
APPLICATIONS AND GENERALIZATIONS 

OF THE APPROXIMATION THEOREM 

by ~. P. May 

In its basic form, the approximation theorem referred to provides simple 
n n 

combinatorial models for spaces ~ E X, where X is a connected based space. 

The first such result was given by James [26], who showed that ~EX is equiva- 

lent to the James construction MX. The unpublished preprint form of Dyer and 

gashof's paper [25] gave an approximation to QX = lira ~nEnx, and Milgram [41] 

gave a cellular model for ~2nEnx for all finite n. 

Starting from Boardman and Vogt's spaces ~ of j-tuples of little n-cubes 
n,j 

[5], Dold and Thorn's treatment of the infinite symmetric product NX in terms of 

quasifibrations [24], and the category theorists' comparison between finitary alge- 

braic theories and monads (as for example in Beck [4]), I gave a new approxima- 
n n 

tion C X to 12 E X in [36]. This model has proven most useful for practical 
n 

calculational purposes when n > I, and it is its applications and generalizations 

that I wish to discuss here. This will be a survey of work by various people, and 

I would like to mention that I have also given a survey of other recent developments 

in iterated loop space theory in [39], updating my 1976summary [38]. 

The first section will give background, mention miscellaneous relevant work, 

and discuss generalizations, notably Caruso and Waner's recent homotopical 

approximation to ~nEnx for general non-connected spaces X [9,11]. The second 

and third sections will outline the two main lines of applications. Both are based 

on certain stable splittings of C X, due originally to Snaith [47]. One line, 
n 

initiated by Mahowald [33] and with other major contributors Brown and Peterson 

[7, 8] and Ralph Cohen [Zl], is primarily concerned with a detailed analysis of the 

pieces in the resulting splitting of 122S q and leads to new infinite families of ele- 

ments in the stable stems. The other line, primarily due to Fred Cohen, Taylor, 

and myself [16-19] but also contributed to by Caruso [10] and Koschorke and 

Sanderson [30], is based on a detailed analysis of the splitting maps and their 

homotopical implications and leads to an unstable form of the Kahn-Priddy 

theorem, among various other things. These lines, and thus sections 2 and 3, are 

essentially independent of each other. 



39 

§ 1. Background and generalizations 

Tlie construction of the approximating spaces is naively simple. Suppose 

given a collection of ~.-spaces ~. with suitable degeneracy operators 
J J th  

cri:~._ij "~. ,j i < i< j. (Here Z. is the j-- symmetric group.) Given a space X 
J 

with (nondegenerate) basepoint *, construct a space CX = I ] ~j )<~.xJ/(~), 

where the equivalence relation is generated by J 

(c,~x I ..... xj) "~ (c0-i,x I ..... Xi_l,Xi+ I ..... xj) if x.1 = * 

See [16,§~i, Z] for details, examples, naturality properties, etc. If each ~. = E., 
J J 

the resulting space is MX. If each ~. is a point, the resulting space is NX. 
J 

We shall largely be concerned with examples C(Y,X) obtained from the con- 

figuration spaces ~j(Y) = F(Y,j) of j-tuples of distinct points of Y, and we let 

B ( Y , j )  b e  t h e  o r b i t  ( b r a i d )  s p a c e  F ( Y , j ) / Z j .  B(RZ,  j) : K ( B j , 1 ) ,  w h e r e  B.j i s  

A r t i n ' s  g r o u p  of j - s t r a n d e d  b r a i d s .  F o l l o w i n g  1 4 o s c h o r k e  a n d  S a n d e r s o n  [30] ,  we 

think of C(Y,X) as the space of pairs (L,X), where L is a finite (unordered) 

subset of Y and X'L -*X is a function. Here we impose the equivalence rela- 

tion generated by 

(L, )~)  ~ (L - {y} ,X  I L -  {y})  if X(y) = "~ • 

The crucial example C X may be described similarly, with the sets L 
n 

n n 
t a k e n  to h a v e  a f f i n e  e m b e d d i n g s  I -~ I w i t h  d i s j o i n t  i n t e r i o r s  a s  t h e i r  e l e m e n t s ;  

s e e  [36,§  4]. We t h i n k  of  the  i n t e r i o r  of I n as  R n,  by  a b u s e ,  a n d  o b t a i n  a n a t u r a l  

h o m o t o p y  e q u i v a l e n c e  

g - C  X ~" C ( R n , X )  
n 

by restriction of little n-cubes to their center points. (The proof that g is an 

equivalence in [36, 4.8] is not quite right; it is corrected in [14, p. 485] and also in 

[30].) 

Define an:CnX -~ flnEnx by letting an(L,k):S n -* X^S n be specified on 

S n points s ~ = In/01 n by 

I X(c)^c-l(s) if s ~ Im c for c ~ L 

~n(L,X)(s) : ] 

k 

The approximation theorem [36, 6.1] asserts that 
n 

connected. Segal [45] and Cohen [14] later proved that ~ is a group completion 
n 

in the general, non-connected, case. This means that w0f~nEnx is the universal 

if s ~ Im c for c ~ L. 

is a weak equivalence if X is 
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group associated to the monoid ~r0CnX (which is easy [36.8.14]) and thatH,~n~nx 

is obtained from the Pontryagin ring H,CnX by localizing at its submonoid 

-i n n n 
~0Cn X. ~ ~n X. Of course, the same conclusions hold for ~ng .'C(R ,X) -~ 

In the case X = S O , MoDuff [40] gave another proof of the group completion 

property, viewing it as a special case of a general homological relationship 

between C(M,S 0) and the space of sections of the tangent sphere bundle of M for 

suitable manifolds M. She also gave a construction C±(M,S O ) of pairs of finite 

sets in M, with points thought of as positive and negative particles with suitable 

annihilation properties. While this construction is of some interest and yields a 

homotopical approximation to the space of sections of a bundle, the bundle in 

± n S 0) question is not the tangent sphere bundle of M. In particular, C (R , fails to 

n n 
be a homotopical approximation to f~ S . 

