such that for a regular ultrafilter D, D saturates T if and only if D is good.
See [2] Theorem 6.1.8 and [8] Theorem 3.4.

(3) If T1 is stable and T2 is unstable, then T1 / T2 in Keisler’s order.
See [24] Theorem 0.3 p. 323.

(4) The theory of the random graph is minimum among the unstable theories
in Keisler’s order.
See [13] Conclusion 5.3.

(5) The (unstable) theory Tfeq is minimum among the non-simple theories in
Keisler’s order.
See [17] Theorem 13.1.

Claim 3.18. Let D be a regular ultrafilter on I. Suppose D is automorphic for
the random graph. Then D is good.

Proof. Let M = (Q, <). Let “small” mean ≤ λ = |I|. By quantifier elimination, an
ultrapower N = M I/D is |I|+-saturated if and only if every positive ϕ-type over
a set of size ≤ |I| is realized where ϕ = ϕ(x; y, z) = y > x > z. This formula is
2-compact, so we apply Corollary 3.15. We would like to show that for every small
positive base set A ⊆ N2 w.r.t. the characteristic sequence of ϕ, A is covered by
an ultraproduct of complete P2-graphs.

Let {Xα : α < λ} ⊆ D be a regularizing family (so the intersection of any
infinitely many elements of this family is empty). Enumerate A as 〈aα : α < λ〉.
Recalling that each aα ∈ A ⊆ N2 is a pair (a1

α, a
2
α), define d : A→ D by:

aα 7→ {t ∈ I : M |= (∃x)(a1
α < x < a2

α)} ∩Xα.

Henceforth we forget the a’s are pairs and write simply aα[t] for the element of M2

corresponding to a1
α[t], a2

α[t]. For each t ∈ I, let Bt = {aα[t] : α < λ, t ∈ d(aα)}. By
the definition of the Xα’s, each Bt is a finite set of ‘vertices’ of PM1 , thus a finite
graph in PM2 .

Since the random graph G is universal, for each t ∈ I there is a partial isomor-
phism ht whose domain is Bt (considered as a PM2 -graph) and whose range is some
finite graph Gt in G. For each t ∈ I and α < λ define rα,t ∈ G to be ht(aα[t]). For
each α < λ let rα := 〈rα,t : t ∈ I〉/D ∈ GI/D. By  Los’ theorem, {rα : α < λ} is a
complete graph in GI/D. Henceforth we refer to its coordinate projections as rα[t].

Next, choose in the ultrapower of the random graph a set of distinct vertices
{cα : α < λ} which is a complete graph in GI/D and which is covered by an
ultraproduct of complete graphs, as follows. By regularity, some ultraproduct of
finite sets, say 〈nt : t ∈ I〉 will have size ≥ λ mod D. Since the random graph is
universal for finite graphs, for each t we may find a complete graph Ht ⊆ G on nt
vertices. Then H =

∏
tHt/D is a complete graph of size ≥ λ. Let C = {cα : α <

λ} ⊆ H be a subset of size λ.
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Now we have assumed D is automorphic for the random graph, so there is an
internal partial one-to-one map g sending rα 7→ cα for all α < λ. Consider the map
d∗ defined by, for each α < λ,

rα 7→ (d(aα) ∩ {t ∈ I : cα[t] ∈ Ht}) ∈ D.
This has accomplished our goal because for each t ∈ I, {cα[t] : t ∈ d∗(rα)} is a
complete graph and ht � {rα[t] : t ∈ d∗(rα)} is a partial graph isomorphism onto
it. So necessarily {rα[t] : t ∈ d∗(rα)} is a complete graph for almost all t, which
means {aα[t] : t ∈ d∗(rα)} is a complete PM2 -graph for almost all t. We have
shown explicitly that A is covered by an ultraproduct of complete PM2 -graphs,
which completes the proof. �

Definition 3.19. For ` = 1, 2 suppose T1, T2 are complete countable theories. We
say that T2 captures the atomic relational patterns of T1 when for every relation
R(x1, . . . , xn) of τT1 there are a formula ϕ(x̄1, . . . , x̄n) of LT2 and a constant m,
such that i ≤ n =⇒ `(x̄i) = m, such that whenever M` |= T` for ` = 1, 2, and
whenever k < ω and 〈ai : i < k〉 ∈ kM1 is a finite sequence of elements, there is a
〈b̄j : j < k〉 ∈ k(mM2) such that for all η ∈ nk,

M1 |= R(aη(0), . . . , aη(n−1)) ⇐⇒ M2 |= ϕ(b̄η(0), . . . , b̄η(n−1)).

Observation 3.20. Let D be a regular ultrafilter and let T1 be a complete count-
able theory which eliminates quantifiers, such as Tdlo := Th(Q, <) or Trg, the theory
of the random graph. Suppose T2 is a complete countable theory which captures the
atomic relational patterns of T1. If D is automorphic for T2, then D is automorphic
for T1.

Claim 3.21. Let T2 be a theory with the independence property, i.e. with a
formula ϕ(x, ȳ) such that in some model M2 |= T2, there is a sequence 〈b̄i : i < ω〉
of elements of `(ȳ)M2 such that for any σ ⊆ ω,

{ϕ(x, b̄i) : i ∈ σ} ∪ {¬ϕ(x, b̄j) : j ∈ ω \ σ}
is a consistent partial type. Then T2 captures the atomic relational patterns of Trg,
the theory of the random graph.

Proof. Let 〈ai : i < k〉 be a finite set of elements in a model of Trg. We may choose
by induction a sequence 〈b0i b1i : i < ω〉 of pairs of elements of M2, all distinct,
with the property that ϕ(b0i , b

1
j ) iff aiRaj holds in the random graph. [Let b1i be

the element bi from the definition of independence property, and choose each b1i to
realize the appropriate ϕ-type.] Note that by compactness, we may choose any finite
initial segment of such a sequence in any model of T2, simply because once we’ve
found such a finite sequence in the given M2 its existence is first order expressible
(fixing ϕ) and so transfers to any other elementarily equivalent model. �

The analogous result is also straightforward. (Note that the last line of the
previous proof applies here too: Definition 3.19 asks for finite patterns, so it will
indeed be satisfied in any model of a T2 with s.o.p., not only the M2 from 3.22.)

