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Introduction

Localization and completion are among the fundamental first tools in commuta-

tive algebra. They play a correspondingly fundamental role in algebraic topology.

Localizations and completions of spaces and spectra have been central tools since

the 1970’s. Some basic references are [3, 17, 24]. These constructions start from

ideals in the ring of integers and are very simple algebraically since Z is a principal

ideal domain. Localizations and completions that start from ideals in the repre-

sentation ring or the Burnside ring of a compact Lie group play a correspondingly

central role in equivariant topology. These rings are still relatively simple alge-

braically since, when G is finite, they are Noetherian and of Krull dimension one.

A common general framework starts from ideals in the coefficient ring of a general-

ized cohomology theory. We shall explain some old and new algebra that arises in

this context, and we will show how this algebra can be mimicked topologically. The

topological constructions require the foundations described in the previous article,

which deals with the algebraically familiar theory of localization at multiplicatively

closed subsets. We here explain the deeper and less familiar theory of completion,

together with an ideal theoretic variant of localization. There is a still more general

theory of localization of spaces and spectra at spectra, due to Bousfield [1, 2], and
1
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we shall see how our theory of localizations and completions with respect to ideals

in coefficient rings fits into this context.

Consider an ideal I in a commutative ring A and the completions M∧
I = limM/IkM

of R-modules M . The algebraic fact that completion is not exact in general forces

topologists to work with the derived functors of completion, and we shall explain

how topological completions of spectra mimic an algebraic description of these de-

rived functors in terms of “local homology groups”. These constructs are designed

for the study of cohomology theories, and we will describe dual constructs that are

designed for the study of homology theories and involve Grothendieck’s local coho-

mology groups. There are concomitant notions of “Čech homology and cohomology

groups”, which fit into algebraic fibre sequences that we shall mimic by interesting

fibre sequences of spectra. These lead to a theory of localizations of spectra away

from ideals. When specialized to MU -module spectra, these new localizations shed

considerable conceptual light on the chromatic filtration that is at the heart of the

study of periodic phenomena in stable homotopy theory.

1. Algebraic definitions: Local and Čech cohomology and homology

Suppose to begin with that A is a commutative Noetherian ring and that I =

(α1, . . . , αn) is an ideal in A. There are a number of cases of topological interest

where we must deal with non-Noetherian rings and infinitely generated ideals, but

in these cases we attempt to follow the Noetherian pattern.

We shall be concerned especially with two naturally occurring functors on A-

modules: the I-power torsion functor and the I-adic completion functor.

The I-power torsion functor ΓI is defined by

M 7−→ ΓI(M) = {x ∈M | Ikx = 0 for some positive integer k}.

It is easy to see that the functor ΓI is left exact.

We say that M is an I-power torsion module if M = ΓIM . This admits a useful

reinterpretation. Recall that the support of M is the set of prime ideals ℘ of A

such that the localization M℘ is non-zero. We say that M is supported over I if

every prime in the support of M contains I. This is equivalent to the condition

that M [1/α] = 0 for each α ∈ I. It follows that M is an I-power torsion module if

and only if the support of M lies over I.

The I-adic completion functor is defined by

M 7−→M∧
I = lim

k
M/IkM,

and M is said to be I-adically complete if the natural map M −→ M∧
I is an

isomorphism. The Artin-Rees lemma states that I-adic completion is exact on

finitely generated modules, but it is neither right nor left exact in general.
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Since the functors that arise in topology are exact functors on triangulated cate-

gories, it is essential to understand the algebraic functors at the level of the derived

category, which is to say that we must understand their derived functors. The con-

nection with topology comes through one particular way of calculating the derived

functors R∗ΓI of ΓI and LI
∗ of I-adic completion. Moreover, this particular method

of calculation provides a connection between the two sets of derived functors and

makes available various inductive proofs.

In this section, working in an arbitrary commutative ring A, we use our given

finite set {α1, . . . , αn} of generators of I to define various homology groups. We

shall explain why a different set of generators gives rise to isomorphic homology

groups, but we postpone the conceptual interpretations of our definitions until the

next section.

For a single element α, we may form the flat stable Koszul cochain complex

K•(α) = (A −→ A[1/α]) ,

where the non-zero modules are in cohomological degrees 0 and 1. The word stable

is included since this complex is the colimit over s of the unstable Koszul complexes

K•
s (α) = (αs : A −→ A).

When defining local cohomology, it is usual to use the complex K•(α) of flat mod-

ules.

However, we shall need a complex of projective A modules in order to define

certain dual local homology modules. Accordingly, we take a projective approxi-

mation PK•(α) to K•(α). A good way of thinking about this is that, instead of

taking the colimit of the K•
s (α), we take their telescope [13, p.447]. This places the

algebra in the form relevant to the topology. However, we shall use the model for

PK•(α) displayed as the upper row in the quasi-isomorphism

A⊕A[x]

〈1,0〉

��

〈1,αx−1〉
// A[x]

g

��

A // A[1/α],

where g(xi) = 1/αi, because, like K•(α), this choice of PK•(α) is non-zero only in

cohomological degrees 0 and 1.

The Koszul cochain complex for a sequence α = (α1, . . . , αn) is obtained by

tensoring together the complexes for the elements, so that

K•(α) = K•(α1)⊗ · · · ⊗K•(αn),

and similarly for the projective complex PK•(α).

Lemma 1.1. If β is in the ideal I = (α1, α2, . . . , αn), then K•(α)[1/β] is exact.
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Proof. Since homology commutes with colimits, it suffices to show that some power

of β acts as zero on the homology of K•
s (α) = K•

s (α1)⊗· · ·⊗K•
s (αn). However, (αi)

s

annihilates H∗(K•
s (αi)), and it follows easily that (αi)

2s annihilates H∗(K•
s (α)).

