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CATEGORIES OF SPECTRA AND INFINITE LOOP SPACES 

by 

J. Peter May 

At the Seattle conference, I presented a cal- 

culation of H,(F;Zp) as an algebra, for odd primes p, 

where F = lim F(n) and F(n) is the topological monoid > 

of homotopy equivalences of an n-sphere. This computation 

was meant as a preliminary step towards the computation of 

H*(BF;Zp). Since then, I have calculated H*(BF;Zp), for 

all primes p, as a Hopf algebra over the Steenrod and 

Dyer-Lashof algebras. The calculation, while not difficult, 

is somewhat lengthy, and I was not able to write up a co- 

herent presentation in time for inclusion in these proceed- 

ings. The computation required a systematic study of 

homology operations on n-fold and infinite loop spaces. 

As a result of this study, I have also been able to compute 

H,(2nsnx;Zp), as a Hopf algebra over the Steenrod algebra, 

for all connected spaces X and prime numbers p. This 

result, which generalizes those of Dyer and Lashof [3] and 

Milgram [8], yields explicit descriptions of both 

H,(~nsnx;Zp) and H,(QX;Zp), QX = li~> 2nsnx, as functors 

of H,(X;Zp). 

An essential first step towards these results was 

a systematic categorical analysis of the notions of n-fold 

and infinite loop spaces. The results of this analysis will 
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be presented here. These include certain adjoint functor 

relationships that provide the conceptual reason that 

H.(~nsnx;zp) and H,(QX;Zp) are functors of H,(X;Zp) 

and that precisely relate maps between spaces to maps 

between spectra. These categorical considerations moti- 

vate the introduction of certain non-standard categories, 

I and i, of (bounded) spectra and ~-spectra, and the 

main purpose of this paper is to propagandize these cate- 

gories. It is clear from their definitions that these 

categories are considerably easier to work with topolog- 

ically than are the usual ones, but it is not clear that 

they are sufficiently large to be of interest. We shall 

remedy this by showing that, in a sense to be made pre- 

cise, these categories are equivalent for the purposes 

of homotopy theory to the standard categories of (bounded) 

spectra and ~-spectra. We extend the theory to unbounded 

spectra in the last section. 

The material here is quite simple, both as category 

theory and as topology, but it turns out nevertheless to 

have useful concrete applications. We shall indicate two 

of these at the end of the paper. In the first, we observe 

that there is a natural epimorphism, realized by a map of 

spaces, from the stable homotopy groups of an infinite loop 

space to its ordinary homotopy groups. In the second, by 

coupling our results with other information, we shall con- 

struct a collection of interesting topological spaces and 
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maps; the other information by itself gives no hint of the 

possibility of performing this construction. 

1 THE CATEGORIES in AND HOMOLOGY 

In order to sensibly study the homology of iterated 

loop spaces, it is necessary to have a precise categorical 

framework in which to work. It is the purpose of this sec- 

tion to present such a framework. 

We let T denote the category of topological 

spaces with base-point and base-point preserving maps, and 

we let 

~: HOmT(X,~y) ) HomT(SX,Y ) (i.i) 

denote the standard adjunction homeomorphism relating the 

loop and suspension functors. 

We define the category of n-fold loop sequences, 

Ln, to have objects B = {Bil0 ~ i ~ n} such that 

B i = ~Bi+ I 6 T and maps g = {gil0 ~ i ~ n} such that 

gi = ~gi+l 6 T; clearly B 0 = niBi and go = nigi for 

0 ~ i ~ n. We define t = i to be the category with ob- 

jects B = {Bili k 0} such that B i = ~Bi+ I E T and maps 

g = {gili k 0} such that gi = ngi+1E T; clearly 

~iBi B 0 = and go = ~agi for all i ~ 0. We call L~ 

the category of perfect ~-spectra (or of infinite loop 

sequences) . 

Un: ~ ) T 

n < ~, Un B 

For all n, we define forgetful functors 

by UnB = B 0 and Ung = go" Of course, if 

and Ung are n-fold loop spaces and maps. We 
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say that a space X £ T is a perfect infinite loop space 

if X = U=B for some object B £ i~ and we say that a 

map f 6 T is a perfect infinite loop map if f = U=g 

for some map g ~ i~o 

We seek adjoints Qn: T > In, 1 ~ n ~ ~ , to 

the functors U n. For n < ~ , define 

Qn x = {~n-isnxl0 ~ i ~ n} and Qnf = {~n-isnfl0 ~ i ~ n}. 

Clearly, Qn x and Qn f are objects and maps in i n. For 

the case n = ~ , we first define a functor Q: T ) [ by 

letting QX = li~ ~nsnx, where the limit is taken with re- 

spect to the inclusions 

~nu-i (Isn+Ix) : ~nsn x ..-> ~n+Isn+l x 

For f: X ~ Y, we define Qf = li~ ~nsnf: QX ~ QY. It 

is clear that QX = ~QSX and Qf = nQSf. We can therefore 

define a functor Q~: T---> i~ by Q~X = {QSiXli > 0} and 

Q~f = {Qsifli > 0}. 

For each n, 1 ~ n ~ = , there is an adjunction 

~n: H°mT(X,UnB) " H°min(QnX'B)" 

Proof. Observe first that the following two com- 

posites are the identity. 

snu-n ( isnx ) un ( innsnx ) 
snx • sn~nsnx > snx, X £ Y 

~-n (isn~nx) ~nn (l~nx) 
~nx ~nsn~nx ~ ~nx, X £ T 

(1.2) 

(1.3) 
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In fact, since ~(f) = u(inz) • Sf for any map f: Y • ~Z 

. sn~-n(isnx) ~n~-n(isnx) ; this in T, ~n (l~nsnx) = = isnx 

proves (1.2) and the proof of (1.3) is similar. Now define 

natural transformations 

Tn: i T > UnQ n by 

~n: QnUn ) i~ and 

~n(B) = {fln-i~n(1B0)I0 ~ i ~ n}: QnUn B > B 

~(B) = {li~) ~Jui+J(1B0)li ~ 0}. Q=U=B • B 

if n < ~; (1.4) 

if n = ~; 

Tn(X) = ~-n(isn x)- x ) UniX = nnsnx if n < ~; (1.5) 

~(X) = lim u-J(IsJx) : X---> U~Q=X = QX if n = =. 