Claim 3.22. Let T2 be a theory with the strict order property, so by compactness,
for some formula ϕ(x̄, ȳ) and M2 |= T2 there is an indiscernible sequence 〈b̄i : i < Q〉
of elements of `(ȳ)M2 such that for any two disjoint sets σ, τ ⊂ Q,

{ϕ(x̄, b̄i) : i ∈ σ} ∪ {¬ϕ(x̄, b̄j) : j ∈ τ}
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is consistent if and only if for all α ∈ σ and for all β ∈ τ , α < β. Then T2 captures
the atomic relational patterns of Th(Q, <).

Theorem 3.23. Let D be a regular ultrafilter on λ. If D is automorphic for some
unstable theory, then D is good.

Proof. Let T be such an unstable theory, so either T has the strict order property
or T has the independence property. If T has the independence property, then it
captures the atomic relational patterns of the theory of the random graph: apply
Claim 3.21 followed by Observation 3.20 followed by Claim 3.18. Likewise, if T
has the strict order property, then it captures the atomic relational patterns of
T ′ = Th(Q, <), so D is automorphic for T ′. Now apply Theorem 2.19(c)→ (e). �

Conclusion 3.24. Let D be a regular ultrafilter on λ. To the equivalent conditions
of Theorem 2.19 above, we may add:

(f) D is automorphic for some countable unstable theory.
(g) D is automorphic for every countable unstable theory.
(h) D is automorphic for the theory of linear order.
(i) D is automorphic for the theory of the random graph.

Proof. Recall that condition (e) of that Theorem is that D is good. Since the theory
of linear order and the theory of the random graph are both unstable, we have that
(g)→ (h)→ (f) and (g)→ (i)→ (f). Theorem 3.23 gives (f)→ (e) and Conclusion
3.12 gives (e) ↔ (g). �

Corollary 3.25. Let T be a countable complete first order theory and D a regular
ultrafilter. If D is automorphic for T then D saturates T .

Proof. Suppose T is stable. As all ultrapowers of finite models are saturated, we
may assume T has infinite models. By Corollary 3.8, D is good for equality. So by
Fact 3.9, D saturates all countable stable theories, including T .

Suppose that T is unstable. If D is automorphic for T , then by Theorem 3.23,
D is good, i.e. λ+-good. We know from [8] Theorem 1.4 that if M is a model of
any countable theory and D is regular and λ+-good then Mλ/D is λ+-saturated.
Thus, D saturates T . �

Corollary 3.26. For a complete countable theory T the following are equivalent:

(a) Any regular ultrafilter D which saturates T is automorphic for T .
(b) Any regular ultrafilter D which saturates T is good.
(c) T is in the maximal Keisler class.

Proof. (b) iff (c) is Keisler’s characterization of the maximal class in Keisler’s order.
(b) implies (a): If D is good then D is automorphic for T by Conclusion 3.12.
(a) implies (b): There are two cases. In the first case, T is unstable. Then

any regular D which saturates T is also automorphic for T , so apply Conclusion
3.24 to conclude (b). In the second case, we assume for a contradiction that T
is stable. In this case, the assumption (a) entails that every regular ultrafilter D
which saturates T is automorphic for T , and thus by 3.8 must be good for equality.
However, it is known that there exist regular ultrafilters (in ZFC) which saturate
all stable theories but are not good for equality (see e.g. [19] Theorem 12.1). This
contradiction shows the second case cannot occur, so we finish the proof. �
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Corollary 3.27. There is more than one non-simple class in Keisler’s order iff
there is a regular ultrafilter D on some λ which is automorphic for infinite sets but
not automorphic for the random graph.

Corollary 3.28. There is a non-maximal non-simple theory in Keisler’s order iff
there is a regular ultrafilter D which saturates Tfeq but not automorphic for Tfeq.

We conclude with a curious restatement. By [13] saturation of Tfeq, the minimum
non-simple theory, depends on formulas which are 2-compact and whose associated
P2 may, after adding finitely many parameters, be assumed to be stable. Thus,
invoking 5.2 of [10] or just 3.14, we record here that the problem of showing Keisler’s
order has more than one class on the non-simple theories – in other words, the
problem of proving that “good for equality” does not imply “good” – has the
following surprising form.

Definition 3.29. Let D be a regular ultrafilter on λ. Say that a graph G is D-
coverable if every complete induced subgraph of Gλ/D of size ≤ λ is covered by an
ultraproduct of complete graphs.

Conclusion 3.30. To prove that there are at least two non-simple classes in
Keisler’s order, i.e., to prove that good for equality does not imply good:

(1) it would suffice to prove that there exists a regular ultrafilter D such that
every stable graph is D-coverable and the random graph is not D-coverable.

(2) it would suffice to prove that there exists a regular ultrafilter D which is
automorphic for the theory of equality but not for the theory of linear order.

4. Lower cofinality spectrum problems

Here we take an axiomatic approach.
More precisely, in this section we build a bare-bones framework consisting of

two orders and a single tree and prove we may still recover a version of uniqueness
in Lemma 4.21 below. Once again, two motivations converge here: one model-
theoretic and one set-theoretic. The first notes that the analysis of cofinality spectra
has strong consequences for cuts in models of Peano arithmetic; for instance, in [22]
we use cofinality spectrum problems to prove that a model of PA is κ-saturated iff
it has cofinality at least κ and the reduct to the language of order has no (κ′, κ′)-
cuts for κ′ < κ. Contrast this with the case in real closed fields, where there is great
freedom in determining which pairs of cardinals (κ1, κ2) appear as the cofinalities
of cuts [26]. It is therefore natural to ask: at what point along the route from
o-minimality to Peano arithmetic does substantial control of cuts appear?

The second arises from the fact that our proof that p = t, in [17] Theorem 14.1,
proceeded by an analysis of cut spectra in pairs of models with sufficient set theory.
Yet that ZFC proof required a forcing argument, revolving around the fact that if
we assume for a contradiction that p < t, a so-called peculiar cut would appear,
contradicting our (ZFC) analysis of the cut spectrum. It would be very nice to
remove the forcing argument from this proof, and we conjecture that an axiomatic
analysis of the argument is the way to proceed.

To begin, we take the definition of ‘peculiar cut’ apart.

Definition 4.1 (Cuts in partial orders). For a partial order (L,<L),

(1) We say that the sets (A,B) represent a cut in (L,<L) when:
(a) (∀a ∈ A)(∀b ∈ B)(a <L b), i.e. A <L B.
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(b) there does not exist c ∈ L such that A <L c <L B.
(2) We say that the pair of sequences (a, b) represent a cut in (L,<L) when:

(a) a is <L-increasing
(b) b is <L-decreasing
(c) (range(a), range(b)) represent a cut in (L,<L).