Various other people have tried to obtain homotopical (rather than merely 

homological) approximations to ~n~nx for general non-connected spaces X. The 

problem is quite delicate. It is very easy to give intuitive arguments for plaus- 

ible candidates but very hard to pin down correct details. Such an approximation 

has recently been obtained by Caruso and Waner [II]. They construct a model 

~X for ~n~nx by use of partial little cubes c'Xc":[a,b]Xl n-I n n ~ I , where 

c': [a,b] -- I is a linear map (increasing or decreasing) and c"'l n-l n-I 
• ~I is an 

affine little (n-l)-cube. These partial little cubes are required to appear in 

closed configurations, which may be thought of as piecewise linear maps I n -~ I n 

given by a piecewise linear path in the first coordinate and a single affine embedd- 

ing in the remaining coordinates. The labels in X of the component partial little 

cubes of a closed configuration are all required to be the same. 

Caruso [9] has generalized both this result and the original approximation 
n n 

theorem by proving that $] C(y,~nx) is a group completion of C(Y X R ,X) and 

obtaining a homotopical approximation ~ (Y,X) to ~2nc(y, ~nx). The case when 
n 

Y is a point reduces to the earlier approximations, and the use of general Y 

allows a quick inductive reduction of the entire result to the case n = i. Further 

generalizations, based on a combination of the ideas of Caruso and McDuff, are in 

the works. 

Related to these ideas are Cohen and Taylor's extensive calculations of 

H,C(M,X) for certain manifolds M [Z0]. Their arguments work best when 

M = N X R n for some positive n. In particular, they give complete information on 

the rational homology of C(M,X) for such M, these calculations having direct im- 

plications for Gelfand-Fuks cohomology. 
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There is also an e quivariant generalization of the approximation theorem, the 

present status of which is discussed in [39, § 5]. 

However, we shall mainly concentrate on the specific approximations 

C(Rn, X)- g C X n ~ n~n X 
n 

and their applications in the rest of this paper. 

Perhaps I should first explain just why these approximations are so useful a 

tool. One reason is that C X has internal structure faithfully reflecting that of 
n 

iterated loop spaces. Much of this is captured by the assertion that C is a monad 
n 

and ~ is a map of monads [36, 5.2]. Less cryptically, the three displayed spaces 
n 

allhave actions by the little cubes operad ~n and g and ~ are both~n-maps 
n 

[16,6.Z and 36,5.Z]. In particular, they are H-maps, but this is only a fragment of 

the full structure preserved. Further, there are smash and composition products 

CmXACn Y -~ Cm+n(X^Y ) and CnX XCn SO -+ CnX 

which are carried by the ~ to the standard smash and composition products for 
n 

iterated loop spaces [36,§8]. There is a similar and compatible smash product on 

the C(Rn, X), but there is no precise point set level (as opposed to homotopical) 
n 

composition product on the C(R ,X). 

By specialization to X = S O , ~ :C S O -~ ~nsn is a map of topological 
n n 

monoids. As Cohen has recently observed [13], this leads to approximations for 

the localizations of the classifying spaces BSF(n) for sn-fibrations (with section). 

Indeed, CnS0 = l J- ~n,/~q and ~nsn = I I ~nsnq , where ~nsn consists of 

q>__0 q q~ Z q 
the maps of degree q. If p is any prime, then the map of classifying spaces 

m~ "B( ~_ ~n,pi/~pi) B( [ I n n -~ ~.S ) 
n i>_0 i>0 pl 

is an equivalence, and the universal cover of the target is the localization 

of BSF(n) away from p. When n -- co, this result is due to Tornehave and is a 

special case of a general phenomenon [37,VII § 5]. 

A key reason for the usefulness of the approximation theorem is that spaces 

of the general form CX come with an evident natural filtration. The successive 

(and equivalent) quotients of C(Rn, X) and C X are 
n 

Dq(Rn, x) = F(IR n, q)+ A S x [q] and D X = ~+ A x [q] 
n,q n,q Z ' 

q q 

where X [q] denotes the q-fold smash power of X. Just as the simplicial version 
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of the James construction admits the splitting ~IVfX -~ V ~X[q] found by Milnor 
q 

[42], so Kahn in 197Z proved that Barratt's simplicial model [Z] for QX splits 

stably as the wedge of its filtration quotients; Kahn has just recently published a 

proof [Z7], a different argument having been given by Barratt and Eccles [3]. When 

word of Kahn's splitting reached Cambridge, where I was lecturing on the approxi- 

mation theorem, Snaith [47] worked out a corresponding stable splitting 

~°°C X --~ V ~°°D X , 
n q>_l n,q 

where Z °o is the stabilization functor from spaces to spectra (denoted Q in all 
oo 

my earlier papers)° New proofs of such splittings by Cohen, Taylor, and myself 

[16] are the starting point of the work discussed in section 3. Incidentally, by work 

of Kirley [29], these splittings for n >_Z cannot be realized after any finite number 

of suspensions (see also [16, 5.10]). 