Writing β as a linear combination of the n elements αi, we see that β2sn is a

linear combination of elements each of which is divisible by some (αi)
2s, and the

conclusion follows. �

Note that, by construction, we have an augmentation map

ε : K•(α) −→ A.

Corollary 1.2. Up to quasi-isomorphism, the complex K•(α) depends only on the

ideal I.

Proof. The lemma implies that the augmentation K•(α, β) −→ K•(α) is a quasi-

isomorphism if β ∈ I. It follows that we have quasi-isomorphisms

K•(α)←− K•(α)⊗K•(α′) −→ K•(α′)

if α
′ is a second set of generators for I. �

We therefore write K•(I) for K•(α). Observe that K•(α) is unchanged if we

replace the elements αi by powers (αi)
k. Thus K•(I) depends only on the radical of

the ideal I. Since PK•(α) is a projective approximation to K•(α), it too depends

only on the radical of I. We also write K•
s (I) = K•

s (α1) ⊗ · · · ⊗ K•
s (αn), but

this is an abuse of notation since its homology groups do depend on the choice of

generators.

The local cohomology and homology of an A-module M are then defined by

H∗
I (A; M) = H∗(PK•(I)⊗M)

and

HI
∗ (A; M) = H∗(Hom(PK•(I), M)).

We usually omit the ring A from the notation. In particular, we write H∗
I (A) =

H∗
I (A; A). Note that we could equally well use the flat stable Koszul complex in

the definition of local cohomology, as is more common. It follows from Lemma 1.1

that H∗
I (M) is supported over I and is thus an I-power torsion module.

We observe that local cohomology and homology are invariant under change of

base ring. While the proof is easy enough to leave as an exercise, the conclusion is

of considerable calculational value.

Lemma 1.3. If A −→ A′ is a ring homomorphism, I ′ is the ideal I ·A′ and M ′ is

an A′-module regarded by pullback as an A-module, then

H∗
I (A; M ′) ∼= H∗

I′(A′; M ′) and HI
∗ (A; M ′) ∼= HI′

∗ (A′; M ′) �
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We next define the Čech cohomology and homology of the A-module M . We will

motivate the name at the end of the next section. Observe that ε : K•(α) −→ A

is an isomorphism in degree zero and define the flat Čech complex Č•(I) to be the

complex Σ(ker ε). Thus, if i ≥ 0, then Či(I) = Ki+1(I). For example, if I = (α, β),

then

Č•(I) = ( A[1/α]⊕A[1/β] −→ A[1/(αβ)] ) .

The differential K0(I) −→ K1(I) specifies a chain map A −→ Č•(I) whose fibre is

exactly K•(I); see [11, pp.439-440]. Thus we have a fibre sequence

K•(I) −→ A −→ Č•(I) .

We define the projective version PČ•(I) similarly, using the kernel of the composite

of ε and the quasi-isomorphism PK•(I) −→ K•(I); note that PČ•(I) is non-zero

in cohomological degree −1.

The Čech cohomology and homology of an A-module M are then defined by

ČH∗
I (A; M) = H∗(PČ•(I)⊗M)

and

ČHI
∗ (A; M) = H∗(Hom(PČ•(I), M)).

The Čech cohomology can also be defined by use of the flat Čech complex and is

zero in negative degrees, but the Čech homology is usually non-zero in degree −1.

The fibre sequence PK•(I) −→ A −→ PČ•(I) gives rise to long exact sequences

relating local and Čech homology and cohomology,

0 −→ H0
I (M) −→M −→ ČH0

I (M) −→ H1
I (M) −→ 0

and

0 −→ HI
1 (M) −→ ČHI

0 (M) −→M −→ HI
0 (M) −→ ČHI

−1(M) −→ 0,

together with isomorphisms

Hi
I(M) ∼= ČHi−1

I (M) and HI
i (M) ∼= ČHI

i−1(M) for i ≥ 2.

Using the Čech theory, we may splice together local homology and local coho-

mology to define “local Tate cohomology” Ĥ∗
I (A; M), which has attractive formal

properties; we refer the interested reader to [9].

2. Connections with derived functors; calculational tools

We gave our definitions in terms of specific chain complexes, but we gave our

motivation in terms of derived functors. The meaning of the definitions appears in

the following two theorems.
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Theorem 2.1 (Grothendieck [15]). If A is Noetherian, then the local cohomology

groups calculate the right derived functors of the left exact functor M 7−→ ΓI(M).

In symbols,

Hn
I (A; M) = (RnΓI)(M). �

Since ΓI(M) is clearly isomorphic to colimr (Hom(A/Ir, M), these right derived

functors can be expressed in more familiar terms:

(RnΓI)(M) ∼= colimr Extn
A(A/Ir, M).

Theorem 2.2 (Greenlees-May [13]). If A is Noetherian, then the local homology

groups calculate the left derived functors of the (not usually right exact) I-adic

completion functor M 7−→M∧
I . In symbols,

HI
n(A; M) = (Ln(·)∧I )(M). �

The conclusion of Theorem 2.2 is proved in [13] under much weaker hypotheses.

There is a notion of “pro-regularity” of a sequence α for a module M [13, (1.8)],

and [13, (1.9)] states that local homology calculates the left derived functors of

completion provided that A has bounded αi torsion for all i and α is pro-regular for

A. Moreover, if this is the case and if α is also pro-regular for M , then HI
0 (A; M) =

M∧
I and HI

i (A; M) = 0 for i > 0. We shall refer to a module for which the local

homology is its completion concentrated in degree zero as tame. By the Artin-Rees

lemma, any finitely generated module over a Noetherian ring is tame.