(3) For a partial order (L,<L) and disjoint nonempty sets A, B,
(a) we say a pair (A,B) represents a rising cut when: for every c ∈ L∧

a∈A
a <L c =⇒

∨
b∈B

b ≤L c.

(b) we say a pair (A,B) represents a falling cut when: for every c ∈ L∨
a∈A

c ≤L a⇐=
∧
b∈B

c <L b.

(c) we say a pair (A,B) represents a peculiar cut if it represents both a
rising and a falling cut.

(4) Just as in (3), but replacing the sets by sequences.

Convention 4.2. Throughout this section, if we say “(A,B) represents a cut”
we will mean that A 6= ∅ or B 6= ∅ unless otherwise stated. If the given cut is
additionally a rising or falling cut, it follows that B 6= ∅ and/or A 6= ∅, respectively.

Example 4.3. Assume L is a linear order. Then every cut is a peculiar cut.

Example 4.4. Let (T , /) be a partially ordered set such that the set of predecessors
of any given node is linearly ordered. Then every cut is a falling cut.

Definition 4.5. Let (L,<L) be a partial order and a a strictly monotonic sequence.
Then cf(a) denotes the cofinality of a, i.e. the cofinality is the ordinal lg(a) i.e. the
minimum size of a cofinal subsequence in the relevant order. This is always either
0, 1 or a regular infinite cardinal, and note that by the previous convention we
generally avoid the case of 0.

We now investigate the coinitiality of a given increasing sequence. Recall that
what makes the next Claim 4.6 nontrivial is that (L,<L) is allowed here to be a
partial order, so a priori we may have multiple descending sequences of different
cofinalities approaching the given ā.

Claim 4.6. Let (L,<L) be a partial order and κ = cf(κ) ≥ ℵ0. Suppose that

(a, b
1
) represents a cut, (a, b

2
) represents a rising cut and cf(a) = κ. Then

cf(b
1
) = cf(b

2
).

Proof. Let θ` = cf(b
`
) for ` = 1, 2, so each θ` is a regular cardinal or 1. Suppose

θ1 6= θ2. Let a = 〈aε : ε < κ〉. For every α < θ1,∧
ε<κ

aε < b1α

so as (a, b
2
) represents a rising cut, for each α < θ1 there is β(α) < θ2 such that

b2β(α) <L b
1
α. As θ1 6= θ2, it follows they are not both 1, so there is β(∗) < θ2 such

that the set

U = {α < θ1 : β(α) ≤ β(∗)}
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is unbounded in θ1. [Recall θ1 6= θ2 are both regular. If θ1 = 1 we are done, and
if they are both infinite, then either θ1 < θ2 or θ2 < θ1, and in each case we are
done. If θ1 is infinite and θ2 = 1, then let b∗ witness that θ2 = 1. Now either
we can choose the assignment α 7→ β(α) so that a cofinal sequence of elements of
b̄1 are <L-strictly above b∗, in which case the result is true, or not, in which case
cofinally many elements of b̄2 are equal to b∗. Since Definition 4.1 requires that b̄2

be a monotonic sequence, this means b̄2 is eventually constant and equal to b∗, and
so θ1 = 1 = θ2, contradicting our assumption.]

Thus b2β(∗) satisfies

α < θ1 ∧ ε < κ =⇒ aε <L b
2
β(∗) <L b

1
min(U\α) ≤L b

1
α

This contradicts the assumption that (a, b
1
) represents a cut. �

The parallel version of 4.6 holds in the other direction:

Claim 4.7. Let (L,<L) be a partial order and κ = cf(κ) ≥ ℵ0. Suppose that
(a1, b) represents a cut, (a2, b) represents a falling cut and cf(b) = κ. Then

cf(a1) = cf(a2)

Proof. Analogously to the proof of 4.6. �

Example 4.8. Let N be a nonstandard model of Peano arithmetic, and let x|y be
the partial order given by “x divides y.” Let p be a prime and let ψ(x) say that p
is the only prime divisor of x. Let ā be cofinal in the standard elements ψ(N) and
let b̄2 be a sequence of elements of ψ(N) so that (ā, b̄2) represents a |-cut, thus a
rising |-cut. So if b̄1 is any sequence of elements of N such that (ā, b̄1) represents a
|-cut, necessarily cf(b̄1) = cf(b̄2).

Discussion 4.9. In each case the directionality of Claims 4.6 and 4.7 was crucial;

if we suppose e.g. κ = cf(κ) ≥ ℵ0, and let (a, b
1
), (a, b

2
) represent a cut and a

falling cut, respectively where cf(a) = κ then it need not be the case the case that

cf(b
1
) = cf(b

2
). There is also as yet no leverage for comparing κ-indexed sequences.

In order to compare different cuts (perhaps in two different partial orders), we
now introduce a tree. For the intent of the following Definition 4.10, see 4.12. We
have used r for a lower cofinality spectrum problem to distinguish from s, the default
name for a cofinality spectrum problem in [17]. Some examples will be built in the
next section.

Definition 4.10. We say r is an LCSP (lower cofinality spectrum problem) when
r consists of:

(M,L1, <1, L2, <2, T ,ET , F1, F2, r1, r2)

which satisfy:

(1) M is a model.
(2) for ` = 1, 2, (L`, <`) is a partial order definable in M , with a root, i.e.

minimum element, rt(L`) named by the constant r`. We may write L` for
(L`, <`).

(3) (T , /T ) is a tree definable in M , i.e. a partially ordered set where the set
of predecessors of any given element is linearly ordered and x ET y means
(x /T y) ∨ (x = y).
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(4) for ` = 1, 2, F` is a homomorphism from (T , /T ) to (L`, <`), i.e. s/T t =⇒
F`(s) <` F`(t).

(5) (Guided extension) if s ∈ T and F`(s) <` a
1
` <` a

2
` <` a

3
` for ` = 1, 2 then

for some t ∈ T we have: s /T t and a1
` <` F`(t) <` a

3
` for ` = 1, 2.

(6) (Weak surjection) if a1
` <` a

2
` <` a

3
` for ` = 1, 2 then for some t ∈ T we

have a1
` <` F`(t) <` a

3
` for ` = 1, 2.

