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Abstract. We construct a handle decomposition of a smooth manifold from

a Morse function on that manifold. We then use handle decompositions to

prove Poincaré duality for smooth manifolds.
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Introduction

The goal of this paper is to provide a relatively self-contained introduction to
handle decompositions of manifolds. In particular, we will prove the theorem that
a handle decomposition exists for every compact smooth manifold using techniques
from Morse theory. Sections 1 through 3 are devoted to building up the necessary
machinery to discuss the proof of this fact, and the proof itself is in Section 4. In
Section 5, we discuss an application of handle decompositions to algebraic topology,
namely Poincaré duality.

We assume familiarity with some real analysis, linear algebra, and multivariable
calculus. Several theorems in this paper rely heavily on commonplace results in
these other areas of mathematics, and so in many cases, references are provided in
lieu of a proof. This choice was made in order to avoid getting bogged down in
difficult proofs that are not directly related to geometric and differential topology,
as well as to make this paper as accessible as possible.

Before we begin, we introduce a motivating example to consider through this
paper. Imagine a torus, standing up on its end, behind a curtain, and what the
torus would look like as the curtain is slowly lifted. The pictures in Figure 1 show
the portions of the torus that are visible at different moments as the curtain is
lifted. A closer look will reveal that during this unveiling process, the topology of
the revealed portion changes; at first it is simply a disk, then a tube, then a torus
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with one boundary component, and finally, a whole torus. This paper aims to
provide an explanation for how the topology of the torus changes as it is unveiled,
as well as how that informs other studies within topology.

{∅}

Figure 1. Unveiling a torus.

1. Smooth Manifolds and Handles

We begin by defining topological manifolds.

Definition 1.1. A topological manifold M is a second countable, Hausdorff topo-
logical space such that for all points p in M , there exists an open neighborhood Np
of p such that Np is homeomorphic to the Euclidean open n-ball, Bn := {x ∈ Rn |
|x| < 1}.

It will be standard notation throughout this paper to use Mn to denote an n-
dimensional manifold when the dimension of the manifold is relevant, after which
the manifold may be simply referred to as M .

Definition 1.2. A manifold with boundary M is a second countable, Hausdorff
topological space such that for all points p in M , there exists an open neighborhood
Np of p such that Np is homeomorphic to either the Euclidean open n-ball {x ∈
Rn : |x| < 1} or the Euclidean open half-n-ball {x ∈ Rn+ : |x| < 1}.

Two points p and q in a manifold M may have neighborhoods that overlap, but
are both homeomorphic to Euclidean balls Bn. We therefore introduce the idea of
a transition map on the intersection.

Definition 1.3. Let M be a manifold, and let U , V be open subsets of Mn with
homeomorphisms PU : U → Bn and PV : V → Bn such that U ∩ V 6= ∅. The map
φ : Rn → Rn sending PU (U ∩ V ) to U ∩ V and then to PV (U ∩ V ) is called the
transition map on U ∩ V .

Transition maps are important in the study of manifolds, since they allow one
to patch together local coordinate systems on manifolds to form globally defined
structures.

We now proceed to definitions pertaining to smooth manifolds.

Definition 1.4. A function f : Rn → R is said to be C∞ or smooth if it is infinitely
differentiable.

Definition 1.5. A smooth manifold is a manifold Mn such that all of its transition
maps are C∞.

Definition 1.6. If M and N are smooth manifolds, then f : U → V is a diffeo-
morphism if it is a homeomorphism and if f and f−1 are differentiable.
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For our purposes, as is common in the literature, we will take diffeomorphisms
to be infinitely differentiable, to match our infinitely differentiable manifolds.

Definition 1.7. A manifold with corners M is a second countable, Hausdorff topo-
logical space such that for all points p in M , there exists an open neighborhood Np
of p such that Np is homeomorphic to one of the following:
(i) the Euclidean open n-ball {x ∈ Rn : |x| < 1}
(ii) the Euclidean open half-n-ball {x ∈ Rn−1×R+ : |x| < 1}
(iii) other subsets of the Euclidean n-ball where more than one coordinate is re-
stricted positive {x ∈ Rn−m×Rm+m : |x| < 1}

Note that manifolds with corners are homeomorphic to manifolds with bound-
aries, but not necessarily diffeomorphic to them.

Definition 1.8. For each point p in a smooth manifold M , let Np be a coor-
dinate neighborhood with a local homeomorphism φ : Np → U ⊂ Rn. Consider
the equivalence classes [γ] of curves γ : [−1, 1] → Np passing through p such that

γ(0) = p, under the equivalence relation γ1 ≡ γ2 if ∂(φ◦γ1)
∂t = ∂(φ◦γ2)

∂t as maps
φ ◦ γ : [−1, 1]→ U ⊂ Rn. We say that an equivalence class of such local paths v is
a tangent vector to M at p, and that the vector space spanned by all such v is the
tangent space of M at p, denoted TpM .

The union of all the tangent spaces over M is called the tangent bundle on M ,
denoted TM .

Note that all topological manifolds have tangent spaces, but they do not nec-
essarily patch together in a way that will be useful for our purposes without a
smooth structure already in place. The tangent bundle on smooth manifolds is a
major object of study in geometric and differential topology, and it comes with a
lot of interesting structure. However, we will only need its definition in this pa-
per, where it appears in the definition of a vector field on a manifold. For more
information, see [5].

The main theme of this paper is to understand smooth manifolds by breaking
them up into smaller, topologically trivial chunks called handles.

Definition 1.9. An n-dimensional k-handle is a contractible smooth manifold
Dk ×Dn−k.

We specify the construction of k-handles as Dk ×Dn−k so that we can denote
with k the region of hk along which we “glue” it to another topological space of the
same dimension n. We make the notion of “gluing” precise below.

Definition 1.10. Let X, Y be topological spaces, and let K ⊂ X and L ⊂ Y be
subspaces such that there exists a homeomorphism φ : K → L. We obtain a new
space, which we call X glued to Y along φ by taking XtY/x∼φ(x). We call φ the
attaching map.

With the goal of gluing handles to other topological spaces in mind, we now
define some useful parts of a k-handle.