We claim that (1.2) and (1.3)imply that the following two com- 

posites are the identity for all n. 

#n (Qn x) 
Qn X QnYn(X)) QnUn~n x > Qn x, x £ Y (1.6) 

For 

Un B Tn (UnB) Un~n (B) 
¢ UnQnUn B ~ UnB , B E i n (1.7) 

n < ~, (1.6) follows from (1.2) by application of ~n-i 

for 0 ~ i ~ n and (1.7) is just (1.3) applied to X = B n, 

since B 0 = UnB = SnB n. For n = =, observe that T~(X) 

factors as the composite 

~-i n~- (sx) = x (Isx)) ~sx nQSX Qx 

It follows that 

~-iT~(six) = u-i(aT=(S i+Ix) • 

Observe also that 

aJ~(si+Jx) : ~Jsi+Jx 

T~(X) = u-iT=(six) for all 

u-I (isi+ix)) = 

i > 0 since 

U- (i+l) T~ (si+1 X) . 

) ~JQsi+Jx = Qsix 
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is just the natural inclusion obtained from the definition 

of Qsix as lim ~Jsi+Jx. We therefore have that: 
> 

@~(Q=X) i " Q=T=(X) i 

i+j = li~> ~J~ (IQx) • li~) ~ksi+k~-(i+k) T=(si+kx) 

i+j = lim~ nJ~ (lQx) • ~Jsi+J -(i+j)T~(si+Jx) 

~J T~ (si+Jx) 
= li)m = IQS ix 

U~@~(B) • T~(U~B) = limm ~J~J (IB0) • lim) u-k(IskBQ) 

= li~> ~JuJ(IB0) • u -j (1SJB0) = li~ IB0 = IB0 

In both calculations, the second equality is an observation 

about the limit topology. The third equalities follow from 

formulas (1.2) and (1.3) respectively. Finally, define 

@n(f) = @n(B) • Qn f if f: x ~ UnB is a map in T (1.8) 

~n(g) = Ung • Tn(X) if g: Qn x ) B is a map in i n (1.9) 

It is a standard fact that @n is an adjunction with inverse 

~n since the composites (1.6) and (1.7) are each the identity. 

If B 6 in, we define H,(B) = H,(UnB), where hom- 

ology is taken with coefficients in any Abelian group ~. We 

regard H, as a functor defined on in, but we deliberately 

do not specify a range category. Indeed, the problem of 

determining the homology operations on n-fold and (perfect) 

infinite loop spaces may be stated as that of obtaining an 

appropriate algebraic description of the range category. It 
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follows easily from (1.2) and (1.5) of the proof above that 

~n (X). : H. (X) ) H. (UnQnX) is a monomorphism. Since Qn 

is adjoint to Un, the objects Qn X are, in a well-defined 

sense, free objects in the category i n . It is therefore 

natural to expect H. (Qn X) to be a functor of H. (X), with 

values in the appropriate range category. I have proven 

that this is the case if ~ = Zp and have computed the 

functor. By the previous proposition, if B E in then any 

map f: X ~ UnB in T induces a map ~n(f) : Qn X > B 

in Ln, and the functor describing H. (Qn x) is geometrically 

free in the sense that ~n (f)*" H. (Qn x) ---> H. (B) is deter- 

mined by f* = Un#n (f)*~n (X).- H. (X) > H. (UnB) in terms 

of the homology operations that go into the definition of 

the functor. In this sense, we can geometrically realize 

enough free objects since ~B).- H. (QnUn B) ~ H. (B) is 

an epimorphism. All of these statements are analogs of well- 

known facts about the cohomology of spaces. The category 

of unstable algebras over the Steenrod algebra is the appro- 

priate range category for cohomology with Zp-coefficients. 

Products of K(Zp,n) 's play the role analogous to that of 

the Qn x and their fundamental classes play the role anal- 

ogous to that of H.(X) c H.(Qn x) . 

By use of Proposition i, we can show the applica- 

bility of the method of acyclic models to the homology of 

iterated loop spaces. The applications envisaged are to 

natural transformations defined for iterated loop spaces but 
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not for arbitrary spaces• The argument needed is purely 

categorical. Let T temporarily denote any category, let 

A denote the category of modules over a commutative ring 

A , and let M be a set of model objects in T. Let 

F: S > A be the free A-module functor, where S is the 

category of sets. If R: T > A is any functor, define a 

functor R: T ) A by R(X) = F[ U HomT(M,X) × R(M)] on 
M6 M 

objects and R(f) (~,r) = (f • ~,r) on morphisms, where if 

f: X ) Y, then ~ 6 HomT(M,X) and r £ R(M). Define a nat- 

ural transformation I: R ~ R by l(X) (~,r) = R(v) (r). Re- 

call that R is said to be representable by M if there exists 

a natural transformation ~ : R ) R such that I - ~ : R > R 

is the identity natural transformation. With these notations, 

we have the following lemma. 

Lemma 2 

Let 

and let R: T 

QM = {QMIM 6 M} 

representab le by QM. 

~: HomT(X,UB) ) HomL(QX,B) be an adjunction 

A be a functor representable by M. Define 

and let S = R • U: L ) A. Then S is 

Proof. Define a natural transformation 

n: R • U ) S by n(B) (v,r) = (~(~) ,R~-I(IQM) (r)) for 

~: M ---> UB, r £ R(M). Write I' for the natural transforma- 

tion ~ > S defined as above for R. We have 

l'n = IU: RU ) RU = S since ~'n(B) (~,r) 

s~(~) [R~ -I = (IQM) (r) ] = R[U~(~) • ~-I(IQM) ] (r) = R(~) (r) 



456 

Therefore, if ~: R > R 

l'(n~U) = IU • ~U = l: S 

Of course, if ¢ 

and if T j denotes the product of j factors T, then 

cJ: HomTj(X,UJB) > HomLj(QDx,B) is also an adjunction 

(X E T j B E t j , ). Thus the lemma applies to functors 

R: T j ~ A and RuJ: i j ) A. 