The conclusion of Theorem 2.1 is also true under similar weakened hypotheses

[10].

An elementary proof of Theorem 2.1 can be obtained by induction on the number

of generators of I. This uses the spectral sequence

H∗
I (H∗

J(M)) =⇒ H∗
I+J(M)

that is obtained from the isomorphism PK•(I + J) ∼= PK•(I) ⊗ PK•(J). This

means that it is only necessary to prove the result when I is principal and to verify

that if Q is injective then ΓIQ is also injective. The proof of Theorem 2.2 can also

be obtained like this, although it is more complicated because the completion of a

projective module will usually not be projective.

One is used to the idea that I-adic completion is often exact, so that LI
0 is the

most significant of the left derived functors. However, it is the top non-vanishing

right derived functor of ΓI that is the most significant. Some idea of the shape of

these derived functors can be obtained from the following result. Observe that the

complex PK•(α) is non-zero only in cohomological degrees between 0 and n. This

shows immediately that local homology and cohomology are zero above dimension

n. A result of Grothendieck usually gives a much better bound. Recall that the
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Krull dimension of a ring is the length of its longest strictly ascending sequence

of prime ideals and that the I-depth of a module M is the length of the longest

regular M -sequence in I.

Theorem 2.3 (Grothendieck [14]). If A is Noetherian of Krull dimension d, then

Hn
I (M) = 0 and HI

n(M) = 0 if n > d.

Let depthI(M) = m. With no assumptions on A and M ,

Hi
I(M) = 0 if i < m.

If A is Noetherian, M is finitely generated, and IM 6= M , then

Hm
I (M) 6= 0.

Proof. The vanishing theorem for local cohomology above degree d follows from the

fact that we can re-express the right derived functors of ΓI in terms of algebraic

geometry and apply a vanishing theorem that results from geometric considerations.

Indeed, if X = Spec(A) is the affine scheme defined by A, Y is the closed subscheme

determined by I with underlying space V (I) = {℘|℘ ⊃ I} ⊂ X , and M̃ is the sheaf

over X associated to M , then ΓI(M) can be identified with the space ΓY (M̃)

of sections of M̃ with support in Y . For sheaves F of Abelian groups over X ,

the cohomology groups H∗
Y (X ; F ) are defined to be the right derived functors

(R∗ΓY )(F ), and we conclude that

H∗
I (A; M) ∼= H∗

Y (X ; M̃).

The desired vanishing of local cohomology groups is now a consequence of a general

result that can be proven by using flabby sheaves to calculate sheaf cohomology:

for any sheaf F over any Noetherian space of dimension d, Hn(X ; F ) = for n > d

[14, 3.6.5] (or see [16, III.2.7]). The vanishing result for local homology follows from

that for local cohomology by use of the universal coefficient theorem that we shall

discuss shortly.

The vanishing of local cohomology below degree m is elementary, but we give

the proof since we shall later make a striking application of this fact. We proceed

by induction on m. The statement is vacuous if m = 0. Choose a regular sequence

{β1, . . . , βm} in I. Consider the long exact sequence of local cohomology groups

induced by the short exact sequence

0 −→M
β1
−→M −→M/β1M −→ 0.

Since {β2, . . . , βm} is a regular sequence for M/β1M , the induction hypothesis

gives that Hi
I(M/β1M) = 0 for i < m − 1. Therefore multiplication by β1 is a

monomorphism on Hi
I(M) for i < m. Since Hi

I(M)[1/β1] = 0, by Lemma 1.1, this

implies that Hi
I(M) = 0. The fact that Hm

I (M) 6= 0 under the stated hypotheses
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follows from standard alternative characterizations of depth and local cohomology

in terms of Ext [20, §16]. �

It follows directly from the chain level definitions that there is a third quadrant

universal coefficient spectral sequence

Es,t
2 = Exts

A(H−t
I (A), M) =⇒ HI

−t−s(A; M),(2.4)

with differentials dr : Es,t
r −→ Es+r,t−r+1

r . This generalises Grothendieck’s local

duality spectral sequence [15]; see [13] for details.

We record a consequence of the spectral sequence that is implied by the vanishing

result of Theorem 2.3. Recall that the nicest local rings are the regular local rings,

whose maximal ideals are generated by a regular sequence; Cohen-Macaulay local

rings, which have depth equal to their dimension, are more common. The following

result applies in particular to such local rings.

Corollary 2.5. If A is Noetherian and depthI(A) = dim(A) = d, then

LI
sM = Extd−s(Hd

I (A), M). �

For example if A = Z and I = (p), then H∗
(p)(Z) = H1

(p)(Z) = Z/p∞. Therefore

the corollary states that

L
(p)
0 M = Ext(Z/p∞, M) and L(p)

1
M = Hom(Z/p∞, M),

as was observed in Bousfield-Kan [3, VI.2.1].

There is a precisely similar universal coefficient theorem for calculating Čech ho-

mology from Čech cohomology. Together with Theorem 2.3, this implies vanishing

theorems for the Čech theories.

Corollary 2.6. If A is Noetherian of Krull dimension d ≥ 1, then ČHi
I(M) is

only non-zero if 0 ≤ i ≤ d − 1 and ČHI
i (M) is only non-zero if −1 ≤ i ≤ d − 1.