(7) T has a root rt(T ), and for ` = 1, 2 we have that F`(rt(T )) = rt(L`).
(8) We will assume unless otherwise stated that r is nontrivial, meaning that

L1, L2 and T are infinite.

Convention 4.11. In what follows, r will denote an L.C.S.P.

Discussion 4.12 (Intent of 4.10). Continuing with the nominal analogy of “LCSP”
to the “CSP” of [17], these remarks compare 4.10 to [17] 2.3-2.4. The reader of just
this paper may feel free to skip these remarks.

4.10(3) Note that we do not ask for the tree to be pseudofinite or well ordered, only
that the set below any node is linearly ordered.

4.10(4) The projection functions F`(x) are the parallel to x(max dom(x), `) for CSP.
Other than the requirements on the given projection functions F`, the linear
orders in the tree and the orders (L,<L) may be quite different; e.g. one
may be discrete, the other dense.

4.10(5) This is a substitute for successor: whereas for c.s.p.s it was important that
the orders be pseudofinite, here we do not even assume the partial orders
are discrete. We simply ask that for any element s ∈ T and any nontrivial
interval above its projection to L`, we may find t ∈ T above s whose
projection is in the given interval.

4.10(6) If in 4.10(5) we let s = rt(T ) and allow F`(s) ≤ a` for ` = 1, 2, then 4.10(6)

follows. So condition (6) adds something only when
∧2
`=1 F`(a

1
`) = rt(T ).

We now define the cut spectrum and several related invariants of r, analogues of
[17] Definition 2.8.

Definition 4.13 (The cut spectrum of an LCSP). For an LCSP r, w ⊆ {↗,↙},
` ∈ {1, 2}, let Cr(w, `) be the set of pairs (κ, λ) such that for some (a, b):

(1) (a, b) is a pair of sequences of elements of L`
(2) κ, λ ∈ Reg∪{1} but {κ, λ} 6= {1}
(3) a is strictly <`-increasing of length κ
(4) b is strictly <`-decreasing of length λ
(5) aα <` bβ when α < κ, β < λ
(6) for no c ∈ L` do we have that α < κ ∧ β < λ =⇒ aα <` c <` bβ
(7) if (↗∈ w) then the cut is rising, i.e. for any c ∈ L`:

if
∧
α<κ

aα <` c then
∨
β<λ

bβ ≤` c

(8) if (↙∈ w) then the cut is falling, i.e. for any c ∈ L`:

if
∧
β<λ

c <` bα then
∨
α<κ

c ≤` aα

Definition 4.14 (Related invariants).
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(B) Let pr(w, `) = min{κ + λ : (κ, λ) ∈ Cr(w, `)}, i.e. the cardinality of first
occurrence of a (rising, falling, or peculiar, depending on w) cut in L`.
Let pr(w) = min{pr(w, 1), pr(w, 2)}.

(C) Size of paths whose projections have no natural upper bound.
Let x ⊆ {1, 2}. Let Tr,x be the set of regular cardinals κ such that for some
sequence t = 〈tα : α < κ〉 of elements of T ,
(a) tβ ET tα when β < α < κ
(b) for ` ∈ x ⊆ {1, 2}, if there are a′`, a` ∈ L` such that F`(tα) <` a

′
` < a`

for each α < κ, then there is no t ∈ T such that: (i) α < κ =⇒ tα ET
t and (ii) ` ∈ x =⇒ F`(t) <` a`.

(c) if ` ∈ {1, 2} but ` /∈ x or if no such elements a′`, a` exist, then there is
no t ∈ T such that α < κ =⇒ tα ET t.

(D) Let tr,x = min(Tr,x), and tr = min{tr,∅, tr,{1}, tr,{2}, tr,{1,2}.}

(E) Spectrum of cardinals which are robust under projection.
Let Θr(w, `) be the set of regular infinite cardinals κ ≤ ||M || such that if
for some t ∈ T , there is a sequence (a,b) with cf(a) = κ which represents
a w-cut of the linear order

TET (r, t) := ({s ∈ T : s ET t}, /T )

i.e. a cut which is rising if w = {↗}, falling if w = {↙}, and peculiar if
w = {↗,↙}, then the projection

(〈F`(aα) : α < cf(a)〉, 〈F`(bβ) : β < cf(b)〉)
likewise represents a w-cut of (L`, <`).

(F) Θr(w) = Θr(w, 1) ∩Θr(w, 2).

(G) Smoothness.
(a) r has upper bounds when for any t1, t2 ∈ T the set T/T (r, t1)∩T/T (r, t2)

has a last element.
(b) For ` ∈ {1, 2} we say r is `-smooth if for any a, b ∈ L` we have that
{x ∈ L` : x ≤` a} ∩ {x ∈ L` : x ≤` b} has a ≤`-last element.

(c) r is smooth when: if ` ∈ {1, 2}, t ∈ T and a` ∈ L` satisfies F`(t) 6<` a`,
then there is s ∈ T such that s /T t, F`(s) <` a`, and
if s1 /T t ∧ F`(s1) <` a` then s1 / s.

(H) r is endless when (∀s ∈ T )(∃t ∈ T )(s /T t).

Claim 4.15. Assume r is a LCSP and has upper bounds in the sense of 4.13(G)(a).
If t ∈ Tr then every cut of (Tr,≤t, /T ) is a peculiar cut of (Tr, /r).

Proof. Note that every cut (ā, b̄) of (Tr,≤t, /T ) is a peculiar cut of (Tr,≤t, /T ) since
this is a linear order, recalling 4.4. The claim is that it is a peculiar cut in the tree
itself. It is a falling cut in the tree by 4.4. To see it is a rising cut, suppose c ∈ T
is such that α < lg(ā) =⇒ aα / c. Let T/c denote the set of elements in T below c,
which is linearly ordered by /, and likewise for T/b0 . Having upper bounds implies
that T/c∩T/b0 has a /-greatest element c∗. By assumption, α < lg(ā) =⇒ aα/c∗/c.
But by construction c∗ / b0, and since (ā, b̄) is a cut there must be some β < lg(b̄)
such that bβ / c∗. So bβ / c, which shows that the cut (ā, b̄) is rising and therefore
peculiar, recalling that c was arbitrary. �

Observation 4.16. For ` = 1, 2,
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(1) If r is smooth, then:
(a) Tr,∅ ⊆ Tr,{`} ⊆ Tr,{1,2}.
(b) tr,∅ ≥ tr,{`} ≥ tr,{1,2}.