Returning to topology, let C,: T > A be the 

singular chain complex functor, with coefficients in A. 

lemma applies to 

satisfies k~ = i: R > R, then 

> S, and this proves the result. 

is an adjunction as in the lemma 

The 

C,Un: in ---~ A for 1 ~ n ~ ~ and, by the 

(tensor 

With 

remark above, to the usual related functors on i~ 

and Cartesian products of singular chain complexes). 

M = {Am} , the standard set of models in T, we have 

UnQnA m = ~nsnA m if n < ~ and U~Q~A m = QAm; these spaces 

are contractible and the model objects {QnAm } c i n are 

therefore acyclic. We conclude that the method of acyclic 

models [4] is applicable to the study of the homology of 

n-fold and perfect infinite loop spaces. 

2 COMPARISONS OF CATEGORIES OF SPECTRA 

The work of the previous section shows that the 

category t is a reasonable object of study conceptually, but 

it is not obvious that i is large enough to be of topological 

interest. For example, it is not clear that the infinite 

classical groups are b/mmotopy equivalent to perfect infinite 

loop spaces. We shall show that, from the point of view of 
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homotopy theory, i is in fact equivalent to the usual care- 

gory of (bounded) a-spectra. To do this, we shall have to 

proceed by stages through a sequence of successively more 

restrictive categories of spectra. 

By a spectrum, we shall mean a sequence 

B = {Bi,fili ~ 0}, 

is a map. By a map 

where 

g: B 

B i is a space and fi: Bi > ~Bi+ I 

> B' of spectra we shall mean a 

sequence of maps gi: Bi > B~ such that the following dia- 
l 

grams are homotopy commutative, i k 0. 

g 
B ± > B'. 
1 1 

1 1' fi fi 

~gi+l 
~Bi+ I ~ ~B' 

i+l 

(2.1) 

We call the resulting category S. We say that B £ S is an 

inclusion spectrum if each fi is an inclusion. We obtain 

the category I of inclusion spectra by letting a map in I 

be a map in S such that the diagrams (2.1) actually com- 

mute on the nose for each i k 0. (Thus, I is not a full 

subcategory of S.) We say that B 6 S is an m-spectrum 

if each fi is a homotopy equivalence. We let mS be the 

full subcategory of S whose objects are the m-spectra, and 

we let al = I N aS be the full subcategory of I whose 

objects are the inclusion n-spectra. A spectrum B 6 al 

will be said to be a retraction spectrum if B i is a defor- 

mation retract of mBi+ 1 for all i. We let R denote the 



- 458 - 

full subcategory of ~I whose objects are the retraction 

spectra. Clearly, i is a full subcategory of R, since if 

B 6 i we may take fi = 1 and then any map in R between 

objects of i will be a map in i by the commutativity of 

the diagrams (2.1). Thus we have the following categories and 

inclusions 

i c R c nl c aS and I c S . (2.2) 

For each of these categories C, if g,g': B > B' 

are maps in C, then we say that g is homotopic to g' if 

' in T for each i We say that g gi is homotopic to gi 

is a (weak) homotopy equivalence if each gi is a (weak) homo- 

topy equivalence. Now each C has a homotopy category HC 

and a quotient functor H: C > HC. The objects of HC are 

the same as those of C and the maps of HC are homotopy 

equivalence classes of maps in C. Note that each of the in- 

clusions of (2.2) is homotopy preserving in the sense that if 

C c D and g ~ g' in C, then g ~ g' in D. We therefore 

have induced functors HC 

sions since if gig' E C 

C. 

> HD and these are still inclu- 

and g ~ g' in D, then g ~ g' in 

The following definitions, due to Swan [ii], will be 

needed in order to obtain precise comparisons of our various 

categories of spectra. 

Definitions 3 

(i) A category C is an H-category if there is an 
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equivalence relation 

such that f ~ f' 

fg is defined. 

quotient funotor 

(ii) Let 

A prefunctor T: C ) D 

such that HT: C > HD 

and g ~ g' implies fg ~ f'g' 

We then have a quotient category 

H: C--~ HC. 
C be any category and D an 

, called homotopy, on its hom sets 

whenever 

HC and a 

H-category. 

is a function, on objects and maps, 

is a functor. This amounts to re- 

C E C and T(fg) ~ T(f)T(g) 

If C is also an H-category, 

is homotopy preserving 

in 0. Clearly, T 

T determines a functor 

quiring 

whenever 

we say that a prefunctor T: C > D 

if f ~ g in C implies T(f) ~ T(g) 

is homotopy preserving if and only if 

T.: HC ---> H0 such that HT = T,H. 

T(I C) ~ IT(C) for each 

fg is defined in C. 

(iii) Let S,T: C > D be prefunctors. A natural 

transformation of prefunctors n: S ) T is a collection of 

maps n(C): S(C) > T(C), C E C, such that T(f) n(C) ~ n(C')S(f) 

in D for each map f: C • C' in C. n is said to be a 

natural equivalence of prefunctors if there exists a natural 

transformation of prefunctors ~: T • S such that 

n(C)~(C) ~ 1T(C) and ~(C) n(C) ~ IS(C) for each C E C. A 

natural transformation of prefunctors n: S > T determines 

a natural transformation of functors Hn: HS • HT and, if 

S and T are homotopy preserving, a natural transformation 

of functors n.: S. > T. such that n,H = Hn; if n is a 

natural equivalence of prefunctors, then Hn and, if defined, 

n. are natural equivalences of functors. 
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(iv) If S: D > C and T: C > D are homotopy 

preserving prefunctors between H-categories, we say that T 

is adjoint to S if there exist natural transformations of 

prefunctors ~: TS > 19 and T: i c > ST such that for 

each D 6 0 the composite S~(D) T(SD) : SD > SD is homo- 

topic in C to the identity map of SD and for each C £ C the 

composite ~ (TC) • TT (C): TC > TC is homotopic in 0 to 

the identity map of TC. 

tors, then S.: HD > HC 

functors, with adjunction 

We can now compare our various categories of spectra. 