Definition 1.11. There are five subsets of a k-handle which will be of interest to
us. They are:
(i) the attaching region, defined to be ∂Dk × Dn−k. In this paper, it is shown in
bold in figures. Note that the attaching map of a k-handle is a homeomorphism of
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the attaching region into a subset of the space being glued to.
(ii) the attaching sphere, denoted Ak: ∂Dk × {0},
(iii) the core, denoted Ck: Dk × {0},
(iv) the belt sphere, denoted Bk: {0} × ∂Dn−k,
(v) the co-core, denoted Kk: {0} ×Dn−k.

Envisioning Dk and Dn−k both as products of the unit interval, we draw the
following diagram of a handle in Figure 2.

Dk

Dn−k

Ck

Kk

Ak Ak

Bk

Bk

Figure 2. Anatomy of a k-handle, with attaching region shown in bold.

A k-handle in dimensions higher than 2 is impossible to draw, but to give a sense
of how to interpret Figure 2, we show the attaching of a 2-dimensional 1-handle to
a surface in Figure 3.

Figure 3. Gluing a k-handle.

Definition 1.12. A handle decomposition of a compact manifold M is a finite
sequence of manifolds W0, . . . ,Wl such that:
(i) W0 = ∅,
(ii) Wl is diffeomorphic to M ,
(iii) Wi is obtained from Wi−1 by attaching a handle.
A handlebody is a compact manifold expressed as the union of handles.
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Handle decompositions allow one to construct a manifold piece by piece, attach-
ing one k-handle at a time. An example of a handle decomposition of a torus is
shown below in Figure 4. The reader should take a moment to convince themselves
that the final attachment of a 2-handle in the figure really does produce a torus.

{∅}

att. 0-handle att. 1-handle att. 1-handle att. 2-handle

Figure 4. A handle decomposition of a torus.

It is also important to note that a handle decomposition of a given manifold is
not unique. For instance, below are two decompositions of the unit sphere S2.

{∅} →
att. 0-handle

→
att. 2-handle

Figure 5. One decomposition of S2.

{∅}

att. 0-handle att. 0-handle att. 1-handle att. 2-handle

Figure 6. Another decomposition of S2.

Even though any given manifold has many different handle decompositions, han-
dle decompositions are nevertheless very useful tools for understanding the topology
of manifolds, as they provide a “manual” of sorts for building a manifold piece by
piece. In particular, all closed smooth manifolds admit handle decompositions,
allowing many problems in topology to be studied purely in the context of han-
dlebodies. The proof of this fact requires an understanding of some basic Morse
theory, which we will now discuss.
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2. Morse Functions

The basic idea of Morse theory is to understand manifolds by studying certain
real-valued maps, called Morse functions, on them. We begin by introducing some
properties of smooth functions on manifolds.

Definition 2.1. The gradient vector field of a function f is the vector field on
the domain of f that takes the value ( ∂f∂x1

, . . . , ∂f∂xn
) at each point. We denote this

vector field ∇f and its value at a point p as ∇f |p.
Definition 2.2. A critical point of a function f : Rn → R is a point p ∈ Rn such
that ∇f |p = 0. Similarly, a critical value of f is a value c ∈ R such that f(p) = c
for p a critical point of f .

Definition 2.3. The Hessian of a function f : M → R, denoted Hf , is the matrix
of mixed second order partial derivatives of f :

Hf =


∂2f
∂x2

1
· · · ∂2f

∂x1∂xn

...
. . .

...
∂2f

∂xn∂x1
· · · ∂2f

∂x2
n


The Hessian evaluated at a point p is written Hf (p).

Definition 2.4. A critical point p of a continuous function f is called degenerate
if det(Hf (p)) = 0.

We can now define a Morse function.

Definition 2.5. Given a smooth manifold M and a smooth function f : M → R,
we say that f is Morse if f has no degenerate critical points on M .

The prototypical example of a Morse function on a manifold is a height function
on a surface. That is, imagine your favorite closed surface floating in space above
a plane. Then let your Morse function simply measure the height of level sets of
the surface above the plane. A visual of this example is shown in Figure 7.

−→
f

R

Figure 7. A Morse function that measures height on a torus, with
critical points shown in bold.

The point of studying Morse functions is that if a function has only nondegener-
ate critical points, the function’s local behavior in the neighborhood of its critical
points can be further studied and classified, as is shown in the following definition.
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Definition 2.6. Let M be a smooth manifold, f : M → R be smooth, and p be a
nondegenerate critical point of f . Then the index of f and p is defined to be the
number of negative eigenvalues of the Hessian Hf evaluated at p.

Heuristically, the index of the Hessian tells us how many directions f is decreasing
on. It will be the key to understanding how Morse functions relate to the actual
attachment of handles to a manifold.

Proposition 2.7. The nondegeneracy and the index of a function f at a critical
point p do not depend on choice of local coordinates.

Proof. We appeal to Sylvester’s Law, which states that the number of negative
eigenvalues of the Hessian is independent of the way it is diagonalized. Since di-
agonalization of a matrix corresponds to changing the basis of the source vector
space so that the basis vectors are the eigenvectors of the matrix, this means that
the number of negative eigenvalues of the Hessian is invariant under coordinate
transformation. �

To make Morse functions effective tools in general, we must prove that they
exist on all compact smooth manifolds. The proof of this fact is usually stated in
the literature as the theorem that the set of Morse functions on a smooth, closed
manifold M is dense in C∞(M). In this treatment, we prove that one can always
find a “very similar” function, or a (C2, ε)-approximation, of any function such that
the approximation function is Morse. Even with this modification, this is a rather
involved proof requiring two fundamental lemmas dealing in real analysis. We
therefore provide intuitive outlines for the proofs below, rather than fully rigorous
ones. A more thorough treatment can be found in [6], from which these proofs are
adapted.

We begin with the definition of a (C2, ε)-approximation:

Definition 2.8. A function f : K ⊂ Rn → R is said to be a (C2, ε)-approximation
of a function g : K → R if the following inequalities hold for all points p ∈ K:

|f(p)− g(p)| <ε∣∣∣∣ ∂f∂xi (p)− ∂g

∂xi
(p)

∣∣∣∣ <ε i = 1, . . . , n∣∣∣∣ ∂2f

∂xi∂xj
(p)− ∂2g

∂xi∂xj
(p)

∣∣∣∣ <ε i, j = 1, . . . , n

We can now move on to the requisite lemmas from analysis.