If d = 0 the Čech cohomology may be non-zero in degree 0 and the Čech homology

may be non-zero in degrees 0 and −1. �

When R is of dimension one, the spectral sequence (2.4) can be pictured as

follows:



COMPLETIONS IN ALGEBRA AND TOPOLOGY 9

t

0

−1

6

s0 1 2 3 -

PPPPPPPPPPq

PPPPPPPPPPq

PPPPPPPPPPq

⊗

⊗⊠

Here the two boxes marked ⊗ contribute to HI
0 , and that marked ⊠ is HI

1 . Since

there is no local homology in negative degrees, the first of the d2 differentials must

be an epimorphism and the remaining d2 differentials must be isomorphisms. Thus

we find an exact sequence

0→ Ext1(H1
I (A), M)→ HI

0(M)→ Hom(H0
I (A), M)→ Ext2(H1

I (A), M)→ 0

and an isomorphism

HI
1 (M) ∼= Hom(H1

I (A), M).

Another illuminating algebraic fact is that local homology and cohomology are

invariant under the completion M −→M∧
I of a tame module M . This can be used

in conjunction with completion of A and I in view of Lemma 1.3. However, all that

is relevant to the proof is the vanishing of the higher local homology groups, not

the identification of the zeroth group.

Proposition 2.7. If HI
q (M) = 0 for q > 0, then the natural map M −→ HI

0 (M)

induces isomorphisms on application of H∗
I (·) and HI

∗ (·).

Proof. The natural map ε∗ : M −→ Hom(PK•(I), M) induces a quasi-isomorphism

Hom(PK•(I), M) −→ Hom(PK•(I), Hom(PK•(I), M))

∼= Hom(PK•(I)⊗ PK•(I), M)

since the projection PK•(I) ⊗ PK•(I) −→ PK•(I) is a quasi-isomorphism of

projective complexes by Corollary 1.2. We obtain a collapsing spectral sequence

converging from E2
p,q = HI

p (HI
q (M)) to the homology of the complex in the middle,

and the invariance statement in local homology follows.

For local cohomology we claim that ε also induces a quasi-isomorphism

K•(I)⊗M −→ K•(I)⊗Hom(PK•(I), M).
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The right side is a double complex, and there will result a collapsing spectral

sequence that converges from Ep,q
2 = Hp

I ((HI
−q(M)) to its homology. This will

give the invariance statement in local cohomology. The fibre of the displayed map

is K•(I)⊗Hom(PČ•(I), M), and we must show that this complex is exact. However

K•(I) is a direct limit of the finite self-dual unstable Koszul complexes K•
s (I) so

it is enough to see that Hom(PČ•(I) ⊗ K•
s (I), M) is exact. Since the complex

PČ•(I) ⊗ K•
s (I) is projective, it suffices to show that it is exact. However, it is

quasi-isomorphic to Č•(I)⊗K•
s (I), which has a finite filtration with subquotients

A[1/β]⊗K•
s (I) with β ∈ I. We saw in the proof of Lemma 1.1 that some power of

β annihilates the homology of K•
s (I). Therefore the homology of A[1/β] ⊗K•

s (I)

is zero and the conclusion follows. �

We must still explain why we called Č•(I) a Čech complex. In fact, this complex

arises by using the Čech construction to calculate cohomology from a suitable open

cover. More precisely, let Y be the closed subscheme of X = Spec(A) determined

by I, as in the proof of Theorem 2.3. The space V (I) = {℘|℘ ⊃ I} decomposes

as V (I) = V (α1) ∩ . . . ∩ V (αn), and there results an open cover of the open sub-

scheme X − Y as the union of the complements X − Yi of the closed subschemes

Yi determined by the principal ideals (αi). However, X − Yi is isomorphic to the

affine scheme Spec(A[1/αi]). Since affine schemes have no higher cohomology,

H∗(Spec(A[1/αi])) = H0(Spec(A[1/αi])) = A[1/αi].

Thus the E1 term of the Mayer-Vietoris spectral sequence for this cover collapses

to the chain complex Č•(I), and

H∗(X − Y ; M̃) ∼= ČH∗
I (M).

3. Topological analogs of the algebraic definitions

We suppose given a commutative S-algebra R, where S is the sphere spectrum.

(As explained in [7], this is essentially the same thing as an E∞ ring spectrum,

but adapted to a more algebraically precise topological setting.) We imitate the

algebraic definitions of Section 1 in the category of R-modules to construct a va-

riety of useful spectra. Here we understand R-modules in the point-set level sense

discussed in the preceding article [7]. The discussion in this section and the next is

exactly like that first given for the equivariant sphere spectrum in [11], before the

appropriate general context of modules was available.

For β ∈ π∗R, we define the Koszul spectrum K(β) by the fibre sequence

K(β) −→ R −→ R[1/β].

Here R[1/β] = hocolim(R
β
−→ R

β
−→ . . . ) is a module spectrum and the inclusion

of R is a module map, hence K(β) is an R-module. Analogous to the filtration at
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the chain level, we obtain a filtration of the R-module K(β) by viewing it as

Σ−1(R[1/β] ∪ CR).

Next we define the Koszul spectrum for the sequence β1, . . . , βn by

K(β1, . . . , βn) = K(β1) ∧R · · · ∧R K(βn).

The topological analogue of Lemma 1.1 states that if γ ∈ J then

K(β1, . . . , βn)[1/γ] ≃ ∗;

this follows from Lemma 1.1 and the spectral sequence (3.2) below (or from Lemma

3.6). We may now use precisely the same proof as in the algebraic case to conclude

that the homotopy type of K(β1, . . . , βn) depends only on the radical of the ideal

J = (β1, · · · , βn). We therefore write K(J) for K(β1, . . . , βn).

We should remark that we are now working over the graded ring R∗ = π∗(R).