The following theorem implies that I is equivalent to S 

for the purposes of homotopy theory in the sense that no homo- 

topy invariant information is lost by restricting attention to 

spectra and maps of spectra in I, and that ~I is equivalent to 

~S in this sense. Under restrictions on the types of spaces con- 

sidered, it similarly compares R to ~S. To state the 

restrictions, let C denote the full subcategory of S whose 

objects are those spectra {Bi,f i} such that each B i is a 

locally finite countable simplicial complex and each 

u(fi): SB i > Bi+ 1 is simplicial. Observe that if W is 

the full subcategory of S whose objects are those spectra B 

such that each B i has the homotopy type of a countable 

CW-complex, then every object of W is homotopy equivalent 

(in S) to an object of C. In fact, if {Bi,f i} 6 W, then 

each B i is homotopy equivalent to a locally finite simplicial 

If S and T are adjoint prefunc- 

and T.: HD > HC are adjoint 

#. = ~.T.: HOmHc(A,S.B) > HOmH0(T.A,B)- 
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complex B 1 by [9, Theorem i] ; if f~ is the composite 
1 

f ° 

B~ > B. i > ~Bi+ 1 > ~B.~+ 1 1 1 

equivalences B. <-----> B! and if 
1 1 

mation to ~(f.~), then {Bi,f i} 

{B',f'} and therefore to 

determined by chosen homotopy 

~(f[) is a simplicial approxi- 

is homotopy equivalent to 

B' ~"} 6 C i,~i 

Theorem 4 

such that 

There is a homotopy preserving prefunctor M: S > I 

(i) There exists a natural equivalence of prefunc- 

tors n: 1 S > JM, with inverse ~: JM > IS, where 

J: I > S is the inclusion. Therefore J.M. is naturally 

equivalent to the identity functor of HS. 

(ii) MJ: I > I is a functor, 6(JB): JMJB > JB 

is a map in I if B 6 I, and if ~: MJ > 11 is defined 

by ~(B) = 6(JB), then 

functors. 

(iii) n and 

relationship between 

is a natural transformation of 

establish an adjoint prefunctor 

J and M. Therefore 

¢.: HomHS(A,J.B) > HomHI(M.A,B) is an adjunction, where 

¢.(f) = ~.(B)M.f, f: A > J.B, and ¢~I (g) = J.g • n.(A), 

g: M.A > B. 

(iv) By restriction, 

serving prefunctor ~S -~ ~I 

M induces a homotopy pre- 

which satisfies (i) through 

(iii) with respect to the inclusion ~I > ~S. 

(v) By restriction, M induces a homotopy 
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preserving prefunctor ~S n C > R N C which satisfies (i) 

through (iii) with respect to the inclusion R N C > ~S N C. 

Proof. We first construct M and prove (i) and 

(ii) simultaneously. Let B = {Bi,f i} 6 S. Define 

MB = {MiB,Mif } E I by induction on i as follows. Let 

MoB = B 0 . Assume that MjB, j ~ i, and Mjf, j < i, have been 

constructed. Let n o = 1 = t 0 

~j : MjB nj: Bj ) MjB and 

such that 

and assume further that 

B~ have been constructed 
J 

(a) ~jnj = i: Bj > Bj and nj£j ~ l: MjB > MjB ; 

n~j • . f = f. • ~ and nn • fj ~ M (b) M3-1 3-I j-1 j -i 3-1 

Define Mi+IB to be the mapping cylinder of the map 

f • nj_ I • 

~(fi ) • S~ i" SMiB ) Bi+l, let ki: SMiB > Mi+IB denote 

the standard inclusion, and define 

Clearly Mif is then an inclusion. 

Mif = u-](ki): MiB > ~Mi+IB- 

Consider the diagram 

S£ i 
SMiB ~ ~ SB i 

Sn i 

ki=~ (Mif) [ [~ (fi) 

Mi+IB ( > Bi+ l 
ni+~ 

Here hi+ I and £i+i are the inclusion and retraction ob- 

tained by the standard properties of mapping cylinders, hence 

(a) is satisfied for j = i + 1. It is standard that 

~i+l " u(Mif) = u(fi)S~i , and n~i+ I • Mif = fi~i follows by 
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application of u-l. Now ~ni+l " fi = Mif " ni is ob- 

tained by a simple chase of the diagram. This proves (b) for 

j = i + 1 and thus constructs M on objects and constructs 

maps n(B): B > JM_B and £(B) : JMB > B in S. If 

B 6 I, then £(JB) is a map in I by (b) and we can define 

~(B) = ~(JB): MJB m B. We next construct M on maps. Let 

g: B > B' be a map in S. Define M0g = go and assume 

that Mjg have been found for j ~ i such that (with 

! = n(B'), etc.) 

(c) n~gj3 = Mjg • nj; £!3 " Mjg ~ gj£j 

(d) RMjg • Mj_If = Mj_if' • Mj_ig. 

with equality if g £ I; 

Then, by (c) and the definition of maps in the categories S 

and I, fi£ ' ~ flgi~ ~ > ' with iMi g i ngi+Ifi~i: MiB ~Bi+l' 

equalities if g 6 [. Applying u, we see that there exists 

a homotopy hi: SMiB × I > B' from 
i+ 1 

gi+lu(fi)S£i, and we agree to choose h i 

homotopy if g 6 I. Write [x,t] and 

(x,t) 6 SMiB × I and y 6 Bi+ 1 in the mapping cylinder 

Mi+IB of u(fi)S~i, and similarly for Mi+IB'. Define 

Mi+l g: Mi+IB ----> Mi+IB' by 

(e) Mi+ig[x't] = ~[SMig(x),2t], 0 ~ t ~ 1/2 

[hi(x,2t - i)], 1/2 ~ t ~ i. 