Lemma 2.9. Let U be an open subset of Rn with coordinates {x1, . . . , xn} and
let f : U → R be a smooth function. Then there exist real numbers {ai} such that
f(x1, . . . , xn) − (a1x1 + · · · + anxn) is Morse on U . Moreover, for all ε > 0, each
ai can be chosen such that |ai| < ε.

Proof. The proof of this lemma is dependent on Sard’s theorem, which states that
the set of critical values of a continuous function g : U ⊂ Rn → R has measure 0 in
R. This result has very powerful applications in differential topology, but its proof
is analytical, and so we refer the reader to Appendix C of [1] for a proof.

We begin with a function f : U → R that may or may not have degenerate
critical points in U . Let h : U → Rn send p ∈ U to ∇f(p). Then the matrix of
partial derivatives of h is precisely the Hessian Hf at each point p ∈ U . Thus,
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critical points of h are precisely the degenerate critical points of f (points p where
det(Hf (p)) = 0).

By Sard’s Theorem, we can choose a point a = (a1, . . . , an) ∈ Rn such that a is
arbitrarily close to 0 but a is not a critical value of h.

We now claim that f̄ := f − (a1x1 + · · ·+ anxn) is Morse on U . To see this, let

p be a critical point of f̄ . Then h(p) = a since ∂f̄
∂xi

(p) = ∂f
∂xi

(p)− ai = 0. But since
a was chosen to not be a critical value of h, p must not be a critical point of h, and
hence det(Hf (p)) 6= 0. Furthermore, Hf = Hf̄ since f and f̄ differ only by linear
terms which vanish under second derivatives. Conclude det(Hf̄ (p)) 6= 0, and so p
is nondegenerate. �

The upshot of this lemma is that we only ever need to modify a smooth function
on an open subset of a manifold by some arbitrarily small linear term to make it
Morse.

Lemma 2.10. Let K be a compact subset of a manifold M , and suppose that
g : M → R has no degenerate critical points in K. Then for sufficiently small
ε > 0, any (C2, ε)-approximation f of g has no degenerate critical point in K.

Proof. Let {Ui} be a finite cover by open coordinate neighborhoods of K. For any
function f to have no degenerate critical points in a given Ui, it must have no points
where all of its partial derivatives and the determinant of its Hessian matrix with
respect to the coordinates {x1, . . . , xn} on Ui are all 0. Equivalently, it must satisfy
the following inequality:∣∣∣∣ ∂f∂x1

∣∣∣∣+ · · ·+
∣∣∣∣ ∂f∂xn

∣∣∣∣+ |det(Hf )| > 0

But if f is a (C2, ε)-approximation of g, which we know satisfies the above inequal-
ity, then we have that:∣∣∣∣ ∂f∂xi − ∂g

∂xi

∣∣∣∣ <ε i = 1, . . . , n∣∣∣∣ ∂2f

∂xi∂xj
− ∂2g

∂xi∂xj

∣∣∣∣ <ε i, j = 1, . . . , n

Therefore, for sufficiently small ε > 0, we have that f satisfies the desired inequality,
and therefore has no degenerate critical points on Ui.

If we repeat this process on all the Ui, we get that f has no degenerate critical
points on all of K as desired. �

Together, these lemmas allow us to perturb continuous functions on open subsets
of a manifold to make them Morse, as well as ensure that these perturbations have
minimal effect outside of the subsets on which they are defined. The content of the
existence theorem, then, is stitching these local perturbations together to form a
function that is globally Morse.

Theorem 2.11 (Existence of Morse functions). Let M be a compact manifold and
f0 : M → R be smooth. Then there exists a Morse function f on M that is an
arbitrarily close approximation of f0.

Proof. Let {Ul}1≤l≤k be a finite open cover of M such that for each Ul, there exists
a compact subset Kl of Ul with {Kl} a cover of M by compact sets. We begin with
some smooth function f0 on M that may have degenerate critical points. The idea
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of this proof is to inductively define functions fl on M such that fl is Morse on⋃l
j=1Kj , denoted Cl for brevity. When l = k, we will have fk Morse on Ck = M .

Our base case for induction will be to let K0 := {∅} with f0 our base function.
For our inductive hypothesis, suppose that we already have fl−1 : M → R such

that fl−1 is Morse on Cl−1. We want now to show that there exists a function fl
that is Morse on Cl−1 ∪Kl = Cl.

To do this, let {x1, . . . , xn} be local coordinates on Ul. Lemma 2.9 then tells us
that there exist real numbers {ai} such that fl−1(x1, . . . , xn)− (a1x1 + · · ·+ anxn)
is Morse on Ul.

We cannot simply set fl to be this modified version of fl+1, however, since the
coordinates {x1, . . . , xn} are local to Ul. To fix this, we introduce a smooth bump
function on hl : Ul → [0, 1] such that hl = 1 on an open neighborhood Vl of Kl

contained in Ul, but hl = 0 outside of a compact neighborhood V̄l. This is a lot of
sets to keep track of, so a picture is shown below.

Kl Vl

V̄l

Ul

Figure 8. Relevant sets.

We can now define fl on all of M as follows:

fl(p) =

{
fl−1(p)− hl(p) · (a1x1 + · · ·+ anxn) p ∈ V̄l
fl−1(p) p /∈ V̄l

All that remains is to check that fl is a (C2, ε)-approximation of fl−1. Inside Kl,
we can simply calculate the following inequalities:

|fl − fl−1| = |(a1x1 + · · ·+ anxn)|(hl)

| ∂fl
∂xi
− ∂fl−1

∂xi
| = |aihl + (a1x1 + · · ·+ anxn)

∂hl
∂xi
|

i = 1, . . . , n

| ∂
2fl

∂xi∂xj
− ∂2fl−1

∂xi∂xj
| = |ai

∂hl
∂xj

+ aj
∂hl
∂xi

+ (a1x1 + · · ·+ anxn)
∂2hl
∂xi∂xj

|

i, j = 1, . . . , n

We know that hl is bounded on V̄l, which is compact, and 0 elsewhere, and so |∂hl