(2) Cr(∅, `) ⊆ Cr({↗}, `) ∩ Cr({↙}, `) ⊆ Cr({↗}, `) ∪ Cr({↙}, `).
Proof. (1) (b) follows from (a), and for (a), by 4.13(C)(c) if ` ∈ x then the sequence
t̄ is unbounded in T , so 4.13(C)(b) will be immediately satisfied. Note that smooth-
ness says more: given any strictly increasing t̄ in T , if 〈F`(t) : t ∈ t̄〉 is bounded by
a` for ` = 1, 2, then if there is any upper bound t∗ of t̄ in T , even if F`(t∗) ≥ a` for
` = 1, 2 then smoothness will give an element t contradicting 4.13(C)(b).

(2) Immediate from the definition. �

Definition 4.17. Let r be an LCSP.

(1) We call r reflective when: if ` ∈ {1, 2} and a <` b then for some c <` d
the partial orders (a, b)L` := ({x ∈ L` : a <` x <` b}, <`) and (c, d)L` are
anti-isomorphic.

(2) We call r symmetric when (L1, <1) and (L2, <2) are isomorphic, and strongly
symmetric if they are equal.

Claim 4.18. Let r be an LCSP and ` ∈ {1, 2}. If r is reflective and `-smooth then:

(1) (κ1, κ2) ∈ Cr(∅, `) ⇐⇒ (κ2, κ1) ∈ Cr(∅, `).
(2) (κ1, κ2) ∈ Cr({↗}, `) ⇐⇒ (κ2, κ1) ∈ Cr({↙}, `).
(3) (κ1, κ2) ∈ Cr({↗,↙}, `) ⇐⇒ (κ2, κ1) ∈ Cr({↗,↙}, `).

Claim 4.19. Let r′, r be LCSPs, w ⊆ {↗,↙}.
(1) Suppose that (L`, <`)

r = (L`, <`)
r′ for ` = 1, 2. Then for ` = 1, 2:

(a) Cr(w, `) = Cr′(w, `).
(b) pr(w, `) = pr′(w, `).

(2) For `,m ∈ {1, 2}, if (L`, <`)
r and (Lm, <m)r

′
are isomorphic then Cr(w, `) =

Cr′(w,m).

(3) For `,m ∈ {1, 2}, if (L`, <`)
r, (Lm, <m)r

′
are anti-isomorphic then (κ1, κ2) ∈

Cr(w, `) ⇐⇒ (κ2, κ1) ∈ Cr′(w,m).
(4) Assume r is a symmetric LCSP. Then Cr(w, 1) = Cr(w, 2), so we may write

simply Cr(w).

Claim 4.20. Let r be an LCSP.

(1) If there is in (L`, <`)
r a strictly increasing sequence 〈aα : α < δ〉, δ a limit

ordinal then there is such a sequence in (L3−`, <3−`)
r when δ ≤ ts,{`}.

(2) If δ is a limit, r is endless and 〈aα : α < δ〉 is <`-increasing and δ < tr,{`}
then there is a <3−`-increasing sequence of length δ + ω.

Proof. (1) We choose tα ∈ T by induction on α such that:

• β < α =⇒ tβ /T tα
• if α is a successor then a2α <` F`(gα) < a2α+2

In the case α = 0 apply 4.10(6), and in the case α successor apply 4.10(5).
For α limit we apply the hypothesis that δ ≤ tr,{`}, 4.13(D). Note that we use

2δ = δ for every limit δ, so α < δ =⇒ 2α < δ.
This completes the induction, and 〈F3−`(tα) : α < δ〉 is <3−`-increasing, as de-

sired.
(2) Having chosen 〈tα : α < δ〉 which is <T -increasing as above, we can choose

t0,
∧
α<δ tα <T tδ as δ < T3,{t}. We can moreover choose tδ+m by induction on
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n > 0 such that n = m + 1 implies tδ+m <T tδ+n, using the assumption that r is
endless. Once more, 〈F3−`(tα) : α < δ + ω〉 is as required. �

The main result of this section is the following general version of Uniqueness.
Informally, Lemma 4.21 says: Suppose there is a ordinary (κ, θ1)-cut, a priori not
necessarily either rising or falling, in the first order L1 and likewise an ordinary
(κ, θ2)-cut in the second order L2, and suppose that κ is one of the cardinals whose
“projections are ↗-true,” meaning that any rising cut in the tree whose left side
has cofinality κ projects to a rising cut in both orders. Then θ1 = θ2.

Lemma 4.21. If (κ`, θ`) ∈ Cr(∅, `) for ` = 1, 2 and κ1 = κ = κ2 < tr,{1,2} and
κ ∈ Θr({↗}, 1) ∩Θr({↗}, 2), then θ1 = θ2.

Proof. Let (a`, b
`
) witness (κ`, θ`) ∈ Cr({∅}, `) for ` = 1, 2, so κ`, θ` ≥ 1.

First, we try to choose tα by induction on α < κ such that:

• tα ∈ T
• β < α =⇒ tβ /T tα
• a`2α+2 /T F (tα) ET a`2α+4 for ` = 1, 2

For α = 0, apply 4.10 clause (6), since the induction asks that our witness is
above a`2. For α = β + 1, apply 4.10 clause (5) with tβ here in place of s there.

For α a limit ordinal < κ, we have that α < tr,{1,2} so cf(α) /∈ Tr,{1,2}. Moreover,

〈tβ : β < α〉 is /T -increasing and ` ∈ {1, 2}∧β < α =⇒ F`(tβ) <` a
`
2α <` a

`
2α+1 <`

a`2α+2. Thus, by the definition 4.13(C)-(D) of “cf(α) < tr,{1,2},” there is t′α such

that β < α =⇒ tβ ET t′α and ` ∈ {1, 2} =⇒ F`(t
′
α) <` a

`
4α+2. Now choose tα as

in the case α = β + 1.
Second, having chosen the sequence t = 〈tα : α < κ〉, since this sequence is

E-increasing and F is a homomorphism in the sense of 4.10(4), we have that∧2
`=1 F (tα) < b`1 < b`0. Since κ < tr there is t ∈ T such that α < κ =⇒ tα /T t

and
∧2
`=1 F`(t) <` b

`
0. By definition of tree, the set T/t of elements /-below T is

a linear order in which 〈tα : α < κ〉 is increasing and bounded. Hence for some
θ ∈ Reg∪{1}, for some /T -decreasing sequence s = 〈sα : α < θ〉 in T/t we have that
the pair (t, s) represents a cut. So it will suffice by transitivity of equality to prove
that θ` = θ for ` = 1, 2.