All of the algebra in the previous two sections applies without change in the graded

setting, but all of the functors defined there are now bigraded, with an internal

degree coming from the grading of the given ring and its modules. As usual, we

write Mq = M−q.

With motivation from Theorems 2.1 and 2.2, we define the homotopical J-power

torsion (or local cohomology) and homotopical completion (or local homology) mod-

ules associated to an R-module M by

ΓJ (M) = K(J) ∧R M and M∧
J = FR(K(J), M).(3.1)

In particular, ΓJ(R) = K(J).

Because the construction follows the algebra so precisely, it is easy give methods

of calculation for the homotopy groups of these R-modules. We use the product of

the filtrations of the K(βi) given above and obtain spectral sequences

E2
s,t = H−s,−t

J (R∗; M∗)⇒ πs+t(ΓJM)(3.2)

with differentials dr : Er
s,t → Er

s−r,t+r−1 and

Es,t
2 = HJ

−s,−t(R
∗; M∗)⇒ π−(s+t)(M

∧
J )(3.3)

with differentials dr : Es,t
r → Es+r,t−r+1

r .

Similarly, we define the Čech spectrum by the cofibre sequence

K(J) −→ R −→ Č(J) .(3.4)

With motivation deferred until Section 5, we define the homotopical localization

(or Čech cohomology) and Čech homology modules associated to an R-module M

by

M [J−1] = Č(J) ∧R M and ∆J (M) = FR(Č(J), M).(3.5)
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In particular, R[J−1] = Č(J). Once again, we have spectral sequences for calculat-

ing their homotopy groups from the analogous algebraic constructions.

We can now give topological analogues of some basic pieces of algebra that we

used in Section 1. Recall that the algebraic Koszul complex K•(J) is a direct limit

of unstable complexes K•
s (J) that are finite complexes of free R∗-modules with

homology annihilated by a power of J . We remind the reader that, in contrast with

K•(J), the homology of the modules K•
s (J) depends on the choice of generators

we use. We say that an R-module M is a J-power torsion module if its R∗-module

M∗ of homotopy groups is a J-power torsion module; equivalently, M∗ must have

support over J .

Lemma 3.6. The R-module K(J) is a homotopy direct limit of finite R-modules

Ks(J), each of which has homotopy groups annihilated by some power of J . There-

fore K(J) is a J-power torsion module.

Proof. It is enough to establish the result in the principal ideal case and then take

smash products over R. Let

Ks(β) = Σ−1R/βs

denote the fibre of βs : R −→ R, and observe that its homotopy groups are annihi-

lated by β2s. Now observe that

(R −→ R[1/β]) = hocolims

(

R
βs

−→ R
)

,

and so their fibres are also equivalent:

K(β) ≃ hocolims Ks(β). �

The following lemma is an analogue of the fact that Č•(J) is a chain complex

which is a finite sum of modules R[1/β] for β ∈ J .

Lemma 3.7. The R-module Č(J) has a finite filtration by R-submodules with sub-

quotients that are suspensions of modules of the form R[1/β] with β ∈ J . �

These lemmas are useful in combination.

Corollary 3.8. If M is a J-power torsion module then M ∧R Č(J) ≃ ∗; in partic-

ular K(J) ∧R Č(J) ≃ ∗.

Proof. Since M [1/β] ≃ ∗ for β ∈ J , Lemma 3.7 gives the conclusion for M . �

We remark that the corollary leads via [9, B.2] to the construction of a topological

J-local Tate cohomology module tJ (M) that has formal properties like those of its

algebraic counterpart studied in [9].
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4. Completion at ideals and Bousfield localization

As observed in the proof of Lemma 3.6, we have K(β) = hocolims Σ−1R/βs and

therefore

M∧
(β) = FR(hocolims Σ−1R/βs, M) = holims M/βs.

If J = (β, γ), then

M∧
J = FR(K(β) ∧R K(γ), M) = FR(K(β), FR(K(γ), M)) = (M∧

(γ))
∧
(β),

and so on inductively. This should help justify the notation M∧
J = FR(K(J), M).

When R = S is the sphere spectrum and p ∈ Z ∼= π0(S), K(p) is a Moore

spectrum for Z/p∞ in degree −1 and we recover the usual definition

X∧
p = F (S−1/p∞, X)

of p-completions of spectra as a special case. The standard short exact sequence

for the calculation of the homotopy groups of X∧
p in terms of ‘Ext completion’ and

‘Hom completion’ follows directly from Corollary 2.5.

Since p-completion has long been understood to be an example of a Bousfield

localization, our next task is to show that completion at J is a Bousfield localiza-

tion in general. The arguments are the same as in [11, §2], which dealt with the

(equivariant) case R = S.

We must first review definitions. They are usually phrased homologically, but we

shall give the spectrum level equivalents so that the translation to other contexts

is immediate. Fix a spectrum E. A spectrum A is E-acyclic if A ∧ E ≃ ∗; a map

f : X −→ Y is an E-equivalence if its cofibre is E-acyclic. A spectrum X is E-local

if E ∧ T ≃ ∗ implies F (T, X) ≃ ∗. A map Y −→ LEY is a Bousfield E-localization

of Y if it is an E-equivalence and LEY is E-local. This means that Y −→ LEY

is terminal among E-equivalences with domain Y , and the Bousfield localization is

therefore unique if it exists. Bousfield has proved that LEY exists for all E and Y ,

but we shall construct the localizations that we need directly.