∂xi
|

and | ∂
2hl

∂xi∂xj
| must also be bounded on V̄l. Therefore for all ε > 0, by choosing each

ai small enough, we can make |fl − fl−1|, | ∂fl∂xi
− ∂fl−1

∂xi
|, and | ∂

2fl
∂xi∂xj

− ∂2fl−1

∂xi∂xj
| all

less than ε. Therefore, on Kl, fl is a (C2, ε)-approximation of fl−1.
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Outside of V̄l, fl = fl−1, but we know that some compact sets Kj must intersect
Kl since all the Kj together cover M . We therefore must check that fl is a (C2, ε)-
approximation on the overlaps Kl ∩ Kj , j 6= l, that is to say, with respect to
the coordinates on Uj for those Uj which intersect Ul. Fortunately, because M is
smooth, all of its transition maps between overlapping open sets are C∞, and so
the composition of any transition map from Ul to Uj with fl differs from fl−1 on
Uj by a bounded term. Therefore, for all ε > 0, we can adjust the ai to be even
smaller such that fl is a (C2, ε)-approximation of fl−1 on the overlaps Kl ∩ Kj .
Outside of V̄l, fl = fl−1, and so we conclude that fl is a (C2, ε)-approximation of
fl−1 on all of M .

By Lemma 2.10, we can now say that if fl−1 had no degenerate critical points
in any Kj for j 6= l, then fl must also have no degenerate critical points in any of
those sets. Thus, after inducting on l until l = k, we have fk Morse on M . �

Now that we have familiarized ourselves with the idea and existence of Morse
functions, we can proceed to the first result of Morse theory: the use of the index
of a critical point to define new coordinate systems on neighborhoods of critical
points. This observation is made rigorous in the Morse lemma below. Proving the
Morse lemma is a key step in the construction of handlebody decompositions, as it
allows us to reduce the behavior of a Morse function near a critical point to simply
telling us how many coordinates f is increasing on, and how many it is decreasing
on. If f is a height function, as in our examples, this is equivalent to walking along
inside our manifold at p and noting how many directions one could walk in to go
“down” and how many one could walk in to go “up”.

p x1

x2

Figure 9. An index 1 critical point p on a surface, with local
coordinates {x1, x2}.

This is shown in Figure 9. Note that in this figure, if one were walking along the
surface at p, one could walk along the x1 axis to walk “up” or along the x2 axis to
walk “down”. Figure 9 therefore corresponds to an index 1 critical point.

Before we can get to the actual proof of the Morse lemma, we will need a lemma
from multivariable calculus.

Lemma 2.12. Let f : Rn → R be C∞ on a convex neighborhood U ⊂ Rn contain-
ing the origin, and suppose that f(0, . . . , 0) = 0. Then there exist C∞ functions
{gi}1≤i≤n defined on U such that:

f =

n∑
i=1

xigi
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with:

gi(0, . . . , 0) =
∂f

∂xi
(0, . . . , 0)

We will omit the proof of this lemma for brevity, as it is an application of the
multivariable chain rule. For a concise proof, see Part I, Chapter 2 of [7], or [4].

We are finally ready to prove the Morse lemma. There are many proofs of
the Morse lemma out there, all in varying levels of detail. Here we provide a
general idea of the proof that is palatable for those not in the mood to do lots of
coordinate transformations, with a particular emphasis on aspects of the proof that
are enlightening for its later use in handlebody decompositions. Of course, Milnor
in [7] has a proof. For a more fleshed-out version, however, we recommend [4].

Theorem 2.13 (Morse lemma). Let f be a Morse function on a manifold M
and p be a nondegenerate critical point of f . Then there exist local coordinates
{x1, · · · , xn} on a neighborhood Np such that on Np, f(x1, . . . , xn) has the form:

f(x1, · · · , xn) = −x2
1 − · · · − x2

k + x2
k+1 + · · ·+ x2

n

Where k is the index of f at p, and p corresponds to the origin of this coordinate
system.

Proof. We begin by letting {y1, . . . , yn} be local coordinates on Np and considering
f(y1, . . . , yn). To rearrange the coordinates such that f takes a quadratic form on
a neighborhood of p, we would like to rewrite f in such a way that allows us to see
the behavior of its second partial derivatives at p = (0, . . . , 0).

To do this, we use Lemma 2.12 twice; one iteration of the lemma applied to f
defines functions gi : Rn → R such that f(y1, . . . , yn) =

∑n
i=1 yigi(y1, . . . , yn) and

gi(0) = ∂f
∂yi

(0) = 0, and the second iteration applies the lemma to each gi to define

functions hi,j : Rn → R such that hi,j(0) = ∂gi
∂xj

(0). The details of this calculation

are not enlightening, but it is necessary to obtain the form below for f :

f(y1, . . . , yn) =

n∑
i=1

n∑
j=1

yiyjhi,j(y1, . . . , yn)

Because all partial derivatives of f are assumed to exist on Np, hi,j = hj,i.
Furthermore, if we compute the 2nd partial derivatives of f at p = (0, . . . , 0) in
terms of {hi,j}, we see that:

∂2f

∂yi∂yj
(p) =

{
2hi,j(p) i = j

hi,j(p) i 6= j

Crucially, this observation means that 2hi,i(p) is equal to the ith diagonal entry of
Hf (p) in terms of coordinates {y1, . . . , yn}, and that hi,j is equal to the (i, j)th entry
for i 6= j. Our goal, therefore, is to diagonalize Hf (p) in order to get a quadratic
form for f .

Now because second partial derivatives commute, the Hessian is a symmetric
matrix with real entries and is therefore diagonalizable. There therefore exists a
coordinate basis {x̄1, . . . , x̄n} on Np such that in this basis, Hf (p) is diagonal. If
we let λi be the ith diagonal entry of Hf (p), then we know that in this basis, f
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takes the following form:

f(x̄1, . . . , x̄n) =

n∑
i=0

λi
2
x̄2
i

We perform one more coordinate transformation J on Np to get rid of the λi

2
coefficients, being careful to keep their sign:

xi = J(x̄i) := sign(λi) ·
√
|λi|
2
x̄i

Thus we obtain a quadratic form for f in the coordinates {x1, . . . , xn}:
f(x1, . . . , xn) = sign(λ1)x1 + · · ·+ sign(λn)xn

If we wish, we can now permute the coordinates to group them by the signs of
their coefficients to achieve the desired form for f .

f(x1, · · · , xn) = −x2
1 − · · · − x2

k + x2
k+1 + · · ·+ x2

n

�

If f can be locally modeled by quadratics in each coordinate, then because
quadratics have no critical points that cannot be isolated from their extrema by
open neighborhoods (in fact, they have no other critical points at all), f must not
have any critical points too near to any other. We therefore obtain the following
result:

Corollary 2.14. Nondegenerate critical points on any manifold can be isolated by
open neighborhoods.

