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ABSTRACT. This paper begins by defining a probability space and establishing
probability functions in this space over discrete random variables. We then
define the expectation and variance of a random variable with the ultimate
goal of proving the Weak Law of Large Numbers. We then apply these ideas
to the concept of gambling to show why casinos exist and when it is beneficial
to an individual to gamble as defined by individual utility.
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1. THE PROBABILITY SPACE
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To motivate the probability space we’ll begin by stating that a random experi-
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for an event a,€A, (N\a;)EA,

if a;€A for i=1,2,... then UaZEA,

Date: August 24, 2012.

ment is one whose results may vary between trials even under identical conditions.
To try to predict how often each trial will produce a certain result we need to look
at the set Q of all possible outcomes of the random experiment. We then denote A
as a subset of the power set of 2, which is the collection of subsets of Q2. Finally,
we need a probability measure P that measures the likelihood of each event in A
occurring as a result of a random experiment. With these ideas in mind, we can
define the notion of a probability space.

Definition 1.1. A Probability Space is a triple <€, A,P> representing the prob-
ability of every possible event in a system occurring, where ) is the set of all
possible outcomes (the sample space), A is a collection of subsets of © (events)
which satisfies:
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and P is the probability measure where P: A—[0, 1] is a function satisfying P(Q) =
n n
1 and for a countable set of n disjoint events ay,as...a,, P < U ai> = > Pla;).
i=1 i=1
Because it is clear each event a; is a subset of A, we can extend the notion
of set theory to the events. By introducing the binary operations of union and
intersection, for any two events a; and aj, we say that

a;Uay is the event “either a; or aj or both,”

a;Nay, is the event “both a; and ay.”

Note that if the events a; and aj, are mutually exclusive, then a;Naj = (), meaning
that both events cannot occur simultaneously. Looking further at these conditions,
if the probability that a;Nas occurs depends only on the probability that a; oc-
curs disjoint from the probability that aj occurs, the two events are said to be
independent.

Definition 1.2. Two events are independent if and only if P(a;Nay) = P(a;)P(ax).

We would now like to extend the probability measure to our sample space to
motivate the probability mass function and distribution function. First, we will
need to define the random variable.

2. RANDOM VARIABLES AND PROBABILITY FUNCTIONS

We are now going to take the sample space and assign a number to each outcome
wel) where each number contains some information about the outcome. This
function X is called a random variable.

Definition 2.1. A random variable X is a function X: Q—R.

Example 2.2. Suppose we toss a coin three times. Then Q = {HHH, HHT, HTH,
HTT, THH, TTH, THT, TTT}, where H represents the coin landing on heads and
T represents the coin landing on tails. Let’s define our random variable X to be the
function that sends each event containing an even number of heads to 1 and each

event containing an odd number of heads to 0. Thus a table of our function looks
like:

Table 1-1
Outcome | HHH HHT HTH HTT THH TTH THT TTT
X 0 1 1 0 1 0 0 1

Definition 2.3. A discrete random variable is a random variable that takes on a
finite or countably infinite number of values.

Remark 2.4. For a discrete random variable X, we can arrange the possible values
that X takes on as x1,x3.... where x;>x; for i>j. Each of these values of X will
have a probability associated with it, P(X = z;), where 1<i<n for n distinct
values of X and né€[l,00). From this we can define the probability mass function
and distribution function of X.

Definition 2.5. For a discrete random variable X, f(x;) is the probability mass
function of X if
f(z;) =P(X = )

for all 7.



A PROBABILISTIC VIEW ON THE ECONOMICS OF GAMBLING 3

Definition 2.6. The distribution function F(x) for a discrete random variable X
is defined as

F(z) = P(X<2) = 3 f(y),

y<z
where x€R.

Note: For any y#x;, where z; is a value taken on by X, P(y) = 0. Therefore,
for discrete random variables,
> fw)

y<z

> flay).

z; <z

is equivalent to writing

Note: Aside from discrete random variables, there are also continuous random
variables which do not satisfy Definition 2.3.

Definition 2.7. A random variable X is continuous if its distribution function can
be written as

Flz) =P (X<z) = [ " re(u)d,

where fx is the probability density function of X.

Remark 2.8. The probability density function is the continuous random variable’s
analog to the discrete random variable’s probability mass function. While this
definition is important in the field of probability, this paper will only focus on
discrete random variables.

The previous ideas can be extended to the case with two or more discrete random
variables. Once we define the joint distribution for the discrete random variables
X and Y, generalizations can be made to the case with more than two random
variables.

Definition 2.9. For two discrete random variables X and Y, f(x;,y;) is the joint
probability mass function of X and Y if

f(@i,y) = P(X =2, Y = y;)
for all 1.