There are two points of view on these splittings. One can either ignore how 

they were obtained and concentrate on analyzing the pieces or one can concentrate 

on the splitting maps and see what kind of extra information they yield. These two 

viewpoints are taken respectively in the following two sections. 

The crucial reason for the usefulness of the approximation theorem is that 

we have very good homological understanding of the filtered spaces C Xo 
n 

Historical background and complete calculations of H,~..~QX and H,~.,~CcoX (including 

X = S O , when the latter is ~ H~..BZq) are in [14,11. Cohen [14,111] has given 

q>_0 
complete calculations of H,~n~,nx and H, CnX. (Some minor corrections are in 

[lZ, App] and also in [7].) Here "complete" means as Hopf algebras over the 

Steenrod algebra, with full information on all relevant homology operations , 

Since these operations are nicely related to the geometric filtration, complete 

calculations of all H.Dn, qX drop out. Here homology is understood to be taken 

rood p for some prime p, but we also give complete information on the Bockstein 

spectral sequences of all spaces in sight. 

A major drawback to these calculations is that they give inductive formulae 

for the Steenrod operations, but not a global picture. One wants to know H D X 
n,q 

as a module over the Steenrod algebra Ao The solution to this dualization problem 

for n = Z and X a sphere is basic to the work of the next section, and we shall 

also say what little is known when n > Z. Before turning to this, however, I 

should mention the related work of Wellington [51]. lie has solved the analogous 

dualization problem for the algebra structure, giving a precise global description 
* n 

of H ~ ~,nX for all connectedX (or allX if p = Z; corrections of [51] are needed 
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when p > Z. ) He has also studied the problem of determining the A-annihilated 
n n 

primitive elements in H, fl E X. More is said about this in [39,§4] (but the 

description there should have been restricted to connected X). 

§Z. The spaces Dq(Rn, S r) andthe Brown-Gitler spectra 

The work discussed in this section began with and was inspired by 

Mahowald's brilli~nt paper [33]. I shall reverse historical order by first discuss- 

ing the work of Brown and Peterson [7,8] and Ralph Cohen [ZI] on the structure of 

 (nr s r the spaces R ,S ) --~D and then briefly explaining the use of this analysis 
n,q 

for the detection of elements of the stable stems. I am very grateful to Cohen for 

lucid explanations of some of this material. (In case anyone has not yet noticed, it 

is to be emphasized that there are two different Cohens at work in this area. ) 

Let ~ be the q-plane bundle 
n,q 

F(Rn, q) X E (RI) q ~ B(R n, q) . 
q 

With Thorn spaces of vector bundles defined by one-point compactification of fibres 

followed by identification of all points at infinity, it is obvious that the Thorn space 

of ~n,q is precisely Dq(Rn,SI). Replacing R 1 by R r in this construction, the 

resulting bundle is the r-fold Whitney sum of ~ with itself and the resulting 
n,q 

n r 
Thorn space is Dq(Rn, sr). Here DI(R ,S ) --~ S r and Dq(Rn,S r) is (rq-l)- 

• denote the order of ~ (or better, of its associated S q- connected. Let Jn,q n,q 

fibration). We have the following evident periodicity (see e.g. [37,111 §I]). 

D " R  n S r+jn'q~ E°Dn'qmq(R n, sr). Lemma Z.l. q( , } is equivalent to 

Thus the first problem in analyzing the spaces Dq(R n,S r) is to determine 

• The following lelcama summarizes what is presently known. the numbers in, q" 

Let Vp(j) denote the p-order of j (the exponent of p in j). 

Theorem Z.Z. (i) Jz,q g for all q >_ Z . 
• = z ~ ( n - l )  

(ii) Jn,Z , where 9~(n-l) is the vector fields number (namely the num- 

ber of i- 0, I,Z, 4 rood 8 with 0 < i< n). 

(iii) Jn, q divides Jn, q+l (and, trivially, Jn,q divides Jn+1,q ) . 

(iv) For an odd prime p, Vp(Jn,q ) = 0 for q< p and Vp(Jn,p) = [n-l/Z]. 
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(v) F o r  any  p r i m e  p, Vp(Jn,q ) = Vp(Jn,pi) if  p i <  q < pi+l  . 

(vi) J4,4 = 12 . 

None  of t h e s e  is  v e r y  h a r d .  P a r t  (i) was  f i r s t  p r o v e n  by Cohen ,  Mahowa ld ,  

and  M i l g r a m  by u se  of v a r i o u s  r e s u l t s  of m i n e  in  in f in i t e  loop space  t h e o r y ,  but  

B r o w n  l a t e r  found the t r i v i a l  t r i v i a l i z a t i o n  of 2~Z ,q=  ~2 ,2q  d i s p l a y e d  in  [15]. F o r  

(ii), B(R n, 2) ~ RP n-I and ~n,Z is the canonical bundle ~ (g& . Parts (iii)-(v) 

are in Yang [SZ] and were also proven by Kuhn. Part (vi) is an unpublished result 

of F.Cohen. It remains to determine the numbers Vp(Jn ' pi) for i >__ Z and n >_> 3 , 

and this is an interesting and apparently difficult problem. 