This is an important corollary, as it allows us to consider nondegenerate critical
points one by one.

3. Flows on Manifolds

We now take a brief detour into another topic in differential topology and geom-
etry: flows. Morally, a flow is a group of diffeomorphisms associated to a smooth
vector field X on a manifold M that sends a point on M in the direction of the
vector associated to that point by X. We make these two definitions precise below:

Definition 3.1. A smooth vector field X on a manifold M is a smooth map from
M into its tangent bundle TM that assigns to each p in M a vector vp in TpM .

Definition 3.2. A flow on a manifold M is a map Φ: R×M → M with the
following properties:
(i) ϕt(p) := Φ(t, p) is a diffeomorphism of M ,
(ii) ϕ0(p) is the identity diffeomorphism of M ,
(iii) For all s, t ∈ R, ϕs+t = ϕs ◦ ϕt.

The trajectory of a point p in M of a flow is a map ψp : R→M that sends t ∈ R
to ϕt(p) such that ψp(0) = ϕ0(p) = p.

Note that the definition of a flow is equivalent to that of a smooth group action
of R on M by diffeomorphisms.

One can think of a flow as being generated by a smooth vector field X on M by

defining X such that ∂Φ(t,p)
∂t = X ◦ ϕt(p). In this framework, the trajectory of a

point is equivalent to an integral curve of the vector field.
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For our purposes, we will want to understand when this generation of flows by
smooth vector fields is unique. It turns out that the restriction we put on smooth
vector fields on M to have them generate unique flows on M is the property of being
compactly supported, or taking on a value of 0 outside of some compact subset of
M .

The following proof of this fact is adapted from [7], but it can be found in a
variety of different texts in differential topology in varying forms. A particularly
thorough treatment can be found in Chapter 12 of [5].

Theorem 3.3. Let X be a smooth vector field on a manifold M and suppose that
X is compactly supported on K ⊂M . Then X generates a unique flow Φ on M .

Proof. Given X, consider the set of differential equations on t parametrized by
points p in K given by

∂Φ(t, p)

∂t
= X ◦ ϕt(p)

with the initial condition ϕ0(p) = p at all points p in K.
Existence and uniqueness of Φ both, then, are a consequence of the common

result in ordinary differential equations that guarantees that an ordinary differential
equation with an initial condition has a unique, smooth solution that depends
smoothly on the initial condition. So for any given point p ∈ M , there exists an
open neighborhood Np of p with a unique Φ(t, p) defined on it that satisfies the
above differential equation for t ∈ (− ε, ε). Furthermore, because X was smooth,
for a given set of solutions {ϕt,α} such that each ϕt,α is defined on the same open
set (− ε′, ε′) ⊂ R, we can patch these local solutions on M together to define ϕt
globally on M within (− ε′, ε′).

It now remains to show that we can find such an open set in R that all ϕt are
defined on. To do this, note that because K is compact, we can restrict a cover of
K by neighborhoods Np of individual points pi indexed by i ∈ I ⊂ N to finitely
many open neighborhoods {Npi}. Let ε0 be the smallest of the εi corresponding to
these neighborhoods Npi . Note that ε0 is well-defined and nonzero because there
are only finitely many neighborhoods Npi .

If ϕt(q) = q for all q /∈ K and for all t ∈ R, then we know that ϕt is defined for all
of M for t ∈ (− ε0, ε0). Furthermore, as each ϕt is generated by X, ϕt ◦ ϕs = ϕt+s
for all t, s ≤ ε0 and so we can simply iterate ϕt on itself to generate ϕt′ for all
t′ such that |t′| > ε0. Thus we obtain Φ(t, p) defined globally on M and for all
t ∈ R. �

This theorem will be essential in showing the existence of a diffeomorphism
between submanifolds of M whose boundaries’ image under f do not include a
critical point.

4. From Morse Functions to Handle Decompositions

We have now constructed enough machinery to obtain a handlebody decomposi-
tion of any smooth, compact manifold. This theorem will follow from the following
two intermediate results about the local behavior of a Morse function on a manifold,
Theorem 4.2 and Theorem 4.4.

Definition 4.1. The sublevel set of a Morse function on M at a point a ∈ R is
{p ∈M | f(p) ≤ a}. It is denoted Ma.
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Theorem 4.2. Let M be a compact manifold and f : M → R be a Morse function.
Suppose that a, b ∈ R are such that f−1[a, b] is nonempty. If f−1[a, b] does not
contain a critical point of f , then Ma is diffeomorphic to Mb.

Proof. The idea of this proof is to find a vector field that we can associate to f and
use that vector field to generate a flow that will give us a diffeomorphism from Ma

to Mb.
Choose a Riemannian metric on M with inner product 〈 , 〉 and let || || denote

the induced norm on M . Note that we can choose such a metric because M is
assumed to be smooth. For more information, see Chapter 8 of [5].

To construct a satisfactory flow, we need our vector field to have only unit vectors
on f−1[a, b]. To do this, define a new function g : M → R such that g = 1

||∇f ||2 on

f−1[a, b] and g vanishes outside of a compact neighborhood of f−1[a, b]. Note that
the existence of such a g is a consequence of the existence of bump functions on
manifolds; see [5].

We then define a vector field X on M by:

X(p) := g(p) · ∇f(p)

So on f−1[a, b], X takes the form:

X(p) =
∇f
||∇f ||2

(p)

However, X is compactly supported, since g was defined to vanish outside of a
compact neighborhood of f−1[a, b]. This allows us to apply Theorem 3.3 to generate
a flow Φ on M .