Mi+iglY] = [gi+l (Y) ] • 

It is trivial to verify that Mi+ig is well-defined and con- 

tinuous. Now consider the following diagram: 

' St ~SM~g to (fi) l 

to be the constant 

[y] for the images of 
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(Mif) ~ i+! 
SMiB ~ Mi+1 B ~ > Bi+ 1 

SMig Mi+] g gi+l 

u (Mif') ~ 
SMiB' > M!+ 1 B ' ~ B ' i+i q. 

l+l 

' is obvious, Since ni+l (Y) = [Y]' ni+l " gi+l = Mi+Ig " ni+l 

and ' then follows from (a) and a ~i+1 " Mi+l g ~ gi+l~i+l 

simple chase of the right-hand square. If the map g is in 

! 
I, then ~i+lMi+ig = gi+l~i+l is easily verified by explicit 

computation since h i(x,t) = gi+1 p (fi) S&i(x) for all t. 

This proves (c) for j = i + i. To prove (d) for j = i + l, 

merely observe that the left-hand square clearly commutes, 

since ~(Mif) (x) = [x,0], and apply p-i to this square. Of 

course, (d) proves that Mg is a map in I, and (c) completes 

the proof of (ii) of the theorem since MJ: I > I is clearly 

a functor. If Z: Mi+IB > Mi+IB' is any map whatever such 

that Zni+ 1 ~ ni+lgi+ 1 , then 

Mi+ig ~ nl+l$~+lMi+ig ~ nl+igi+l~i+ 1 ~ £ni+l£i+ 1 ~ £ . 

It follows that the homotopy class of Mi+ig is independent 

of the choice of hi, and from this it follows easily that 

M: S > Z is a prefunctor. M is homotopy preserving since 

if g ~ g': B > B' in S, then 

! 1 ! | | Mig ~ Mig • ni$ i = nigi~ i ~ n gi~i = Mig • ni£ i ~ Mig , 

i > 0. Now (i) of the theorem follows immediately from (a), 

(b), and (c). 

(iii) To prove (iii), we must show that the following 
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two composites are homotopic to the identity map. 

(f) JB n(JB) ) JMJB J~(B) _ JB, B E 

(g) MB Mn(B) ~ MJMB ~(MB) ~ MB, B 6 S. 

By (a) and ~ (B) = ~ (JB), the composite (f) is the identity 

map. For (g), note that ~(JMB) n(JMB) = 1 ~ n(B) ~(B) : JMB > JMB. 

By the uniqueness proof above for the homotopy class of Mi+ig 

applied to the case g = ~(B), we have M~(B) ~ ~(JMB) = ~(MB). 

Since M~(B)Mn(B) ~ 1 by the fact that M is a prefunctor, 

this proves that the composite (g) is homotopic to the iden- 

tity. 

(iv) Since aS and ~I are full subcategories of 

S and I, it suffices for (iv) to prove that MB q ~I if 

B E aS, and this follows from (a) and (b) which show that if 

gj : nBj+ 1 > Bj is a homotopy inverse to fj, then 

njgjn~j+ 1 : nMj+IB > MjB is a homotopy inverse to Mjf. 

(v) Again, it suffices to show that MB q R N C 

if B E aS N C. By induction on i, starting with ~ B = B 

and n O = 1 = ~Q, we see that each MiB is a locally finite 

countable simplicial complex and that each map u (Mi_if), n i, 

and ~i is simplicial, since Mi+IB is the mapping cylinder 

of the simplicial map u(fi)S~i: SMiB > Bi+ l [i0, p. 151]. 

By Hanner [5, Corollary 3.5], every countable locally finite 

simplicial complex is an absolute neighborhood retract (ANR) 

and, by Kuratowski [7, p. 284], the loop space of an ANR is 

an ANR. Since the image of Mif is a closed subspace of the 
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ANR ~Mi+IB , Mif has the homotopy extension property with 

respect to the ANR MiB [6, p. 86], and therefore MiB is 

a deformation retract of ~Mi+IB [i0, p. 31]. This proves 

that MB £ R N C, as was to be shown• 

The category I is not only large and convenient. 

It is also conceptually satisfactory in view of the following 

observation relating maps in Y to maps in I. We can de- 

fine a functor 

spectrum of X, 

g- X 

that 

z: T ~ I 

zi x = six 

> Y is a map in T, define 

zg is in fact a map in I. 

by letting ZX be the suspension 

and fi ~ i If 
= - (isi+,x) . 

Zig = Sig; it is clear 

Let U = Ui: I • T be 

the forgetful functor, UB = B 0 and Ug - go" Observe that 

UZ: T • Y is the identity functor. With these notations, 

we have the following proposition. 

Proposition 

U: HomI(ZX,B) 

Proof• 

inductively by 

i > 0. Define a natural transformation ~: 7U 

~(B) = { i(fi) }: TUB > B. Since n~i+l (fi+l) 

) Homy(X,UB) is an adjunction. 

If B = {Bi,f i} 6 I, define fi: B0 ___> ~iBi 

f0 = i, fl = f0' and fi+l = nif . fi if 
1 

) 11 by 

• ~-I (Isi+IB0) 

= i(fi+l) = i(Rifi • fi) = fi~i(fi), ~(B) is a map in I. For 

g: X • UB, define ~(g) = @(B)Zg. Clearly U~(g) = u° (f°)Z0g 

= g. Now fi for ZX is easily verified to be 

u-i(isix): X • ~isix. Therefore ~(ZX) = i: ZX > ZX; since 
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we obviously have ZU(Izx) = I: ZX > ZUZX = ZX, this implies 

that ~U = i. 