In connection with this, the only general work on the K-theory of spaces 
n n 
~ X for I < n< oo that I am aware of is the computation by Saitoti [43] and 

[48] of K~,(eZE3x;zz) for X a finite torsion-free CW-complex. However, Snaith 

there is work in progress by Kuhn. 

As would be expected from the lemma, much more is known about the spaces 

Dq(R n,S r) when n = Z than when n > Z. Before restricting to n = 2, however, 

we summarize the results of Brown and Peterson [8] in the general case. Their 
n r 

main result gives the following splitting of certain of the D (R ,S ). It is provenby 
q 

using (ii) of Theorem 2.2, the Thorn construction, and various structure maps 

from [36} to write down explicit splitting maps and then using F. Cohen's calcula- 

tions in [14,111 and IV] to check that they do indeed produce a splitting. We adopt 

n S O" the convention tha t  D0(R ,X) = 

Theorem Z.3. Let t >__ 1 (except that t > 1 if n = 2, 4, or 8). Then 

Dq (Rn' stY(n- l)t - n) is homotopy equivalent to 

[q/Z] n-i z~(n- l)t-n) S2 ~(n- i) ÷it-n- I) 
V Dq_zi(R , S A Di(R n, . 

i = 0  

As u s u a l ,  [m] d e n o t e s  the  g r e a t e s t  i n t e g e r  <_m. B r o w n  and  P e t e r s o n  [8] 

a l so  o b s e r v e  tha t  the  N i s h i d a  r e l a t i o n s  i m p l y  the fo l lowing  2 - p r i m a r y  c o h o m o l o g i -  

cal periodicity. 

Lemma 2.4. Let  ~ ( n - l )  be d e f i n ed  by 2 J# (n - l ) - I  < n_< 2 ~(n-1)  T h e n  

~,* n z¢(n- i) + r) y q?~(n-l) ~,Dq(Rn,sr). 
H Dq(R ,S 
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S i n c e  o n e  c a n  a d d  a m u l t i p l e  Zkb(n- l ) s  to  a n y  z ~ ( n - 1 ) t -  n s o  a s  to  r e a c h  a 

n u m b e r  2 ~ ( n - 1 ) u - n ,  t h e  p r e v i o u s  l e m m a  a n d  t h e o r e m  h a v e  t h e  f o l l o w i n g  c o n s e -  

quence. 

Corollary Z.5. As a module over the mod Z Steenrod algebra, 

~* n Z ~(n- l)t n 
H Dq(R ,S - ) is isomorphic to 

[~]i=0 H DN~= q-Zi( Rn-I,S Z¢(n-l)t-n) ~ H~*Di(R ,n sZ~(n-1)t-n -I ) 

Brown and Peterson [8] note one further cohomological splitting. 

Proposition 2.6. As a module over the mod Z Steenrod algebra, 

H Dq(R ,S ) ~ ~ ~ (q-zi)zk~(nml)t K i 

i=0 

X~ ~ ~I DZI(R n,S Z•(n- 1 )t) 
where K 0 = Z2and K., i>0, is dual to the sub A-module of 

1 

spanned by an monomials in the Ql(L ) not divisible by ~ (where L is the funda- 

mental class of S Z~(n-l)t and the suspensions are realized by multiplication with 
q- zi). 

These last two cohomological splittings may or may not be realizable geo- 

metrically. Brown and Peterson conjecture that they exhaust the Z-primary 

possibilities in the sense that ~eDq(Rn, S r) has no non-trivial direct summands as 

an A-module unless r - 0 or r ~ -n rood 2 ~(n-l), They point out explicitly at 

the end of [8] that, at least when n = 3, there can be finer splittings than those 

displayed when the specified congruences are satisfied. The analysis is not yet 

complete and there remains much work to be done. In particular, virtually 

nothing is known about the explicit global A-module structure of the indecomposable 

surnmands when n >_ 3. 

The splittings of Cohen, Taylor, and myself in [17] (see Theorem 3.7 below) 

together with gemma Z.1. and an easy homological inspection (compare [17, 3.3]) 

imply the following analog of Theorem Z.3. 
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Theorem Z 7. Dq(R n,S 3n'qt) 

~.jn, qt q(s o [o72] 
- V 

i=2 

is stably equivalent to 

B(Rn, n 2 i ) / B ( R  , 2 i - 1 ) )  . 

Specializing now to the case n = Z, note that Lemma 2.i and Theorem 2.2(i) 

imply that 

(i) Dq(RZ, S 2r+l) --~ EZqrDq(R2,SI) and D (R2,S 2r) ~ Y, ZqrD (R2, S 0) . 
q q 

Here Dq(R 2, S O ) : B(R 2, c~ + . (The disjoint basepoint was omitted in [15, p. 226].) 

"R i, S t, Since ~(i) = i and Dq( ) --~ S tq Theorem 2.3 implies that 

D (R z, s zt) [o/21 q --~ V E Z t ( q - 2 i ) D i ( R 2 ,  S 4 t + l )  , t >_ 1 . 

i = 0  

Setting t = i and combining with (i), we find the splitting 

[o/Z] z Z q D  i (R2, (Z) Z2qDq (Rz's°) -~ sZq ~ ( V s:)) . 

i=1 

This splitting is also immediate from Theorem Z.7 and [17, 3.3]. Its original proof 

is in Brown and Peterson [7]. 