Definition 2.10. For two discrete random variables X and Y, the joint distribution
function of X and Y is defined by

F(z,y) =P(X<,Y<y) = > Y fl@i,),

z; <z y;<y

where z; are the values of X less than or equal to x and y; are the values of Y less
than or equal to y.

Just as with two distinct events, the concept of independence also applies to
random variables. If each pair of events taken from the random variables X and Y
is independent, where one event is taken from X and one from Y, we say that X
and Y are independent.
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Definition 2.11. If for all z; and y; the events {X = z;} and {Y = y;} are
independent, we say that X and Y are independent random variables. Then

PX=z,Y=y;) =P X =z)PY =y),

which means
f(xi,yi) = fx () fy (yi)s

where fx and fy are the probability mass functions of X and Y.

3. EXPECTATION AND VARIANCE

Now that we are able to calculate the probability that a certain value of X will
result from a trial, we want to know beforehand what the expected outcome of the
trial will be. For a discrete random variable X we can write the possible values
of X as 1, 3, ...x, and associate with each the probability P(X = ;) to find the
expectation of X.

Definition 3.1. For a discrete random variable X the Expectation of X, denoted
E(X), is defined by

E(X)=21P(X =z1) 4+ ... + 2, P(X = 2,) = Z ziP(X = zi) = Z i f(xi),

;€0 x; €Q)
for nell, c0).

Note: The expectation of X is also called the expected value of X or the mean
of X and is often denoted by pu.

Example 3.2. Suppose that a fair coin is about to be flipped. If it lands on heads,
you win 30 dollars. If it lands on tails, you lose 20 dollars. We can define X to be
the random variable that sends the result of the flip to the amount of money that
you win. Then for heads, 1 is +30 and f(x1) is 0.50. For tails, 25 is -20 and f(z2)
is 0.50. Thus the expectation is

E(X) = (+30)(0.50) + (—20)(0.50) = +5.
Therefore, on each trial of this game, you are expected to earn 5 dollars in profit.

Remark 3.3. The concept of expectation is of extreme importance to mathematical
gambling theory. We will see later that expectation is closely related to net profit
when playing a large number of games in a casino.

For two random variables X and Y it can be shown that the expectation of the
sum or product of the variables is equal to the sum or product of the expectations
under certain conditions. The following two theorems will only be proved in the
discrete case. Generalizations can easily be made in the case that X and Y are
continuous variables, but these generalizations are not necessary to this paper.

Theorem 3.4. If X and Y are random variables, then

E(X +Y)=E(X)+E(Y).
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Proof. Let f(x,y) be the joint probability mass function of X and Y. Then we have

EX+Y)= ZZ z+y)f
=szf (@) + > > yf(x,y)

= E(X) +E(Y).

Theorem 3.5. If X and Y are independent random variables, then
E(XY)=E(X)E(Y).

Proof. Let f(x,y) be the joint probability mass function of X and Y. X and Y are
independent, so f(x,y)=f1(x)f2(y). Therefore,

Zzwyf (,7) szyfl
= Zl’ﬁ z nyz y)l
=Y [zfi(@)E(y)

= E(X)E(Y).
U

Also noteworthy is the fact that due to the nature of sums, a constant ¢ can be
pulled through the expectation operator.

Theorem 3.6. Let X be a random variable. If ¢ is any constant, then
E(cX) = cE(X).
Proof.
E(cX) = Z cxi f(w;)

x, EQ

ey wif(x)

x, €EQ
= cE(X).

O

Now that we have begun working with the expectation of a random variable X,
we’d like to have an idea of how widely the values of X are spread around E(X).
Recalling that E(X) is denoted by p, we can define the concepts of variance and
standard deviation.

Definition 3.7. For a random variable X with mean p the variance of X, denoted
Var(X), is defined by

Var(X) = E[(X — p)?).
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Definition 3.8. The standard deviation of X is defined as the positive square root
of the variance of X and is given by

o = /Var(X) = VE[(X — w2,

Remark 3.9. For a discrete random variable X with probability mass function f(x),
we can write the variance of X as

Var(X) = E[(X — p)’] = 0® = Y (& — u)* f(x:).

z; €EQ

With the previous definitions established, we are now able to prove a few the-
orems necessary in proving the Law of Large Numbers, which is essential to our
justification of using the expected value of a random variable in determining long-
term economic success of a casino.

Theorem 3.10. For any constant c,
Var(cX) = ¢*Var(X).
Proof. Let E(X)=p and E(cX)=cu. Then
Var(cX) = E[(cX — cpu)?] = E[c*(X — p)?] = ¢*Var(X).

Theorem 3.11. If X and Y are independent random variables, then
Var(X +Y) = Var(X) + Var(Y) = Var(X - Y).