Finally, we compare i to the categories I, ~I, and 

R. The following theorem shows that L is nicely related 

conceptually to I and is eq%livalent for the purposes of weak 

homotopy theory to ~I in the sense that no weak homotopy in- 

variant information is lost by restricting attention to spectra 

and maps of spectra in L; coupled with the remarks preceding 

Theorem 4, it also shows that i N W is eq~livalent to R N W 

for the purposes of homotopy theory. 

Theorem 6 

There is a functor 

formation of functors 

inclusion, such that 

(i) LK: i 

n: i I 

-. L 

L: I > i and a natural trans- 

) KL, where K: L > I is the 

is the identity functor and 

L: HomI(A,KB) ) HomL(LA,B) 

is an adjunction with L-I (g) = Kg • n(A) 

(ii) If g ~ g' in I, then Lg 

to Lg' in L, and if B E ~I, then 

weak homotopy equivalence. 

(iii) Let B 6 R N C; then 

topy equivalence and if g ~ g': B 

Lg ~ Lg': LB > LB' in i. 

for g: LA > B. 

is weakly homotopic 

n(B) : B > KLB is a 

n(B) : B ---> KLB is a homo- 

> B' in I, then 

Proof. Let B = {Bi,f i} E I. 

inclusion, we can define LiB = li~) ~iB 

Since each fi is an 

i+j' where the li/nit is 
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taken with respect to the inclusions 

Clearly ~Li41B = LiB , hence LB £ i. 

in I, define Lig = li~, ~3gi+j: LiB 

~Jfi+j: ~JBi+j > ~j+IBi+j+l" 

If g: B > B' is a map 

> L.B' ; the limit makes 
1 

sense since 

of maps in 

sJfi+j~Jgi+j = ~J+Igi+j+l~Jfi+j 

I. Clearly ~Li+Ig = Lig, hence 

n: 11 > KL 

clusion; q(B) 

by letting hi(B) : B i 

is obviously a map in 

by the definition 

Lg £ t. Define 

LiB be the natural in- 

since ~qi+l (B) ° fi 

= hi(B). Now (ii) of the theorem is a standard consequence 

of the definition of the limit topology. The fact that LK is 

the identity functor of i is evident, and nK: K > KLK and 

Lq: L > LKL are easily verified to be the identity natural 

transformations. This implies (i) and it remains to prove (iii). 

If 

riJ: ~JBi+ j > B i 

ri,J+l = rij~Jri+ j 

ri,j+l~Jfi+ j = riJ. 

B 6 R, with retractions ri: ~Bi+ 1 > Bi, define maps 

r i I and inductively by r io = i, = r i, 

if j > 0. Since ri+jfi+ j = i, we have 

We can therefore define maps 

~i = lim riJ: LiB > B i. Obviously 

i d e n t i t y  map. Suppose  f u r t h e r  t h a t  

~iqi: B i > B i is the 

B 6 C. Then we claim 

that ni~ i ~ i: LiB > LiB. As in the proof of (v) of Theorem 

4, each ~JBi+ j is now an ANR. Let us identify £JBi+ j with 

its image under ~Jfi+j in 

and omit the inclusion maps 

£J+tBi+j+ 1 for all i and j 

£Jfi+j from the notation. Then 

the inclusion 

~JBi+ j x I U £J+IBi+j+ I × I c ~J+iBi+j+ 1 x I 

is that of a closed subset in an ANR, and it therefore has the 

homotopy extension property with respect to the ANR ~J+IBi+j+ 1 • 
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In particular, by [10, p. 31], each B i is a strong deforma- 

tion retract of ~Bi+l, and we assume given homotopies 

induce ki: ~Bi+ 1 x I > ~Bi+l, ki: 1 ~ r i rel B.. The k. 
l 1 

homotopies: kij: nJ+IBi+j+ 1 x I > nJ+IBi+j+l , 

kij: 1 ~ nJri+ j rel ~JBi+ j , in the obvious fashion 

(kij,t = n3ki+j,t). We claim that, by induction on 
• m 

choose homotopies hij: n3Bi+ j x I > ~3Bi+ j , 

j t we can 

hij: 1 ~ riJ rel B i , such that hi,j+ 1 = hij on ~JBi+ j × I. 

To see this, let hi0 be the constant homotopy, let 

hil = k i = ki0 , and suppose given hij for some j > 0. Con- 

sider the following diagram: 

(~JBi+jxI U ~J+IBi+j+ Ix~)x0 

(~j+l 

- (~JBi+jxI U ~J+iBi+j+ 1 xl) xI 

I~ 3+I Bi+j+ 1 

j ~. i, +1 
% 

Bi+j+ 1 xI) x0 > (~j+l Bi+j+l xI) xl 

N 

The unlabeled arrows are inclusions, and hij is defined by 

hij(x,s,t) = hij(x,st) if x £ ~3Bi+ j ; and ~ij (y,0,t) = y , 

~(y,l,t) = hij(nJri+j(y ),t) if y E nJ+IBi+j+1 • It is easily 

verified that ~ij is well-defined and continuous and that 

hij = kij on the common parts of their domains. We can there- 

fore obtain Hi,j+ 1 such that the diagram commutes. Define 

hi,j+l (x,s) = Hi,j+] (x,s,l) . It is trivial to verify that 
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hi,j+ 1 has the desired properties. Now 

li~ hij: LiB × I • LiB is defined and is clearly a homotopy 

from 1 to ni£ i . Finally, if g ~ g': B---~ B' in I and 

B E R N C, then 

= , ~ , , = 'ni~ i ' Lig = Ligni~ i nigi~ i n gi£i Lig ~ Lig , 

This completes the proof of (iii) and of the theorem. 

ia 0 . 

We remark that the categorical relationships of 

Propositions 1 and 5 and of the theorem are closely related. 