Clearly, then, analysis of the stable homotopy type of 

Zsr+2 s V Dq(R 2,S r) reduces to analysis of the stable homotopy 
q> 1 R2 ' 

type of the spaces Dq( S l'). We therefore abbreviate 

Xq= Dq(a z,s:) 

in what follows. We fix a prime p and localize all spaces and spectra at p. The 

results to follow are due to Mahowald [33], Brown and Gitler [6], and Brown and 

Peterson [7] at p : 2 and to R. Cohen [ZI] at p >Z. 

The starting point of the analysis of the X is the determination of their q 
rood p cohomologies. Let X be the conjugation in the mod p Steenrod algebra A. 

Define 

M(q) : A/A{x(~Spi)I i > q  a n d  ~: 0 or i}. 

i 
If p = 2, we let pi = Sq and suppress the Bockstein. Davis' result [23] that 

_(i+0 i i - :  i 
x p P  : ( _ l ) i + l p p  p p  . . .  p p p i  p ( i + i )  : i + p  + - . .  + p 

I t 

g r e a s e s  s o m e  of t he  c o m p u t a t i o n s .  T h e  f o l l o w i n g  r e s u l t  i s  no t  t oo  h a r d  to  p r o v e  

by  d i r e c t  i n d u c t i v e  c a l c u l a t i o n  f r o m  F .  C o h e n ' s  r e s u l t s  on  H X q  [ 1 4 , I I I ] .  
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Mahowald's original argument when p = z [33] is somewhat different. 

Abbreviate M([q/p]) = M[q/p]. 

Theorem Z.8. H (Xq; Zz) --~ ZqM[q/2] and there is a stable 2-primary 

c ofibration s e quenc e 

f g _ EZq X 
EX2q_ i ~ Xzq - q 

which on mod 2 cohomology realizes the Zq ~ suspension of the short exact 

sequence 
0 " M(q-I)- ~ M(c 0 - ~ EqM[q/2] * 0 , 

where ~ is the A-map specified by ~(Eql) = x(Sq q) and ~ is the natural A-map. 

Here ~2X2q_l may be replaced by its 2-1ocal equivalent EZX2q_2 . The 

key to the cofibration is the const@uction of g which, as Milgram pointed out, is an 

easy exercise in the use of the classical James maps. The rest follows by use of 

the geometric and homological properties of the spaces C2S r in [36] and [14,111]; 

see [15, Thm. 2] or [33, 5.5]. The analog at odd primes is more complicated but 
r r r+ 1 

proceeds along similar lines [21]. Let M denote the Moore space S u e 
P 

Theorem 2.9. Localize all spaces at p > 2. Then the following conclusions 

hold. 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

X is contractible unless q -= 0 or q--- I rood p. 
q 

-~ S 1 and X --~ EX if q> O. El pq+l pq 

Xp2q^ M 2r(p-l) --~ Xp2q+pr if q> 0 and 1 <_r<_p-i . 

H (Xpq;Zp) ~ Egq(p-I)A/A{x(~ 'P:I I pi+g > 0}, in particular, 

H'~>~(Xpq;Zp) =~ EZq(p-l)M[q/p] if q~ 0 rnod p. 

There is a stable map 

2 i+ l(p- 1)X 
g:Xpi+Z+p--- >n p pi+l +p 

~E2(p i+l 
which on rood p eohornology realizes + l)(p-l)~ , where 

Z i 
0z:~ p (P-I)M(p:-I) -~ M(p i) is the A-map specified by 

2 i i 
~(Z p (P'I)I) = ×(PP) 
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In order to obtain hornotopical information from these cohornological calcu- 

lations, one wants to determine k-invariants. Now Brown and Gitler [6] have dis- 

played certain spectra with the same cohomology as the X when p = 2, and 
q 

R. Cohen [21] has generalized their constructions to odd primes. Combining re- 

sults, one obtains the following theorem. 

Theorem Z.i0. There exist finite p-local CW-spectra B(q) with the follow- 

ing properties. 

(i) H ( B ( c ~ ; Z p )  i s  i s o m o r p h i c  to the  A - m o d u l e  M(q) .  

(i i)  If  i : B ( q ) - ~  K ( Z , 0 )  r e p r e s e n t s  t h e  g e n e r a t o r ,  t h e n  the  i n d u c e d  m a p  

i , :  B ( q ) r ( X  ) ~ Hr (X  ; Zp)  i s  a n  e p i r n o r p h i s m  f o r  a l l  s p a c e s  X if  e i t h e r  

p = Z a n d  r <__ 2q+l  o r  p > 2 a n d  r < 2 p ( q + l )  - 1. 

( i i i )  I f  M i s  a c o m p a c t  s m o o t h  n - m a n i f o l d  e m b e d d e d  in  R n+j  w i t h  n o r m a l  b u n d l e  

v a n d  T h o r n  s p a c e  Tv ,  t h e n  i , :  B ( q ) r ( T v )  ~ H r ( T v ;  Zp) i s  a n  e p i r n o r p h i s r n  

i f  e i t h e r  

p = 2 a n d  n + j - r  < 2q+l  o r  p > 2 a n d  n + j - r  <__ 2 p ( q + l ) -  1. 

( iv)  ~ k B ( q )  i s  a k n o w n  Z - v e c t o r  s p a c e  (a c e r t a i n  q u o t i e n t  of t he  A - a l g e b r a  in  
P 

d e g r e e  k) i f  e i t h e r  

p = 2 a n d  k <  Zq o r  p > 2 a n d  k <  2 p ( q + l ) - 2  . 