We shall need two variations of the definitions. First, we work in the category of

R-modules, so that ∧ and F (·, ·) are replaced by ∧R and FR(·, ·). It is proven in [8]

that Bousfield localizations always exist in this setting. Second, we allow E to be

replaced by a class E of R-modules, so that our conditions for fixed E are replaced

by conditions for each E ∈ E . When the class E is a set, it is equivalent to work

with the single module given by the wedge of all E ∈ E . Bousfield localizations

at classes need not always exist, but the language will be helpful in explaining

the conceptual meaning of our examples. The following observation relates the

spectrum level and module level notions of local spectra.

Lemma 4.1. Let E be a class of R-modules. If an R-module N is E -local as an

R-module, then it is E -local as a spectrum.
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Proof. Let F be the free functor from spectra to R-modules. If E ∧ T ≃ ∗ for all

E, then E ∧R FT ≃ ∗ for all E and therefore F (T, N) ≃ FR(FT, N) ≃ ∗. �

The class that will concern us most is the class J-Tors of finite J-power torsion

R-modules M . Thus M must be a finite cell R-module, and its R∗-module M∗ of

homotopy groups must be a J-power torsion module.

Theorem 4.2. For any finitely generated ideal J of R∗ the map M −→ M∧
J is

Bousfield localization in the category of R-modules in each of the following equiva-

lent senses:

(i) with respect to the R-module ΓJ (R) = K(J).

(ii) with respect to the class J-Tors of finite J-power torsion R-modules.

(iii) with respect to the R-module Ks(J) for any s ≥ 1.

Furthermore, the homotopy groups of the completion are related to local homology

groups by a spectral sequence

E2
s,t = HJ

s,t(M∗) =⇒ πs+t(M
∧
J ).

If R∗ is Noetherian, the E2 term consists of the left derived functors of J-adic

completion: HJ
s (M∗) = LJ

s (M∗).

Proof. The statements about calculations are repeated from (3.3) and Theorem 2.2.

We prove (i). Since

FR(T, M∧
J ) ≃ FR(T ∧R K(J), M),

it is immediate that M∧
J is K(J)-local. We must prove that the map M −→ M∧

J

is a K(J)-equivalence. The fibre of this map is F (Č(J), M), so we must show that

F (Č(J), M) ∧R K(J) ≃ ∗.

By Lemma 3.6, K(J) is a homotopy direct limit of terms Ks(J). Each Ks(J) is

in J-Tors, and we see by their definition in terms of cofibre sequences and smash

products that their duals DRKs(J) are also in J-Tors, where DR(M) = FR(M, R).

Since Ks(J) is a finite cell R-module,

FR(Č(J), M) ∧R Ks(J) = FR(Č(J) ∧R DRKs(J), M),

and Č(J) ∧R DRKs(J) ≃ ∗ by Corollary 3.8. Parts (ii) and (iii) are similar but

simpler. For (iii), observe that we have a cofibre sequence R/βs −→ R/β2s −→

R/βs, so that all of the Kjs(J) may be constructed from Ks(J) using a finite

number of cofibre sequences. �
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5. Localization away from ideals and Bousfield localization

Bousfield localizations include both completions at ideals and localizations at

multiplicatively closed sets, but one may view these Bousfield localizations as falling

into the types typified by completion at p and localization away from p. Thinking

in terms of Spec(R∗), this is best viewed as the distinction between localization

at a closed set and localization at the complementary open subset. We dealt with

the closed sets in the previous section, and we deal with the open sets in this one.

Observe that, when J = (β), M [J−1] is just R[β−1]∧R M = M [β−1]. However, the

non-vanishing of higher Čech cohomology groups gives the construction for general

finitely generated ideals a quite different algebraic flavour, and M [J−1] is generally

not a localization of M at a multiplicatively closed subset of R∗. To characterize this

construction as a Bousfield localization, we consider the class J-Inv of R-modules

M for which there is an element β ∈ J such that β : M −→M is an equivalence.

Theorem 5.1. For any finitely generated ideal J = (β1, . . . , βn) of R∗, the map

M −→M [J−1] is Bousfield localization in the category of R-modules in each of the

following equivalent senses:

(i) with respect to the R-module R[J−1] = Č(J).

(ii) with respect to the class J-Inv.

(iii) with respect to the set {R[1/β1], . . . , R[1/βn]}.

Furthermore, the homotopy groups of the localization are related to Čech cohomology

groups by a spectral sequence

E2
s,t = ČH−s,−t

J (M∗) =⇒ πs+t(M [J−1]).

If R∗ is Noetherian, the E2 term can be viewed as the cohomology of Spec(R∗)\V (J)

with coefficients in the sheaf associated to M∗.

Proof. The spectral sequence is immediate from the construction of M [J−1], and

the last paragraph of Section 2 gives the final statement.

To see that M [J−1] is local, suppose that T ∧R Č(J) ≃ ∗. We must show that

FR(T, M [J−1]) ≃ ∗. By the cofibre sequence defining Č(J) and the hypothesis, it

suffices to show that FR(K(J) ∧R T, M [J−1]) ≃ ∗. By Lemma 3.6,

FR(K(J) ∧R T, M [J−1]) ≃ holims FR(Ks(J) ∧R T, Č(J) ∧R M).

Observing that

FR(Ks(J) ∧R T, Č(J) ∧R M) ≃ FR(T, DRKs(J) ∧R Č(J) ∧R M),

we see that the conclusion follows from Corollary 3.8. The map M −→ M [J−1] is

a Č(J)-equivalence since its fibre is ΓJ(M) = K(J) ∧R M and K(J) ∧R Č(J) ≃ ∗

by Corollary 3.8. Parts (ii) and (iii) are proved similarly. �
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Translating the usual terminology, we say that a localization L on R-modules is

smashing if L(N) = N ∧R L(R) for all R-modules N . The following fact is obvious.