Proof. Let pux be the expectation of X and py be the expectation of Y. Then we
have

X +Y) = (ux + py)]’]

X —px)+ (Y — py))?]

X —px)? +2(X = px)(Y — py) + (Y — py)?]

(X = px)?] + 2B[(X — px)(Y = py)] + E[(Y = py)?).

From here we notice that because X and Y are independent, (X — px) and
(Y — py) are also independent. Also, because E(X) is defined as px and E(Y) is
defined as py, then E(X — px) = E(Y — py) = 0. Therefore we have

Var(X +Y) = E[(X — px)?] + 2E[(X — px)(Y — py)] + E[(Y — py)?
(X — ux)?] + 2E(X — px)B(Y — piy)] +E[(Y — iy )?
—E[(X — x)?] + E[(Y — py)?
= Var(X) + Var(Y).
To complete this proof, we notice that Var(X —Y) = Var(X) + Var((—1)Y).

Then by Theorem 3.10 this equals Var(X) + (—=1)2Var(Y) = Var(X) + Var(Y) =
Var(X +Y). O

Remark 3.12. Notice that the above proof can be generalized to any number of
independent random variables. Therefore, we can see that the variance of a sum of
independent random variables is equal to the sum of the variances.
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Theorem 3.13. (Chebyshev’s Inequality) Suppose X is a random variable with
finite mean and variance. Then for any >0,

[ V)

g

P(|X - ﬂ|25)§€7~
Proof. Let f(x) be the probability mass function of X. Then
o> =E[(X —p)’] = > (& — p)° f (1)
T; €EQ

But if we limit the sum over the x such that |z — p|>¢, the value of the sum can
only decrease since we are only working with nonnegative terms. Therefore we have

0’2 Y (a-wif@)z Y Efa)=e Y fz) =P - plze).

lo—pl>e o —p|>e lo—p|>e

Dividing both sides by €2 gives the desired result of

2
g
P(X - p2e)< .

O

Using Chebyshev’s Inequality, we get an interesting result when we plug in € =
ko, namely that

1
P(lX - /L|Zk‘7)§ﬁ-

This result shows that for £>1, the probability that a certain value of X lies outside
of the range (u — ko, u + ko) is bounded above by 1%2 for any finite p and o.

Example 3.14. Let k=3. Then using Chebyshev’s Inequality,
1
P(X — p|230)<55.

This means that the probability of any value of X being within three standard
deviations of the mean is at least about 89%. Consequently, there is at most about
an 11% chance that the value lies 30 away from pu.

Remark 3.15. Chebyshev’s Inequality provides only a generous upper bound on
the probability that a random variable lies within a certain number of standard
deviations. For many distributions, the probability is much smaller. For example,
in the normal distribution there is about a .13% chance that the random variable
lies three standard deviations from the mean.

We are now in position to state one of the most important theorems in casino
economics. Using the concept of variance and Chebyshev’s Inequality, we can prove
the Weak Law of Large Numbers, showing that the expected value of a casino game
is directly related to the game’s long-term profit.

Theorem 3.16. Weak Law of Large Numbers Let X1, X5, -+, X, be mutually
independent random variables, each with finite mean and variance. Then for any
e>0, if S =X1+Xo+ -+ X, then

Sn
lim P <| — ,u|25> =0.
n—oo n
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Proof. By Theorem 3.4, we have

B (%) —p (BRI R ) LR B Ot O] = 4 ) =

n n n " n
and by an extension of Theorem 3.11,
Var(S,,) = Var(X; + X + - + X,,) = Var(X;) + Var(Xy) + - - - + Var(X,,) = no?,
so by Theorem 3.10, we have that

Var & :iVarSn = —.
(%) (0)

Now we can invoke Chebyshev’s Inequality. By letting X = 52, we have

n

Now we need only take the limit as n approaches infinity of both sides to get

lim P <|S" — ,u|>6> =0.
n—o00 n
(I

This theorem states that as the number of trials approaches infinity, the proba-
bility that the average of the results deviates from the expected value approaches
zero. A good example is that of a large number of coin flips. While the disparity
between heads and tails may be large for a small sample space, as more and more
flips occur, the total amount of heads will end up very close to the total amount of
tails. This idea is essential to the business model of a casino. From this theorem,
we can deduce why casinos choose to open and why they stay in business.

4. CASINO EcoNOMICS

Business firms work in the long run. That is, they are willing to spend money
or forgo profits now to ensure a higher profit in the big picture of their company.
Casinos are no different. They are willing to face days where they make a negative
profit as long as they end up in the positive at the end of some larger amount
of time. Therefore, casino operators need to ensure that they actually will see a
positive net income if they stay in business long enough. Because of this, they rely
heavily on the Law of Large Numbers.