H e r e  (3) f o l l o w s  f r o m  (Z) b y  A l e x a n d e r  d u a l i t y ,  s i n c e  M i s  a n  n+j  S - d u a l  of  

Tv .  P a r t i c u l a r l y  f o r  the  c a s e  p > Z, a l i t t l e  g e n e r a l i z a t i o n  of t h i s  s i t u a t i o n  i s  

a p p r o p r i a t e .  L e t  T b e  a n  m S - d u a l  of  s o m e  f i n i t e  C W - c o r n p l e x  a n d  l e t  

v ~ HS(T;  Z ). Say  t h a t  ( T , v )  i s  a d a p t e d  to M(q)  if  
P 

(a) p = 2 a n d  m - s  < 2q+ l  o r  p > 2 a n d  m - s  ~ 2 p ( q + l ) -  1; a n d  

* v-(a) av, is A{X(~Pi)] i> q} . (b) the kernel of v-:A -~" H (T; Zp) , = 

Brown and Peterson [7] at p = 2 and R. Cohen [21] at p > 2 proved the follow- 

ing characterization of the spectra B(q). 

Theorem 2.11. Let • be a spectrum which is trivial at all primes other 

t h a n  p and  s a t i s f i e s  H (E;  Zp)  -- 2~SM(q).  S u p p o s e  t h a t  f o r  s o m e  ( T , v )  a d a p t e d  to 

M(q)  t h e r e  e x i s t s  a m a p  "~:EO°T - ~ E  s u c h  t h a t  v c a r r i e s  the  g e n e r a t o r  of 

y S M ( q )  t o  v .  T h e n  E i s  e q u i v a l e n t  to  E S B ( q ) .  
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They used this characterization to prove the following basic theorem on the 

structure of the Xq. Recall that E c° denotes the stabilization functor from spaces 

to spectra. 

Theorem 2.12. At p = 2, E°°X is equivalent to EqB[q/2]. At p > 2, 

EC°X is equivalent to E zq(p-l) q B[q/p] if q~ 0 rood p. 
Pq 

Because of Theorem 9(iii), it suffices to consider q-= Z rood p when p > Z. 

In both cases, one inductively constructs (Tq, Vq) adapted to M[q/p], with u of 
q 

degree qor 2q(p-l), together with maps u from ~°°T to ~,°°X or ~°°X 
q q q Pq 

which realize uq. Modulo certain constructions and calculations based on the geo- 

metric and homological properties of the C2S r in [36] and [i4,11I], the construction 

of the (Tq, Uq) and ~ reduces to the verification of the following result. 
q 

Theorem 2.13. For each i >__ 0, there is a compact smooth closed manifold 
i+ 2 

of dimension 2 i if p = 2 or p + p-2 if p > Z with stable normal bundle u. and a 
1 

bundle map 

fi :vi-~ ~2,2i if p= 2 or fi:vi~Z,pi+2+p if p> Z 

* l)ui ) suchthat w . (vi) / 0 if p = 2 or (Tfi) pp(i+ / 0 if p> 2, where 
2 i -  1 

p(i+i) = l+p + ... + pi and u.1 generate H*(T~2,pi+2+p) as an A-module. 

When p > 2, the cohomological condition looks like but isn't a statement 

about Wu classes (since the relevant bundles ~n,qare not orientable). 

Unfortunately, the proof of this last theorem is not very pleasant, being 

based on a detailed study of the Adams spectral sequance for the suspension 

spectrum of T(~Z,Q)_ ̂  K(Zp, I) for the relevant q. This analysis is based on 

ideas of Mahowald [33]; the maps g displayed in Theorems 2.8 and 2.9 provide the 

key geometric input. 

Several people have considered the problem of directly constructing explicit 

manifolds as claimed in the theorem above. However, as far as I know, not even 

the requisite four-dimensional manifold has been concretely identified. The maps 

f. are called Mahowald orientations, or braid orientations. On the classifying 
i 

space level, one is asking for a lift of v.:M. -~ BO to the appropriate braid space 
i I 

B(R z, q) = K(Bq, 11. 
F. Cohen [12] has used results of [36 and 37] to prove that there is a com- 

mutative diagram 
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i 
~(t3oo, l) * K(~oo, 1) , 

d I 
f22S3 ~ ~ BO 

where i is induced by the natural homomorphism ]3 ~ )2 , j is induced by the 
OO (DO 

regular representation co -~ O, ~is a homology isomorphism, and ~- is the second 

loop map induced from the non-trivial map S I-~ IBO. (This implies, and was the 

original proof of, (i) of Theorem 2.2.) Mahowald [33] proved that the Thorn spec- 

trum M~- of ~- is I((Z2,0), and it follows that the Thorn spectrum of ji is also 

K(Z2, 0). (See Lewis [31] for a thorough study of the Thorn spectra of maps. ) In 

turn, this implies that any element of H.(X, Z2) for any space X is represented 

by a braid orientable manifold. This fact says that such manifolds must abound, 

but they are still very hard to find directly. F.Cohen [12] shows that solv- 

manifolds and certain Bieberbach manifolds admit braid orientations. 

In view of all this, it is very natural to ask precisely what it means geo- 

metrically for an n-manifold M to admit a braid orientation. Sanderson [44] 

answers this question by associating to a braid orientation of M a canonical im- 

mersion N X I -+ M, dim N -- n-l, factored through an embedding of N XI in 

M X R 2 and showing how the normal bundle of M can be recovered from the 

immersion. I shall say no more about this here since Sanderson's paper appears 

in these proceedings. 