In fact, the composite functor 

Q~ , and the adjunction 

~: HomT(X,U=B) 

LZ: T • i is precisely 

• Hom i(Q X,B) 

of Proposition 1 factors as the composite (U~ = U) 

U -I L 
Horn T (X,UKB) ~ Homl (~X,KB) _~ Hom i (Q~X,B) . 

The verification of these statements requires only a glance at 

the definitions. 

3 INFINITE LOOP SPACES 

We shall here summarize the implications of the work 

of the previous section for infinite loop spaces and give the 

promised applications. We then make a few remarks about the 

extension of our results to unbounded spectra and point out 

an interesting collection of connective cohomology theories. 

It is customary to say that X 6 T is an infinite 

loop space if X is the initial space B 0 of an ~-spectrum B. 

If X is given as an H-space, it is required that its product 
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be homotopic to the product induced from the homotopy equi- 

valence X > aB 1 . Similarly, a map f 6 T is said to be 

an infinite loop map if f is the initial map go of a 

map of ~-spectra g. The functor M: aS > nl of Theorem 

4 satisfies ~B = B 0 and ~g = go • We therefore see that 

the identical infinite loop spaces and maps are obtained if 

we restrict attention to inclusion a-spectra and maps in I. 

If f: X---> X' is any infinite loop map, then Theorem 6 

implies the existence of a commutative diagram of infinite 

loop maps 

X g> Y 

I 1 (3.1) 

X' g'> Y' 

such that f' is a perfect infinite loop map between perfect 

infinite loop spaces and g and g' are weak homotopy equi- 

valences. 

If X is an infinite loop space of the homotopy 

type of a countable CW-complex, then it follows from arguments 

of Boardman and Vogt [i, p. 15] that there is an infinite loop 

map g: X ~ Y such that g is a homotopy equivalence and 

Y is the initial space of a spectrum in ~S ~ W. Combining 

this fact with (v) of Theorem 4, the remarks preceding that 

theorem, and (iii) of Theorem 6, we see that if f: X ~ X' 

is any infinite loop map between spaces of the homotopy type 

of countable CW-complexes, then there is a homotopy commutative 
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diagram of infinite loop maps, of the form given in (I), such 

that f' is a perfect infinite loop map and g and g' are 

homotopy equivalences. 

Therefore nothing is lost for the purposes of weak 

homotopy theory if the notions of infinite loop spaces and 

maps are replaced by those of perfect infinite loop spaces and 

maps, and similarly for homotopy theory provided that we re- 

strict attention to spaces of the homotopy type of countable 

CW-complexes. 

The promised comparison of stable and unstable homo- 

topy groups of infinite loop spaces is now an easy consequence 

of Proposition i. In fact, if Y is an infinite loop space, 

say Y = B 0 where B E ~S, then that proposition gives a map 

¢.(LMB) : Q.LoMB ) LMB in i, and Theorem 6 gives a map 

n(MB) : MB > LB in I. Define maps 

Qy a ~ QLoM B 8 ~ LoMB < Y y 

by a = Qn 0 (MB), S = ¢. 0 (LMB), and Y = no (MB). y is clearly 
t 

a weak homotopy equivalence, and therefore so is a since 

Q: Y > T is easily verified to preserve weak homotopy equi- 

valences. Since ¢.,0(LMB) • T.(LeMB) is the identity map of 

LOMB, 8, is an epimorphism on homotopy. If X E T, then 

S(X) the ~th stable homotopy group of X. There- nn(QX) = K n , 

fore p(Y) = y:ls,~,: ~,(Qy) > E,(y) 

K S(Y) ) ~,(Y). It is clear that if 

infinite loop map, then 

p(y,) (Qf), = f,p(y) . ~S(y) 

gives an epimorphism 

f: Y ) Y' is any 

> En(Y') . 
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It should be observed that the notions of infinite 

loop spaces and maps are not very useful from a categorical 

point of view since the composite of infinite loop maps need 

not be an infinite loop map. In fact, given infinite loop maps 

f: X > Y and g: Y ) Z, there need be no spectrum B with 

B 0 = Y which is simultaneously the range of a map of spectra 

giving f and the domain of a map of spectra giving g. One 

can get around this by requiring infinite loop spaces to be 

topological monoids and using a classifying space argument to 

allow composition of maps, but this is awkward. These condi- 

tions motivate the use of t in the definition of homology 

in section i. 

The following application of our results, which will 

be used in the computation of H*(BF), illustrates the technical 

convenience of the category i. Let ~(n) = HomT(sn,s n) and 

let F = i~ F (n), where the limit is taken with respect to 

suspension of maps S : F (n) ) F(n+l) . F (n) and F are 

topological monoids under composition of maps. If X 6 T, de- 

fine y: ~nx x ~(n) > ~nx by y(x,f) = ~-n(un(x) ° f), 

that is, with flnx identified with HomT(S°,~nx), by the com- 

posite 

N ~-n 
nnx×~(n)~n×l> HOmT(sn,x) xF(n)COmposition ) Homy(sn,x ) > ~nx. 

This defines an operation of ~(n) on nnx. Now let 

B = {Bi,f i} 6 aS, and let gi: ~Bi+1 > B i be a homotopy in- 

verse to fi" Define homotopy equivalences fn: B0 > ~nBn 

and gn: ~nBn > B 0 in the obvious inductive manner and define 
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Yn = gny(fn x i): B 0 × ~(n) > B 0 . 