For each α < θ and ` ∈ {1, 2}, let c`α = F`(sα) ∈ L`. Since F` is a homomor-
phism, necessarily c` = 〈c`α : α < θ〉 is <`-decreasing and each of its elements is
<`-above a`. Since T/t is a linear order, (t, s) represents a rising, and even peculiar,
cut of T/t, recalling 4.3. As κ ∈ Θr({↗}, `) for ` = 1, 2, we have by definition
4.13(E) that the pair (a`, c`) represents a rising cut of (L`, <`) for ` = 1, 2.

Thus recalling (a`, b
`
) represents a cut, by 4.6 we have that cf(c`) = cf(b

`
). But

θ = cf(s) = cf(c`), θ` = cf(b
`
) so θ = θ`, as desired. �

Corollary 4.22. Assuming symmetry, the same holds swapping the occurrences
of “ ↗ ” for “ ↙ ” in the statement of Lemma 4.21.

A dual claim to 4.21 is:

Corollary 4.23. If (κ`, θ`) ∈ Cr({↙}, `) for ` = 1, 2 and κ1 = κ = κ2 < tr,{1,2}
and κ ∈ Θr({∅}, 1) ∩Θr({∅}, 2), then θ1 = θ2.
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Proof. In the proof of 4.21, make the obvious changes: (a) “Since T/ is a linear
order, (t, s) represents a falling, and even peculiar, cut of T/, recalling 4.3.” (b)
“As κ ∈ Θr({↙}, `) for ` = 1, 2, we have by definition 4.13(E) that the pair (a`, c`)
represents a falling cut of (L`, <`) for ` = 1, 2.” �

Conclusion 4.24. Let r be an LCSP and w0 ⊆ w1 ⊆ {↗,↙}, where either:

w0 = ∅ ∧ {↗} ⊆ w1 or w0 = {↗} ∧ w0 ⊆ w1 ⊆ {↗,↙}
Then:

(1) There is a function lcf(−, r) with domain {κ : κ ∈ Θr(w1) ∧ κ < tr,{1,2}}
such that:
(a) lcf(−, r) is a regular cardinal ≥ pr
(b) if ` ∈ {1, 2}, κ < tr,{1,2}, κ ∈ Θr(w1) and a is a strictly <`-increasing

sequence of length κ then:
(i) for some b of length lcf(κ, r),

the pair (a, b) is a w1-cut of (L`, <`).

(ii) if b
′

is such that (a, b
′
) is a w0-cut of (L`, <`) then cf(b

′
) = κ.

(2) If r is symmetric, the parallel statement holds for decreasing sequences with
↙ in place of ↗.

Proof. (1) by Lemma 4.21, (2) by Corollary 4.23. �

Some examples of LCSPs are given in the next section.

5. Examples

This section gives several examples of LCSPs, in increasing order of model-
theoretic interest. Recall the discussion about real closed fields versus Peano arith-
metic from §4. Since we have already established a mild analogue of uniqueness in
this case (4.21), it is interesting to see that the main example of this section, 5.11,
shows that the basic nontrivial example of an LCSP is already much less complex
model-theoretically than models of set theory or PA: it is “half-dependent,” i.e. not
2-independent, Definition 5.8 below. It would be interesting to investigate further
how model-theoretically uncomplicated such an example may be.

Example 5.1 (The standard finite example). For a finite number n > 0, we define
r = r1

n by:

(1) Lr
` = n = {0, . . . ,n− 1}

(2) <r
` is the natural order on n

(3) rt(Lr
`) = 0

(4) Let T r be the set of all η such that for some m ∈ [1,n),
• η = 〈η(`, i) : ` ∈ {1, 2}, i ≤ m〉, so let lev(η) = m.
• η(`, 0) = 0
• η(`, i) < n
• i < j < m =⇒ η(`, i) < η(`, j)

(5) η <r
T σ iff η = σ � {(`, i) : ` ∈ {1, 2}, i < lg(η)}

(6) F`(η) = η(`, lev(η))
(7) rt(T r) = 〈0, 0〉.

Claim 5.2. For every n > 0, rn is an LCSP, which moreover:

(1) is smooth, and also fact `-smooth for ` = 1, 2.
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(2) is reflective; in fact every interval in (Lr
` , <

r
`) is anti-isomorphic to itself.

(3) is strongly symmetric.

Example 5.3 (The pseudofinite case). Ultraproducts of the Mr1n
’s, or just of

models of
⋂
n

⋃
m>n Th(Mrm), are smooth, strongly symmetric LCSPs.

Example 5.4 (The standard infinite example). For non-zero ordinals α, β we define
r = r2

α,β as follows, with ` ∈ {1, 2}:
(1) Lr

` = L`(r) is α
(2) <r

` is the usual order
(3) rt(Lr

`) = 0
(4) η ∈ Tr iff:

(a) η = 〈η(`, i) : ` ∈ {1, 2}, i ≤ lev(η)〉
(b) lev(η) is an ordinal ≤ β
(c) i < j ≤ lev(η) =⇒ η(`, i) < η(`, j)}

(5) <Tr is defined as above: η <Tr ν iff:
(a) η, ν ∈ Tr
(b) lev(η) ≤ lev(ν)
(c) ` ∈ {1, 2} ∧ i < 1 + lev(η) implies η(`, i) = ν(`, i)
(d) F`(η) = η(`, lev(η)).

Claim 5.5. Let α > 0 and let β be a limit ordinal. Let r = r2
α,β as in 5.4. Then:

(1) r is an LCSP.
(2) r is smooth and also `-smooth for ` = 1, 2.
(3) if α, β are limit ordinals then r is endless
(4) r is strongly symmetric
(5) however, r is not reflective if α is infinite.

Example 5.6 (A general case). For ` = 1, 2, let B` be a Boolean algebra with
with 0B but no 1B, or just a partial order with a minimal element 0B. Let β > 0
be a limit ordinal. Let r = r3

B,β be as follows:

(1) L`[r] is B`

(2) <r
` is ≤B`

(3) rt(Lr
`) = 0B`

(4) Tr is the set of η such that for some lev(η) < β,
(a) η = 〈η(`, i) : ` ∈ {1, 2}, i ≤ lev(η)〉
(b) η(`, i) ∈ B`

(c) i < j ≤ lg(η) =⇒ η(`, i) <B`
η(`, j)

(5) F`(η) = η(`, lev(η))
(6) rt(TR) = 〈0B1 , 0B2〉.