Incidentally, if ~-n is the restriction of ~ to ~FC2S IC C2 Si -~ ~22S3, then 

Mahowald [33] a lso  p roved  that  H (M~n; 22) ~ M(n). R. Cohen [22] has jus t  

recently proven that M~n is in fact equivalent to B(n). 

Returning to our main line of development, we sketch how the results above 
s 

lead to infinite families of elements in the ring w. of stable homotopy groups of 

spheres. The essential point is the connection of the spaces X to ~2sr+2 on the 
q 

one hand and the relative ease of analyzing the homotopy groups w,B(q) on the 

other. Mahowald's work actually preceded that summarized above. In particular, 

he conjectured Theorem 2.12 (its implicit assumption being an error caught by 

Adams in a preliminary version of [33]). However, given the results above, 

Mahowald's arguments go as follows. 

Let b:S 8-~ BO generate w8BO = Z and let ~:~S 9 --~ BO be the unique loop 

S 8" map which restricts to b on Let ~'.~2S9 "~ BO be the adjoint of Qb, 

namely the composite of ~ with the evaluation map ~I,~2S 9 "-~ ~2S 9. It is easy to 
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check  that  b (wzi) / 0 for  i Z 3 [33, p .250] .  It is we l l -known (see [14,II .  5.15] 

and [31,2.3.4]) that the Thorn spectrum Mb is the cofibre of the map 

9:~°°f22S9 -~ ~°°S0 = S of spectra adjoint to the composite map of spaces 

[2S 9 [2b ~ f20BO --~ SO J ,, SF = QI S0 *[-i] - QoSOC QS0 

Z i 
(where the subscripts indicate the relevant components). Of course, Sq ~t / 0 for 

i _> 3, where b is the Thorn class of Mb. Now 

V zcoDq(R2, sv) V zco( 6%q), 
q>_l q>l 

hence ~is a sum of maps ~q:~co(~6qXq) -~ S. Let 

~Zi -Z+  2 i-1 
Y'x = Xzi_3 and 

Mahowald's main result [33,Thin. Z] reads as follows. 

cofibre of a map f (of spaces or spectra), 

fi " Zoo = #zi-3" Yi ~ S, i> 3. 

Let Cf denote the 

Theorem 2.14. The spaces Y. and stable maps f. have the following 
i 1 

properties. 
2i 

(i) Yi has dimension 2i-i, H -l(Yi;Zz) = Z 2 , and Yi is (21-2i-3-i)- 

connected. 
i 

(ii) sqZ ~t / 0, where ~ generates H0(Cfi;Z2 ). 
2 i 

(iii) There is a (stable) map gi:S -~ Y. whose composite with the projection 
i 

Z i- Z i 
Yi -~ Yi/Yi -~ S 21- is essential. 

Here (i) is immediate from the filtration and homology of C2S i and (ii) is 

immediate from the paragraph above. Part (iii) requires a little more work since 

~vzi_ 3B(Zi-4), ~rziY i = and this is the first group beyond the range of Theorem 2.I0 

(iv) and the first in which 4-torsion can occur. (The preprint version of [7] gave 

a range one higher, this being an error caught by Mahowald.) Nevertheless, the 

explicit construction of the B(q) makes detection of the required gi via the Adams 

spectral sequence quite easy. 
co co 2 i 

Standard arguments show that fio~ gi:~ S ~ S projects to hlh i in 
i 2, 2 +2 

E z of the rood 2 Adams spectral sequence. Thus the hlh i are permanent 
s 

cycles and represent non-zero elements ~i in w, . This was the starting point 

of Mahowald's Aarhus talk, in which he noted that one could start the argument 

above with b:S 4-~ BO instead of b:S 8 -~ BO and so obtain a different family of 
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Z 
~]i's. He asserted that 2~]i+i = I]i for both families, this being zero if i = 4 and 

non-zero if i >__ 5 (for both families) but the reader is referred to Mahowald's 

contribution [35] to these proceedings for further information. 

R. Cohen [Zl] gives the following analogous development at odd primes. Let 

b:S 2p-Z -- BSO generate =2p_zBSO = Z. The composite Bjob:S 2p-Z-~" BSF de- 

termines a loop map ~:~S 2p-I -~ BSF and ~ has adjoint ~:~2ZS 2p-I -~BSF. 

Here b (w i) / 0 for i>__ I, where w k is the k th rood p Wu class. The Thorn 
P 

spectrum M~ is the cofibre of the adjoint @:~°°f~ZsZP-i -- S of the composite 

s 0 *[-t] ~ QoS0C QS ° f~Zs2p-I P,-~BSF ~ SF = Q1 

pi 
Of course, P ~ / 0 for i >_ i, where ~ is the Thorn class of M~. Now 

N°°~2ZsZP-1 ~ V NO°Dq(RZ,SZp-3)  ~ V N ° ° ( % ( z P - 4 ) q x q )  , 
q>_l q>_l 

hence ~ is a sum of maps ~q: ~°°(~(ZP-4)qXq) --~ S, Let 

Y'I : N(ZP-4)PlXpI' and fi : @pi" COYi "~ S, i > i. 

Theorem Z.15, The spaces Y. and stable maps f. have the following pro- 
1 1 

perties (where cohomology is taken rood p). 