Lemma 5.2. Localization away from J is smashing. �

It is also clear that completion at J will not usually be smashing.

We complete the general theory with an easy, but tantalizing, result that will spe-

cialize to give part of the proof of the Chromatic Convergence Theorem of Hopkins-

Ravenel [23]. It well illustrates how the algebraic information in Section 2 can have

non-obvious topological implications. Observe that if J ′ = J +(β), we have an aug-

mentation map ε : K(J ′) ≃ K(J) ∧R K(β) −→ K(J) over R. Applying FR(·, M),

we obtain an induced map

M∧
J −→M∧

J′ .

A comparison of cofibre sequences in the derived category of R-modules gives a

dotted arrow ζ such that the following diagram commutes:

ΓJ′(M) //

ε

��

M //

��

M [J ′−1] //

ζ

��
�

�

�

ΣΓJ′(M)

��

ΓJ(M) // M // M [J−1] // ΣΓJ(M).

Here the cofibre of ε is ΓJ(M)[β−1] and the cofibre of ζ is ΣΓJ (M)[β−1]. If an

ideal J is generated by a countable sequence {βi} and Jn is the ideal generated

by the first n generators, we may define

M∧
J = hocolimn M∧

Jn
and M [J −] = holim M [J −].

We say that J is of infinite depth if depthJn
(R∗) −→∞; this holds, for example,

if {βi} is a regular sequence.

Proposition 5.3. If M is a finite cell R-module and J is of infinite depth, then

M ≃M [J −].

Proof. It suffices to prove that holimn ΓJn
(M) ≃ ∗, and, since M is finite, it is

enough to prove this when M = R. We show that the system of homotopy groups

π∗(K(Jn)) is pro-zero. This just means that, for any n, there exists q > n such that

the map K(Jq) −→ K(Jn) induces zero on homotopy groups, and it implies that

both limn π∗(K(Jn)) = 0 and lim1
n π∗(K(Jn)) = 0. By the lim1 exact sequence for

the computation of the homotopy groups of a homotopy inverse limit, this will give

the conclusion. Since Jn is finitely generated, there is a d such that Hi
Jn

(R∗) = 0

for i ≥ d. By hypothesis, we may choose q such that depthJq
(R∗) > d. Then, by

Theorem 2.3, Hi
Jq

(R∗) = 0 for i ≤ d. Now the spectral sequence (3.2) for π∗(K(Jn))

is based on the filtration

· · · ⊆ F−s ⊆ F−s+1 ⊆ · · ·F1 ⊆ F0 = π∗(K(Jn))
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in which F−s is the group of elements arising from Hi
Jn

(R∗) for i > s. The map

K(Jq) −→ K(Jn) is filtration preserving, hence the filtration corresponding to

s = d is mapped to 0. By the choice of q, this filtration is all of π∗(K(Jq)). �

6. The specialization to ideals in MU∗

We specialize to the commutative S-algebra R = MU in this section, taking [7,

§11] as our starting point. Recall that MU∗ = Z[xi |i ≥ 1], where deg xi = 2i,

and that MU∗ contains elements vi of degree 2(pi− 1) that map to the Hazewinkel

generators of BP∗ = Z(p)[vi |i ≥ 1]. We let In denote the ideal (v0, v1, . . . , vn−1)

in π∗(MU), where v0 = p; we prefer to work in MU rather than BP because of its

canonical S-algebra structure. As explained in [7, §11], BP is an MU -ring spectrum

whose unit MU −→ BP factors through the canonical retraction MU(p) −→ BP .

We also have MU -ring spectra E(n) such that E(0)∗ = Q and

E(n)∗ = Z(p)[v1, . . . , v⋉, v−1
⋉ ]

if n > 0. The Bousfield localization functor Ln = LE(n) on spectra plays a funda-

mental role in the “chromatic” scheme for the inductive study of stable homotopy

theory, and we have the following result.

Theorem 6.1. When restricted to MU -modules M , the functor Ln coincides with

localization away from In+1:

LnM ≃M [I−1
n+1].

Proof. By [23, 7.3.2], localization at E(n) is the same as localization at BP [(vn)−1]

or at the wedge of the K(i) for 0 ≤ i ≤ n. This clearly implies that localization at

E(n) is the same as localization at the wedge of the BP [(vi)
−1] for 0 ≤ i ≤ n, and

this is the same as localization at the wedge of the MU [(vi)
−1] for 0 ≤ i ≤ n. By

Lemma 4.1, we conclude that M [I−1
n+1] is E(n)-local. To see that the localization

M −→ M [I−1
n+1] is an MU [(vi)

−1]-equivalence for 0 ≤ i ≤ n, note that its fibre

is ΓIn+1
(M) and ΓIn+1

(M)[w−1] ≃ ∗ for any w ∈ In+1. Consider MU∗(MU) =

(MU ∧MU)∗ as a left MU∗-module, as usual, and recall from [23, B.5.15] that the

right unit MU∗ −→ (MU ∧MU)∗ satisfies

ηR(vi) ≡ vi mod Ii ·MU∗(MU), hence ηR(vi) ∈ Ii+1 ·MU∗(MU).

We have

ΓIn+1
(M) ∧MU ≃ ΓIn+1

(M) ∧MU (MU ∧MU)

and can deduce inductively that ΓIn+1
(M) ∧MU [w−1] ≃ ∗ for any w ∈ In+1 since

ΓIn+1
(M)[w−1] ≃ ∗ for any such w. �

When M = BP , this result is essentially a restatement in our context of Ravenel’s

theorem [23, 8.1.1] (see also [21, §§5-6] and [22]) on the geometric realization of the
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chromatic resolution for the calculation of stable homotopy theory. To explain the

connection between our constructions and his, we offer the following dictionary:

NnBP ≃ ΣnΓIn
BP.