We now work towards Conclusion 5.19, existence of an LCSP r such that the
first order theory Th(Mr) is 1

2 -dependent.

Definition 5.7. We say the formula ϕ(x̄, ȳ, z̄) is 2-independent in the first order
complete theory T when in CT there exist 〈āi : i < ω〉, 〈b̄j : j < ω〉 with `(āi) = `(y)
for i < ω and `(b̄i) = `(z) for j < ω, such that for any function F : ω × ω → {0, 1}
the set of formulas

{ϕ(x, āi, b̄j) : F (i, j) = 1} ∪ {¬ϕ(x, āk, b̄l) : F (k, l) = 0}
is consistent.
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Definition 5.8. We say that the theory T is half-dependent if no formula ϕ is
2-independent in any model of T . 12

Fact 5.9 ([29] 5.66). T is 1
n -dependent when for every m, ` and finite ∆ ⊆ L(τT ),

for infinitely many k < ω, we have |A| ≤ k =⇒ |Sm∆(A)| < 2(k/`)n .

Definition 5.10. Let τ∗ be the vocabulary consisting of:

• P1, P2, P3 unary predicates
• <1, <2, <3 binary predicates
• c1, c2, c3 individual constants
• F1, F2 are unary function symbols
• F is a binary function
• R1, R2 three-place predicates
• G a three-place function.

In the next Definition 5.11, we allow the interpretation of function symbols to
be partial functions. [This is written to be a finite universal theory.]

Definition 5.11. Let K be the set of τ∗-models M such that

(1) PM1 , PM2 , PM3 is a partition of |M |
(2) <M` is a linear order of PM` with first element cM` for ` = 1, 2
(3) <M3 is a partial order of PM3 which is a tree with root cM3
(4) FM is a two place function from PM3 into itself; FM (s1, s2) is the maximal

common ≤3-lower bound
(5) FM` is a function from P3 into P`, monotonic increasing i.e. such that

s <M3 t =⇒ F`(s) <
M
` F`(t), and FM` (c3) = c`.

(6) for ` = 1, 2, the relation RM` satisfies:
(a) RM` ⊆ {(a1, a2, t) : t ∈ PM3 , a` ∈ PM` , a` ≤ FM` (t))}.
(b) if s <M3 t and a` ∈ PM` then (a1, a2, s) ∈ RM` iff

(a1, a2, t) ∈ RM` ∧
2∧
`=1

a` ≤ FM` (s)

(c) if (a1, a2, t) ∈ RM1 , a′1 ≤M1 a1 and a2 ≤M2 a′2 ≤ FM2 (t),
then (a′1, a

′
2, t) ∈ RN1 .

(d) if (a1, a2, t) ∈ RM2 , a1 ≤M1 a′1 ≤ FM1 (t), and a′2 ≤M2 a2,
then (a′1, a

′
2, t) ∈ RN2 .

(7) dom(G`) is named by a predicate X`

(8) dom(G`) ⊆ {(a`, t) : t ∈ PM3 , a` ∈ PM` , a` ≤M` FM` (t)} for ` = 1, 2
(9) for t ∈ PM3 and a1 ∈ PM1 , a2 ∈ PM2 the following are equivalent.

(a) GM1 (a1, t) = a2

(b) GM2 (a2, t) = a1

(c) (∃s)(s ≤3 t ∧ F1(s) = a1 ∧ F2(s) = a2)
and both conditions imply that (a1, a2, t) ∈ RM1 ∧ (a1, a2, t) ∈ RM2 .

(10) for every t ∈ PM3 and ` ∈ {1, 2}, a 7→ GM` (a, t∗) is a partial increasing
function from PM` into PM3−`.

K<ℵ0 is the class of finite M ∈ K.

12The notation is from [29], the idea being that reciprocals were a useful way to keep track of
the negation.
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Example 5.12. The following structure belongs to K from 5.11. Let P1, P2 name
copies of (N, <) with the usual order called <1, <2 respectively. Let P3 be the
tree whose elements are finite sequences of natural numbers, partially ordered by
inclusion, called /. Let F take any two elements of P3 to their longest common
initial segment. Let Pr : N×N→ N be the Gödel pairing function (this is external
and used only in defining the model). For ` = 1, 2 define F` by induction on lg(t).
Let F`(∅) = 0. For t ∈ T with lg(t) = 1, if t(0) = Pr(a1, a2) let F`(t) = a`. For
t ∈ T with s / t and lg(t) = n + 1 = lg(s) + 1, suppose that s(n − 1) = Pr(a1, a2)
and t(n) = Pr(b1, b2) let F`(t) = a` + b`. [Clearly this satisfies the definition of
an LCSP.] For any (a1, a2, t) ∈ P1 × P2 × P3 and ` = 1, 2, let R`(a1, a2, t) hold
when a1 ≤ F1(t) and a2 ≤ F2(t). For each t ∈ P3, let G1(−, t) be the partial order-
preserving bijection whose graph is given by {(F1(s), F2(s)) : s/t}, and let G2(−, t)
be the corresponding partial order-preserving bijection in the other direction.

In this example, although we have independence arising from e.g. “guided ex-
tension” in 4.10(5), freedom in the sense of 5.8 is curtailed because the F` must be
homomorphisms.

Note again that the functions G` in 5.11 are allowed to be partial and the re-
lations are allowed to be nonempty; once e.g. R1, R2 are nonempty, the closure
conditions (c), (d) apply for R1, R2 respectively.

Definition 5.13. Suppose M,N ∈ K.

(a) Let M ⊆ N mean: |M | ⊆ |N |, X ∈ τ∗ =⇒ XM ⊆ XN , and M is closed
under FN` , FN but not necessarily under GM` .

(b) For X ⊆M , cl(X,M) is the closure of X∪{cM` : ` = 1, 2, 3} and the partial
functions of M .

Claim 5.14. If M ∈ K and t∗ ∈ PM3 , then there is N such that, for ` = 1, 2,

(1) N ∈ K, M ⊆ N
(2) ||M || < ||N || ≤ ||M ||+ |PM1 |+ |PM2 |
(3) GN` (a`, t∗) is well defined iff a` ∈ PN` and a` ≤N` FN` (t∗).

Claim 5.15.