Let’s look at one of the simplest games a casino can offer: roulette. A roulette
wheel consists of 38 evenly spaced pockets numbered 0, 00, 1, 2, ---, 36, where
0 and 00 are colored green, and the other 36 numbers are split into two groups
of eighteen, with one group colored black and the other colored red. The wheel
is spun and a ball is dropped into it while bets are placed on where the ball will
land. When played according to design, this game relies completely on the laws of
probability. Therefore, it makes sense to quote the expected value of the bets on
the table.

Example 4.1. The payout for betting on red is 1 to 1. Since there are 38 pockets
on the wheel, 18 of them being red, we notice that the odds of winning this bet are
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:1,)—2. Therefore the odds of losing the bet are %. We then see that

B(Red) = 3 aipi = (1) (;g) + (1) (;g) - —1—19z — 0526,

This says that for every one dollar bet we place on red, we are expected to lose
about 5.26 cents, or the casino makes about 5.26 cents.

This calculation can be carried out for all of the bets to show that every bet
has a negative expected value. Furthermore, this holds true for every chance-based
game offered by the casino. Recall that the Weak Law of Large Numbers states for
any €>0,

lim P <|S" - u|25> =0.
n—o00 n

Therefore as the casino remains in business longer and the number of bets customers
place increases, the probability that the casino does not earn their expected value
approaches zero. Seeing as the expected value of the casino is positive, the casino
can expect with probabilistic certainty that they will make a positive net profit. In
other words, the house always wins.

5. GAMBLER’S UTILITY

So if the house is always expected to come out on top in the long run, why
do people gamble? To answer this we need to define a gambler’s utility function.
Let’s denote the utility function of a gambler as U(x;). We can work under the
assumption that all rational people would prefer, under identical circumstances, to
have more money than not. Therefore, U(x;) is increasing.

For every event z; there is an associated utility U(x;) that will add or subtract
from the gambler’s total utility, depending on the outcome. Therefore each gamble
has with it an associated expected utility.

Definition 5.1. For a discrete random variable X, let P(X = x;) = f(z;). Then
the Expected Utility of X, denoted ¢(X), is defined as

P(X) =Y Ulw) f(ws)-

z; €Q

Remark 5.2. We notice that a gambler will accept a gamble if ¢(X)>0 and will
decline a gamble if p(X)<0. In the case that p(X) = 0, the gambler is indifferent
as to whether or not he accepts the gamble.

Let’s now go back to our roulette example. The gambler who plays roulette is
willing to do so even though he has a negative expected return. This shows that
for him, ¢(X)>0, which implies that he receives some amount of positive utility
from the act of gambling itself. This can be likened to thinking of gambling as a
form of entertainment, such as going to a baseball game. The expected return of
going to a baseball game is negative since there is a cost for tickets, parking etc.,
but there is also positive utility gained from the experience.

Since the gambler was willing to accept the bet with a negative expected return,
he would surely opt to take part in a similar gamble with an expected return of 0.
Because of this, we say that he is risk loving.
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Definition 5.3. A Risk Loving person will always accept a fair gamble. In other
words, given the choice of earning the same amount of money through gamble or
through certainty, the risk loving person will opt for the gamble.

Remark 5.4. From this definition we can see that a risk loving person has increasing
marginal utility. This means that the person derives more utility from winning
a certain amount of money than from losing that same amount. Therefore, his
marginal utility is increasing and concave up.

Returning to the previous definition, we know that for any positive amount of
money ¢, |U(x;) — U(z; — ¢)|<|U(x; + ¢) — U(z;)|. But if the expected return of a
gamble is not 0, such as in roulette, we can define the utility that a person receives
from gambling.

Definition 5.5. The Utility of Risk, denoted by Ug, is defined as
Ugr = maz[(b— ¢)]
for b,c satistying |U(z;) — U(x; — b)|<|U(z; + ¢) — U(x;)].

Using this equation we can determine for each individual how much utility they
derive from the experience of gambling.

Example 5.6. We’ve quoted the expected value of a roulette bet to be about -5.26
cents per dollar. We know that someone who makes this bet has an expected utility
greater than or equal to zero, so using expected value we can say

|U(z;) — U(x; — D|L|U(z; +.9474) — U (z;)].
Thus, this person has a utility of risk greater than or equal to .0526.

Therefore while gambling against the house seems illogical mathematically, the
concept of utility can be applied to show that gambling is indeed logical. Further-
more, using an individual’s utility of risk and their utility function we can calculate
the maximum expected loss a bet can carry that will still not lower the individ-
ual’s expected utility. The combination of probability and economics can therefore
justify the concept of gambling both for the casino and for the gambler.
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