We want to show that Φ contains a diffeomorphism that sends Ma to Mb. To do
this, let F : R→ R be defined by F (t) = f ◦ϕt(p). We now calculate the derivative
of F with respect to t.

∂F

∂t
=

〈
∂Φ

∂t
,∇f

〉
= 〈X,∇f〉 = 1

This tells us that F , as a function from R to R, is linear with slope 1. Therefore,
ϕ0 is the identity diffeomorphism on Ma, and ϕb−a(Ma) = Mb.

We have found a diffeomorphism from Ma to Mb, thus completing the proof. �

We now deal with the case where f−1[a, b] contains a critical point. We will need
to use the following lemma.

Lemma 4.3. Let M be a smooth manifold with corners. Then there exists a smooth
manifold M ′ without corners that is homeomorphic to M and diffeomorphic to M
outside of a neighborhood of the corner points. Furthermore, M ′ is unique up to
diffeomorphism.

We refer the reader to [8] for a proof.

Theorem 4.4. Let M , f , and a, b be as in Theorem 4.2. If f−1[a, b] contains one
critical point of f with index k, then Mb is diffeomorphic to the union of Ma with
a k-handle.

Proof. Let p be the critical point in f−1(a, b), denote its image under f as c, and
let k be the index of p. Because of Corollary 2.14, we can assume, up to adjusting
a and b to decrease |a− c| and |b− c|, that there exists a coordinate neighborhood
Np that intersects both preimages f−1(a) and f−1(b) and that contains no other
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critical points of f . By the Morse lemma, we can alter the coordinates on Np such
that f takes the form f(x1, . . . , xn) = −x2

1 − · · · − x2
k + x2

k+1 + · · · + x2
n. With

respect to these coordinates, we are able to draw a contour map of f on Np as in
Figure 10.

p

f −1
(a)

f
−1

(a
)

f −
1
(b)

f
−

1 (b
)

f
−1

(c
)

f −
1
(c)

Rn−k

Rk

Np

Figure 10. A neighborhood of a nondegenerate critical point p.

The Morse lemma allows us to split the n dimensions of our manifold into two
subspaces, one of dimension k on which f takes values less than c, and the other
of dimension n− k on which f takes values greater than c. Note that the level set
f−1(a) in Np intersects the coordinate axes of {x1, . . . , xk}, and that it does not
intersect the coordinate axes of {xk+1, . . . , xn}. To see this, imagine standing at
p and noting that walking along any of the axes xi for i ≤ k will lead you down
towards f−1(a), while walking along any of the axes xi for i > k will lead you “up”.
The same logic allows us to represent f−1(b) as intersecting the axes {xk+1, . . . , xn}
and avoiding the others.

We will be interested in the intersections of Ma and Mb with Np, since the local
behavior of f at p occurs within Np. The intersections Np∩Mb and (Np∩Mb)−Ma

are shown below.
Let H be the subset (Np ∩ Mb) − Ma. In fact, H is, as a topological space,

a k−handle, just with an unfamiliar shape. Recalling that our goal is to show a
diffeomorphism between Ma ∪ H and Mb, we apply Lemma 4.3 to round out the
corners of H where it does not meet Ma. This is shown in Figure 13. H then is
diffeomorphic, as a manifold with corners, to Dk ×Dn−k.

It now remains to show that Ma ∪ H is diffeomorphic to Mb. Rather than
construct such a map explicitly, we appeal to Theorem 4.2. The existence of Morse
functions (Theorem 2.11) guarantees the existence of another Morse function g such
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p

Rn−k

Rk p

Rn−k

Rk

Figure 11. Left: Np ∩Mb. Right: (Np ∩Mb)−Ma.

p Rn−k

Rk

Figure 12. H on a torus

p

Rn−k

Rk
p

Dn−k

Dk

Figure 13. Smoothing corners of H, with attaching region of H
to Ma shown in bold.
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that for some a′ ∈ R, Mg=a′ = Ma ∪H and Mg=b = Mb. In particular, g can be
chosen such that M does not contain a critical point of g in g−1[a′, b] (since f
does not by assumption). So by Theorem 4.2, we have that Mg=a′ = Ma ∪ H is
diffeomorphic to Mg=b = Mb. �

We need one more lemma in order to prove the existence of handle decomposi-
tions for all compact smooth manifolds.

Lemma 4.5. Let M be a smooth manifold with f a Morse function on M . Then
if p and q are both critical points of f such that f(p) = f(q), then there exists a
smooth manifold M ′ that is diffeomorphic to M such that f(p) 6= f(q).

We refer the reader to [7] for a proof.

Theorem 4.6 (Existence of handle decompositions). There exists a handle decom-
position for every compact smooth manifold.

Proof. Let M be a compact smooth manifold. By Theorem 2.11, there exists a
Morse function f on M . Because M is compact, we know that there exist A,B ∈ R
such that MA = {∅} and MB = M . Compactness also guarantees us that there are
only finitely many critical points pi of f , and Lemma 4.5 guarantees that we can
adjust M by diffeomorphism such that f(pi) 6= f(pj) for all i 6= j. Our goal now is
to use these critical points to build a handle decomposition of M .

Let L be the total number of critical points on M . Index each critical point pi
such that if i < j, then f(pi) < f(pj). This way, p1 is the lowest critical point, and

pL is the highest. For each pair pi, pi+1 for i = 1, . . . , L− 1, let ai = f(pi)+f(pi+1)
2 .

Note that ai is defined such that the only critical points that the sublevel set Mai

contains are p1, . . . , pi. For notation, set M0 = {∅}, and set ML = M .
If we compare Mai with Mai+1

, we see that f−1[ai, ai+1] contains exactly one
critical point, pi+1. By Theorem 4.4, we have that Mai+1

is diffeomorphic to Mai

with the attachment of a k-handle, where k is the index of ai+1. Furthermore, by
Theorem 4.2, we have that the topology of two sublevel sets Mai and Mb for b > ai
only differs when b > f(pi+1). Therefore, the sequence {M0,M1, . . . ,ML−1,ML}
is a handle decomposition for M . �

5. Handlebodies in Algebraic Topology

Our goal for this section is to illustrate an application of handlebodies to another
area of the study of manifolds, namely Poincaré duality. Note that Poincaré duality
deals in the homology and cohomology of manifolds, and therefore is not sensitive
to differential structure, only the homotopy type of a manifold. To accomodate
this, our first step in proving Poincaré duality is to come up with a way to view a
handlebody as a CW complex.