Observe that Yn fails to define an operation of ~(n) on B 0 

since the associativity condition (xf)g = x(fg) is lost. Of 

course, Yn coincides with y on ~nB n if B 6 i, and associ- 

ativity is then retained. Now consider the following diagram: 

~nBn N x F (n) 

B 0 ~(n) fn+l×l> a n+l 
× Bn+ 1 x F (n) 

ll×S [l×S 

fn+l x 1 
B 0 x ~(n) > ~n+IBn+ 1 × ~(n+l) 

Y ~nB n 

! ~ n f ~  
l _n+l 

Y ~ ~n Bn+l g > BO 

/ 
The left-hand triangle and square commute trivially. Clearly 

y is natural on n-fold loop maps, hence ~nfn Y = y(~nf x i). 

y(1 x S) = y since 

~-n(~n(x)f ) = ~-(n+l)~(~n(x)f ) = p-(n+l) (~n+l (x) • Sf) . 

gn is homotopic to gn+l~nfn, and if B 6 R and the gi are 

chosen retractions, then gn __ gn+l~nfn . Thus if B 6 R we 

have Yn = Yn+1 (i × S) and we can define 

Y = lim Yn: B0 x ~ ~ B 0 . Since the right-hand triangle is > 

not transformed naturally by maps in R, the map Y is not 

natural on R. For B E i, the f's and g's are the identity 

maps, and the diagram trivializes. Therefore, for each B £ i, 

we have an operation Y: B0 × ~ > B 0 and if h: B > B' 

is a map in i, then h 0 (xf) = h 0 (x) f for x 6 B 0 and f £ ~. 



- 475 - 

Stasheff [unpublished] has generalized work of Dold and 

Lashof [2] to show that if a topological monoid M operates on a 

space X, then there is a natural way to form an associated 

quasifibration X > XXMEM > BM to the classifying principal 

quasifibration M > EM ) BM. As usual, let F c ~ consist 

of the homotopy equivalences of spheres. By restriction, if 

B £ i and Y = B0, we have an operation of F on Y and we can 

therefore form YxEEF. Of course, this construction is natural 

on i. 

Boardman and Vogt [1] have proven that the standard 

inclusions U c O c PL c Top c F are all infinite loop maps 

between infinite loop spaces with respect to the H-space struc- 

tures given by Whitney sum (on F, this structure is weakly 

homotopic to the composition product used above). We now know 

that we can pass to i and obtain natural operations of F on 

(spaces homotopy equivalent to) each of these sub H-spaces G of 

F. The same is true for their classifying spaces BG. Observe 

that the resulting operation of F 

its product. (In fact, if ~ £ B 0 

product of ~BI, where B £ t, then 

on F is not equivalent to 

is the identity under the loop 

~f = ~ for all f E F 

since composing any map with the trivial map gives the trivial 

map.) It would be of interest to understand the geometric sig- 

nificance of these operations by F on its various sub H-spaces 

and of the spaces GXFEF and BGxFEF. 

I shall show elsewhere that, with rood p coefficients, 

7, : H. (B) ® H. (~) ) H. (B) gives H, (B) a structure of Hopf 
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N 

algebra over H,(F) for B 6 i (and, afortiori, for B ~ SS), 

where H, (B) = K, (B 0) as in section 1. H, (B) is also a Kopf 

algebra over the opposite algebra of the Steenrod algebra and 

over the Dyer-Lashof algebra, which is defined in terms of the 

homology operations introduced by Dyer and Lashof in [3]. These 

operations are all natural on i. The appropriate range cate- 

gory for H, : i > ? is determined by specifying how these 

three types of homology operations commute, and, coupled with 

known information, these commutation formulas are all that is 

required to compute H* (BF) . 

Finally, we observe that there is a natural way to 

extend our results of section 2 to unbounded spectra. Let 

denote the category whose objects are sequences {Bi,fili E Z} 

such that {Bi,f ill > 0} ~ S and B i = n-iB0 and 

fi : Bi ) ~Bi+ 1 is the identity map for i < 0. The maps in 

are sequences g = {gill 6 Z} such that {gill > 0} 6 S 

and gi = ~gi+l if i < 0. We have an obvious completion func- 

tor C: S • S- defined on objects by CiB = B i if i > 0 and 

CiB = n-iB 0 if i < o, with Cif = fi for i a 0 and Cif = 1 

for i < 0, and defined similarly on maps. C is an isomorphism 

of categories with inverse the evident forgetful functor ~ • S. 

For each of our previously defined subcategories D of S define 

to be the image of ~ under C in ~. 

interest. Its objects and maps are sequences 

{gill 6 Z} such that B i = nBi+ 1 for all i 

is of particular 

{B ili E Z } and 

and gi = ~gi+l for 
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all i. Clearly all of the results of section 2 remain valid for 

the completed categories. 

Our results show that any reasonable cohomology theory, 

by which we mean any cohomology theory determined by a spectrum 

B 6 ~ N ~, is isomorphic to a cohomology theory determined by a 

spectrum in T ~ ~ and that any transformation of such theories 

determined by a map g: B > B' in ~ A ~ is naturally equi- 

valent to a transformation determined by a map in T ~ ~. Recall 

that 

H n(x,A;B) = HomHT(X/A,Bn) 

defines the cohomology theory determined by B ~ ~ on CW pairs 

(X,A). Call such a theory connective if Hn(p;B) = 0 for n > 0, 

where P is a point. Of course, H-n(p;B) = E 0 (~nB 0) = Kn(B0). 

Any infinite loop space Y determines a connective (additive) 

cohomology theory since, by a classifying space argument, we can 

obtain CB 6 ~ such that B 0 is homotopy equivalent to Y and 

K 0 (B n) = 0 for n > 0; according to Boardman and Vogt [1], any 

such cohomology theory is so obtainable and determines Y up to 

homotopy equivalence of infinite loop spaces. If X 6 T, then 

CQ~X determines a connective cohomology theory, since 

CnQ~X = QSnX for n > 0, and H -n(P;CQ~x) = n n(Qx) = h s(X) i~ 
n 

n > 0. In view of Proposition i, these theories play a privileged 

role among all connective cohomology theories, and an analysis of 

their properties might prove to be of interest. Observe that if 

B £ i, then C~ B: CQ~B 0 > CB determines a natural transforma- 
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tion of cohomology theories H*(X,A;CQ=B 0) ) H*(X,A;CB) and, 

if the theory determined by CB is connective, this transformation 

is epimorphic on the cohomology of a point. 
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