(1) K is the class of models of a finite universal theory, call it T0.
(2) If M ∈ K, X ⊆M is finite then cl(X,M) [meaning closure under F, F1, F2]

has ≤ 6|X| + 3 elements. If we close also under the Gs, then the closure
has ≤ (6|X|+ 3)2 elements.

(3) If M ( N ∈ K are finite, then for some M1 we have that M ( M1 ⊆ N
and one of the following occurs:
(a) there are ` ∈ {1, 2} and a` ∈ PN` \M , |M1| = |M | ∪ {a`}
(b) there is t ∈ PN3 \M such that |M1| = |M | ∪ {t}

Proof. (1) By 5.11.
(2) Recall that F gives the greatest lower bound of two elements of P3. Then

X3 := cl(X ∩ P3,M) ∩ P3 = {F (s, t) : s, t ∈ X ∩ P3} has ≤ 2|X ∩ P3| members.
Subsequent closure under F1 adds at most X3 elements and likewise for F2. The
three extra elements are because we are obligated to include the constants if they
are not already in X.

(3) If PM1 6= PN1 choose ` = 1, a` ∈ PN1 \ PM1 and M1 := N � (|M | ∪ {a`}) are
as required in (a).
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If PM1 = PN1 but PM2 6= PN2 choose ` = 2, a` ∈ PN2 \ PM2 and M1 = N �
(|M | ∪ {a`}) are as required in (a).

If
∧2
`=1 P

M
` = PN` then necessarily PM3 6= PN3 . Choose t ∈ PN3 \ PM3 such that

|{s ∈ PN3 : s <N3 t}| is minimal, and finite. Let M3 = N � (|M | ∪ {t}), so this is as
required in (b). �

Claim 5.16. We have that K<ℵ0 :

(1) is nonempty, in fact there is M∗ ∈ Kℵ0 embeddable uniquely into any
M ∈ K.

(2) has the JEP over the individual constants.
(3) has the disjoint amalgamation property, with universe given by the union.

Proof. (1) Define M to be the model with set of elements {1, 2, 3}. For ` = 1, 2,
let PM` = {`}, let FM` (3) = `, let RM` = {(1, 2, 3)}, and let GM` (`, 3) = `. For
` = 1, 2, 3, let cM` = `, and finally let FM (3, 3) = 3.

(2) Follows from (1) and (3).
(3) Assume M0 ⊆ M1 ∈ K, M0 ⊆ M1, M1 ∩M2 = M0 and the M` are finite.

Recall we aren’t necessarily assuming closure under the Gs. By the previous claim,
without loss of generality M` \M0 has a single element, so the conditions are easily
verified. �

Conclusion 5.17. T0 has a model completion T1 which has elimination of quanti-
fiers and is categorical in ℵ0.

Proof. The class K<ℵ0 of finite members of K is countable, closed under isomor-
phism and under substructure (“HP”), uniformly locally finite (we may bound the
size of a model generated by n elements by 5.15(2)), and has JEP and AP by 5.16.
Quoting Hodges [6] Thoerem 7.4.1 p. 349, its Fraissé limit M has a theory T1 which
is ω-categorical and has quantifier elimination. This theory is complete and model
complete (for model completeness, see e.g. [6] Theorem 8.3.1 p. 374 (e) → (a)).
Since M embeds all finite submodels of elements of K and since any finite subset of
any N ≡M occurs as a subset of an element of K<ℵ0 , it is straightforward to show
by compactness that any model of T0 may be embedded in some model of T1 and
vice versa. So T1 is the model companion of T0 and has the required properties. �

Claim 5.18. (1) If M ⊆ N are from K<ℵ0 , and a ∈ N \ M , then there is
a unique M1 such that M1 ∈ K, M ⊆ M1 ⊆ N , and for ` ∈ {1, 2},
a ∈ PN` =⇒ |M1| = |M | ∪ {a} while a ∈ PN3 implies |M1| = |M | ∪
{a, FM1 (a), FM2 (a)}.

(2) If M ⊆ CT , M finite with n elements,
(a) if ` ∈ {1, 2}, {p ∈ S(M) : P`(x) ∈ p} has

≤ |PM` |+ |PM` | × (2|Pn3−`||P
M
3 |) ≤ n2

members, or just ≤ n+ (2n)n+1 ≤ (2n)n+2.
(b) if ` = 3 then

|{p ∈ S(M) : P3(x) ∈ p}| ≤ max{|PM1 ||P
M
2 |, |PM2 ||P

M
1 |} ≤ (2n)logn.

Proof. (1) Follows from the axioms.
(2) For clause (a): by part (1) and the choice of T it suffices to bound

|{tpqf(b,M,N) : M ⊆ N ∈ K,N \N = {n ∈ PM` \ PM` }
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What freedom do we have? First, N |= “c` <` b” so there are |PM` | possible cuts
which b realizes in (PM` , <N` ) over PM` . Second, for each t ∈ PM3 we will need to
decide R1, R2 (and thus G1, G2). There are ≤ 2|PM3−`| possibilities, so all together

we have |PM` | × (2|PM3−`|)|P
M
3 |.

For clause (b): We have ≤ 2|PM` | choices for FN` (b). For the R`, assuming

i ∈ {1, 2}, |PMi | ≤ |PM3−i|, so the number of possibilites for the R` is ≤ 2|P3−i||P
M
i |,

so the count follows. �

Conclusion 5.19. T1 is 1
2 -dependent.

Proof. For some real constant c, for every sufficiently large n, if A ⊆ CT , |A| = n
then |S(A)| ≤ cn logn by 5.18(2). Hence by 5.9 the result follows. �

Claim 5.20. If M is a model of T , then there is a unique endless LCSP r such
that Mr = M , (Lr

` , <
r
`) = (PM` , <M` ) for ` = 1, 2, Tr = (PM3 , <M3 ). Moreover, r is

smooth.

Proof. We check Definition 4.10. The only non-obvious condition is (5), which
follows by model completeness of T , as does “endless.”

To see that r is smooth: for i = 3, this holds by FN . For i = 1, 2, this is trivial
as (PM` , <M` ) is a linear order. For i = 4, the point is that a 7→ GM` (a, t) is an
isomorphism from (Tr)≤t onto (L`, <`)≤FM` (t). �

In the example above (5.12) we have the independence property from guided
extension but not, as just shown, 2-independence, motivating the following problem.

Problem 5.21. Determine whether meaningful analogues of Uniqueness hold in
any NIP theory extending the theory of linear order.
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