Proposition 5.1. A handlebody decomposition of a manifold M defines a CW
complex X that is homotopy equivalent to M .

Proof. The idea here is to recognize that up to homotopy equivalence, the structure
of a k-handle can be reduced to that of a k-cell where the attaching sphere of the
k-handle becomes the boundary of the k-cell glued on. This is made precise by
noting that the key information contained in the gluing map of a k-handle can
be reduced to the dimension of the attaching sphere Ak and its placement on the
manifold.



18 REMY BOHM

Recall from Chapter 1 that the attaching sphere of a k-handle was defined to
be ∂Dk × {0}, which is homeomorphic to Sk−1. It is the boundary of the core
Dk × {0}. Since hk can be viewed as the direct product of its core with Dn−k,
which is contractible, hk deformation retracts onto its core.

This deformation retraction shrinks the attaching region to the attaching sphere
Ak. However, this does not change the topology of the attaching map, since the
attaching region is just Ak × Dn−k. Thus, deformation retracting hk to its core
induces a deformation retraction on the space hk is attached to, but does not change
the topology of either. We therefore say that the k-cell ek associated to hk is the
core of hk.

Note that the attaching map of the handle hk restricted to Ak is now precisely
the attaching map of the cell ek. �

A visual of the handle-to-cell homotopy is shown in Figure 14.

Figure 14. Shrinking a k-handle to its core.

Armed with a cellular description of M , we can now proceed to construct its cel-
lular homology and cohomology. Below, we provide the reader with a brief overview
of these theories. For more information, we recommend a combination of [3] for
geometric intuition around homology and [2] for cellular homology specifically. It is
important to note that this is not intended to be a sufficiently thorough introduction
without prior familiarity with homology and cohomology.

Definition 5.2. The cellular chain complex of a CW complex X is the chain
complex associated to a space X where the k−dimensional chain groups Ck(X) are
defined to be the free abelian groups generated by the set of k-cells in X.

In a cellular chain complex, the boundary map sends a k-cell ek to the formal
sum of the (k-1)-cells in the image of the attaching map of ek. This is formalized
in the cellular boundary formula:

∂k(eki ) =
∑
j∈J

dije
k−1
j

where dij is the degree of the composition of the following three maps: the attaching

map of eki sending ∂eki
∼= Sk−1

i into Xk−1, the quotient map sending Xk−1 to
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Xk−1
/Xk−2, and the collapsing map sending all the copies of Sk−1 in Xk−1

/Xk−2 to a

single Sk−1
j . The composition of all of these maps defines a single map from Sk−1

i

to Sk−1
j , the degree of which is well-defined.

More information on cellular homology, as well as a proof of the cellular boundary
formula from the typical construction of cellular homology, can be found in [2].

To each chain complex we can associate the dual complex, called the cochain
complex. For the cellular case, it is defined as follows:

Definition 5.3. The cochain complex associated to a cellular chain complex is
the chain complex in which the k−dimensional chains Ck(X) are defined to be
Ck(X) := Hom(Ck(X),Z).

For a given f ∈ Ck(X), the composition f ◦ ∂k+1 defines a homomorphism from
Ck+1(X) to Z, which is precisely an element of Hom(Ck+1(X),Z), or Ck+1(X). We

therefore define the cellular coboundary map δk : Ck(X)→ Ck+1(X) as follows:

δk(f) = f ◦ ∂k+1

The chain and cochain complexes of a CW decomposition X of a compact,
orientable smooth manifold M can be related using Morse functions on M ! The
following proposition constructs the foundation for this relationship.

Proposition 5.4. If f : Mn → R is a Morse function, then −f : Mn → R is also
a Morse function with the same critical points as f .

Furthermore, if p is an index k critical point of f , then p is an index n − k
critical point of −f .

Proof. If f is smooth, then −f is smooth, as it is the composition of f with the
map R→ R sending x to −x.

Let p be a critical point of f . Then on a neighborhood of p with local coordinates

{xi}, ∂f
∂xi

(p) = 0. Hence ∂(−f)
∂xi

(p) = − ∂f
∂xi

(p) = 0, and so p is a critical point of −f .

Furthermore, by our assumption that f is Morse, det(Hf (p)) 6= 0. But H−f (p) =
−Hf (p), and so det(H−f (p)) = −det(Hf (p)) 6= 0. So p is a nondegenerate critical
point of −f . This completes the proof that −f is Morse.

As for the index of a critical point p of −f , note that multiplication by -1 of
a matrix Hf (p) flips the sign of all of its eigenvalues. Therefore, since H−f (p) =
−Hf (p), the number of negative eigenvalues of the n× n matrix H−f (p) is n− the
number of negative eigenvalues of Hf (p). �

This lemma leads us to the following key corollary, which forms the foundation
for Poincaré duality.

Corollary 5.5. Up to diffeomorphism, the k-handles of the decomposition asso-
ciated to f are equal as submanifolds to the (n − k)-handles of the decomposition
associated to −f .

We are now ready to prove Poincaré duality.

Theorem 5.6 (Poincaré duality). Let Mn be a closed, orientable manifold. Then
for all 0 ≤ k ≤ n, Hn−k(M) ∼= Hk(M).

Proof. To begin, let f be a Morse function on M . Then by Proposition 5.4, −f is
a Morse function on M .
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Let {Mr} be the handle decomposition of M obtained from f , and let X be the
CW complex obtained from {Mr}. Let {Ws} be the handle decomposition of M
obtained from −f , and let Y be the CW complex obtained from {Ws}. Note that
M is homotopy equivalent to both X and Y .

We will refer to n − k-handles of {Mr} as xn−ki , and k-handles of {Ws} as yki .
Note that we may index these both with the same variable because Corollary 5.5
guarantees us a map from n−k-handles of {Mr} to k-handles of {Ws}. In fact, they
are equal as submanifolds. Therefore, for a given handle Hi (a n− k-handle when
viewed in {Mr} and a k-handle when viewed in {Ws}), we define new variables for
its core and co-core, since those terms are no longer well defined when switching
between decompositions. Define αi to be the core of Hi seen as yki , or equivalently,

the co-core of Hi seen as xn−ki . Similarly, define β to be the co-core of Hi seen as

yki , or the core of Hi seen as xn−ki . This can be seen in Figure 15.