MnBP ≃ ΣnΓIn
BP [(vn)−1]

LnBP ≃ BP [I−1
n+1]

In fact, for any spectrum X , Ravenel defines MnX and NnX inductively by

N0X = X, MnX = LnNnX,

and the cofibre sequences

NnX −→MnX −→ Nn+1X.(6.2)

He also defines CnX to be the fibre of the localization X −→ LnX (where, to start

inductions, L−1X = ∗ and C−1X = X). Elementary formal arguments given in

[21, 5.10] show that the definition of Bousfield localization, the cofibrations in the

definitions just given, and the fact that LmLn = Lm for m ≤ n [21, 2.1] imply that

NnX = ΣnCn−1X

and there is a cofibre sequence

Σ−nMnX −→ LnX −→ Ln−1X.(6.3)

The claimed identifications follow inductively from our description of LnBP and

the fact (implied by Lemma 1.1) that, for any MU -module M ,

ΓIn
(M)[I−1

n+1] ≃ ΓIn
(M)[(vn)−1].

In fact, the evident cofibrations of MU -modules

ΣnΓIn
BP −→ ΣnΓIn

BP [vn
−1] −→ Σn+1ΓIn+1

(BP )

and

ΓIn
BP [(vn)−1] −→ BP [(In+1)

−1] −→ BP [(In)−1]

realize the case X = BP of the cofibrations displayed in (6.2) and (6.3). Moreover,

it is immediate from our module theoretic constructions that the homotopy groups

are given inductively by

(N0BP )∗ = BP∗, (MnBP )∗ = (NnBP )∗[(vn)−1],

and the short exact sequences

0 −→ (NnBP )∗ −→ (MnBP )∗ −→ (Nn+1BP )∗ −→ 0.(6.4)

Ravenel’s original arguments were substantially more difficult because, not having

the new category of MU -modules to work in, he had to work directly in the classical

stable homotopy category.
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Although BP is not a finite cell MU -module, the retraction from MU(p) makes

it clear that the proof of Proposition 5.3 applies to give the following conclusion.

Proposition 6.5. Let I be generated by {vi|i ≥ 0}. Then

BP ≃ BP [I −] ≃ holimLBP. �

The chromatic filtration theorem of Hopkins and Ravenel [23, 7.5.7] asserts that

a finite p-local spectrum X is equivalent to holimLnX ; the previous result plays a

key role in the proof (in the guise of [23, 8.6.5]).

We close with a result about completions. We have the completion M −→M∧
In

on the category of MU -modules M . There is another construction of a comple-

tion at In which extends to all p-local spectra, and the two constructions agree

when both are defined. We recall the other construction. For a sequence i =

(i0, i1, . . . , in−1), we may attempt to construct generalized Toda-Smith spectra

Mi = M(pi0 , vi1
1 , . . . v

in−1

n−1 )

inductively, starting with S, continuing with the cofibre sequence

M(pi0) −→ S
pi0

−→ S,

and, given L = M(i0,i1,... ,in−2), concluding with the cofibre sequence

Mi −→ L
v

in−1

n−1

−→ L.

Here Mi is a finite complex of type n and hence admits a vn-self map by the

Nilpotence Theorem [5, 17, 19], and vin
n is shorthand for such a map. These spectra

do not exist for all sequences i, but they do exist for a cofinal set of sequences,

and Devinatz has shown [4] that there is a cofinal collection all of which are ring

spectra. These spectra are not determined by the sequence, but it follows from

the Nilpotence Theorem that they are asymptotically unique in the sense that

hocolimi Mi is independent of all choices. Hence we may define a completion for all

p-local spectra X by

X∧
In

= F (hocolimi Mi, X).

We shall denote the spectrum hocolimi Mi by ΓIn
(S), although its construction is

considerably more sophisticated than that of our local cohomology spectra.

Proposition 6.6. Localize all spectra at p. Then there is an equivalence of MU -

modules

MU ∧ ΓIn
(S) ≃ ΓIn

(MU).

Therefore, for any MU -module M , there is an equivalence of MU -modules between

the two completions M∧
In

.
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Proof. [Sketch] It is proven in [8] that localization at p, and indeed any other

Bousfield localization, preserves commutative S-algebras. The second statement

follows from the first since

FMU (MU ∧ ΓIn
(S), M) ≃ F (ΓIn

(S), M)

as MU -modules. It suffices to construct compatible equivalences

MU ∧Mi ≃MU/pi0 ∧MU MU/vi1
1 ∧MU . . . ∧MU MU/v

in−1

n−1 .

By [7, 9.9], the right side is equivalent to MU/Ii, where Ii = (pi0 , vi1
1 , . . . , v

in−1

n−1 ) ⊂

In. A vn-self map v : X −→ X on a type n finite complex X can be characterized

as a map such that, for some i, BP∗(v
i) : BP∗(X) −→ BP∗(X) is multiplication

by vj
n for some j. Since MU∗(X) = MU∗ ⊗BP∗

MU∗(X), we can use MU instead

of BP . Using MU , we conclude that the two maps of spectra id∧vi and vj
n ∧ id

from MU ∧X to itself induce the same map on homotopy groups. The cofibre of

the first is MU ∧Cvi and the cofibre of the second is MU/(vj
n)∧X . In the case of

our generalized Moore spectra, a nilpotence technology argument based on results

in [19] shows that some powers of these two maps are homotopic, hence the cofibres

of these powers are equivalent. The conclusion follows by induction. �
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