Dk

Dn−k
αi

βi

Figure 15. Anatomy of Hi. Note that when Hi is viewed as a k-
handle yk, its core is αi, but when it is viewed as a (n−k)-handle,
its core is βi.

In Proposition 5.1, we saw that to consider a handlebody as a CW complex, each
handle was shrunk to its core. We can therefore say that for every handle Hi in
{Mr} and {Ws}, βi, its core as a n− k-handle in {Mr} is a generator of Cn−k(x).
Similarly, αi, its core as a k-handle in {Ws}, is a generator of Ck(Y ). We will use
this duality to show that the cellular cochain complex of X is isomorphic to the
cellular chain complex of Y .

We begin by defining a homomorphism ψk : Ck(Y )→ Cn−k(X) given by:

ψk(αi) = cn−ki

where cn−ki denote the element of Cn−k(X) that maps βi to 1 ∈ Z and all other βj
to 0 for j 6= i. Note that because {βi} generate Cn−k(X), the maps ci which send
βi to 1 and all other βj to 0 generate Cn−k(X). Furthermore, rank(Cn−k(X)) =
rank(Cn−k(X)) as free abelian groups.

The equivalence of ranks of these chain and co-chain groups guarantees that ψk
is bijective for all k. Every handle Hi has exactly one core/co-core αi and one
co-core/core βi. Furthermore, for every βi in Cn−k(X), there is exactly one ci in
Cn−k(X).
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To extend the maps ψk to an isomorphism of chain complexes, we must show
that they commute with the boundary maps of each complex. Specifically, we want
to show that the following diagram commutes:

Ck(Y )
Y ∂k //

ψk

��

Ck−1(Y )

ψk−1

��
Cn−k(X)

X δn−k

// Cn−k+1(X)

To avoid confusion, we take a moment to give names to the elements of these
chain groups:

Elements of Ck(Y ) are denoted αi.
Elements of Ck−1(Y ) are denoted ᾱj .
Elements of Cn−k(X) are denoted βi.
Elements of Cn−k+1(X) are denoted β̄j .
Elements of Cn−k(X) are denoted ci.
Elements of Cn−k+1(X) are denoted c̄j .

Consider first ψk−1 ◦ Y ∂k.
The map Y ∂k sends the core of a k-handle yki to a formal sum of cores of (k−1)-

handles. The image of αi, the core of yki , under Y ∂k is then:

rank(Ck−1(Y ))∑
j=1

Ai,jᾱj

Where ᾱj is the core of yk−1
j , and thus a generator of Ck−1(Y ).

Formally, Ai,j is the degree of the attaching map of yki . Geometrically, the
coefficients Ai,j represent the number of times the attaching region of yki “wraps

around” the core of each yk−1
j , with sign determined by the orientation of the cores.

However, because the core and co-core of any handle intersect transversely exactly
once, the signed number of times yki “wraps around” each yk−1

j is precisely the

signed transverse intersection number of αi with the co-cores of each yk−1
j . Note

that these co-cores, which we denote β̄j , are the generators of Cn−k+1(X).

If we now apply ψk−1 to
∑rank(Ck−1(Y ))
j=1 Ai,jᾱj , we obtain the following:

ψk−1 ◦ Y ∂k(αi) =

rank(Cn−k+1(X))∑
j=1

Ai,j c̄j

We now examine X δ
n−k ◦ψk.

Recall that X δ
n−k was defined so that X δ

n−k(ci) = ci ◦ X∂n−k+1. X∂n−k+1

sends the core of a (n− k + 1)-handle xn−k+1 to a formal sum of cores of (n− k)-
handles. We can therefore denote the image of β̄j under X∂n−k+1 as follows:

rank(Cn−k(X))∑
i=1

Bi,jβi
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As before, note that geometrically the coefficients Bi,j represent the number of

times the attaching region of xn−k+1
j “wraps around” the core of each xn−ki , with

signs determined by orientation. And again, the core and co-core of each xn−ki in-
tersect transversely exactly once, and so Bi,j is equivalent to the signed transverse

intersection number of β̄j with the co-cores of each xn−ki . But the co-core of xn−ki

is precisely αi! So Bi,j = the signed transverse intersection number of αi with
β̄j = Ai,j . Note that we implicitly used orientability of our manifold here to ensure
that the orientations chosen for αi and βi are consistent with their boundary com-
ponents under both Y ∂k and X∂n−k+1, thus giving a well-defined signed transverse
intersection number.

With this in mind, we can rewrite the image of β̄j under X∂n−k+1 as:

rank(Cn−k(X))∑
i=1

Ai,jβi

Applying ci to this sum, we obtain the following form for X δ
n−k:

X δ
n−k(ci) =

rank(Cn−k+1(X))∑
j=1

Ai,j c̄j

If we precompose this map with ψk, since ψk is an isomorphism sending αi to ci,
we obtain:

X δ
n−k ◦ψk(αi) =

rank(Cn−k+1(X))∑
j=1

Ai,j c̄j

Thus we have:

ψk−1 ◦ Y ∂k = X δ
n−k ◦ψk

Therefore, the chain complex of Y is isomorphic to the co-chain complex of X.
Isomorphic chain complexes have isomorphic homology groups, and so we can

conclude that Hk(Y ) ∼= Hn−k(X). But recall that X and Y were merely two
CW structures on the same manifold, and since the homology of a manifold is
independent of its CW structure, we know that Hk(Y ) ∼= Hk(X).

We can therefore conclude that Hk(X) ∼= Hn−k(X). �

There are numerous other uses of handlebodies in other areas of topology in
addition to this proof of Poincaré duality. The idea of a handle decomposition, as
well as the theory of rearranging handles in a manifold known as handle trading,
is the key step in the proof of the h-cobordism theorem. Handlebodies can also be
used to prove a classification of compact surfaces, and they are also closely related
to Heegard splittings of 3-manifolds. The reader is referred to the references for
further reading on these topics.
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