(i) Yi has dimension Z(p-l)p I- I, H Z(p-I)pi- 2 i • l(Yi) and H (p-l)p-2(yi) 

are both Zp with respective generators y and x such that ~(x) = y, and 

Yi is (2(p-l)p I- 2p I- - l)-connected. 

(ill ppl = ~ and Fi_i~ - ~ (up to non-zero constants), where ~ generates 

H 0 (Cfi) , * * and ~ are the images in l-I (Cfi) of ~x and ~y in H (~Yi) , and 

F. is the s e c o n d a r y  c o h o m o l o g y  o p e r a t i o n  a s s o c i a t e d  to  the  A d e m  r e l a t i o n  
1 

f o r  P (p-  t ) p i  i PP ; the  s e c o n d  e q u a t i o n  h o l d s  rnodulo  z e r o  i n d e t e r m i n a c y .  
i 

(iii) There is a (stable) map gi:S 2(p +l)(p-l)-3 -~ y. such that Plxfl 0 in 
1 

-- * 

H*(Cgi), where x pulls back to x c H (Yi). 

Here (i) i s  a g a i n  i m m e d i a t e  f r o m  the f i l t r a t i o n  and h o m o l o g y  of C2S t ,  the  

f i r s t  p a r t  of ( i i)  i s  i m m e d i a t e  f r o m  the p a r a g r a p h  a b o v e ,  and  the  s e c o n d  p a r t  of ( i i )  
i 

i s  a d i r e c t  c o n s e q u e n c e  in  v i e w  of L i u l e v i c i u s '  f a c t o r i z a t i o n  of PP v i a  s e c o n d a r y  

c o h o m o l o g y  o p e r a t i o n s  [32]. F o r  ( i i i ) ,  T h e o r e m s  2 .9( i i i )  and  2 . t 2  g ive  t ha t  

s y Z(p_i)(pi-i+ i)B(pi_2 ) 
X i • MZ(P-I) ~ X • --~ 
P p1+p 
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This time the desired element is just within the range of Theorem 2.10(iv), which 

gives a homotopy class 

~ p ( i - i )  ¢ Wq B(p l -Z)  ' q = ZP(Pl -Z+ l )  4 .  

The required map gi is obtained by suspension of the composite of 

E2(p-l)(p1-1+l) with the projection -~ EZP-Ix . induced by the ~p( i -  t )  Xp1+p pX 

p r o j e c t i o n  M 2 ( p - t )  -- S 2 p - t .  

co EcosZ(p- f)(p1+1) - 3 
Standard arguments now show that floe gi: -~ S pro- 

3,2(p-l)(p1+l) of the rood p Adams spectral sequence. Here jects to h0Xi_ I in E Z 

i (o r  o r  up E 2'2(p-I)pi+I corresponds to F. and is also denoted b I bl, i bi) ; 
ki ~ 2 i 
to sign, it is the p-fold symmetric Massey product <hi,...,h i>. Thus the h0X i 

S 
are permanent cycles which represent non-zero elements ~i of order p in w. . 

Of course, ~ extends to Y.: r z(p-0(p~+I+ i)- Z M-i -, S, where M -I is the 
1 1 

M-I rood p Moore spectrum with bottom cell in dimension -I. If w: -~ S is the 

projection onto the top cell, then Cohen shows further that "~i is represented by 

* h w (h 0 i+i) in E Z of the rood p Adams spectral sequence converging to the stable 

cohomotopy of M -l, but the method fails to detect the h0hi+ I themselves. 

§3. Splitting theorems; James maps and Segal maps 

The material to be discussed here is simpler, but in an earlier stage of 

development, than that discussed in the previous section. It is potentially at least 

as rich, and should lead to a later generation of concrete homotopical applications. 

The calculations of the previous section presupposed from iterated loop space 

theory only the geometric properties of the approximation C(Rn, X) -~ ~nEnx, the 
n s 

existence of the stable splitting C(R ,X) V Dq(Rn, X), and understanding of the 
q>__l 

homologies of c(Rn, x) and the pieces Dq(Rn, X). The analogous information for 

first loop spaces would be the approximation NiX ~2~X, the splitting 

EMX --~ VEx [q], and the homologies of MX and the X [q]. The latter informa- 
q>_l 

tion is utterly trivial, and the James approximation acquires much of its force 

• WLX [q] ~ E X  [q] w h o s e  from homological calculation of the Jamesr ]maps jq:MX --~ -~ 

adjoint James-Hopf maps h : •MX -~ EX LqJ yield the splitting. For example, it 
q 

was just such homological information which led to the homological understanding 

of the key maps g of Theorems 2.8 and Z.9. 
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The deepest part of the theory to follow (and the part in most rudimentary 

form) will in principle lead to complete information on the homological behavior of 

the James maps jq:C(Rn, X) -~ QDq(Rn,x) whose adjoint stable James-Hopf maps 
S 

hq :~C°C(Rn, X)-~ ~,c°5(Rn, x ) yield the stable splitting. However, while the geo- 

metry leading to such computations is more or less understood, we have not yet 

begun the actual calculations. Thus the present state of the theory is analogous to 

the status of the original approximation theorem after the work of [36] but before 

that of [14]. 

Before proceeding further, I should say that virtually everything discussed 

in this section is joint work of Cohen, Taylor, and myself [16-19] and also Caruso 

[i0], the only exception being the closely related work of Kosehorke and Sanderson 

[3O]. 

I shall first explain the various splitting theorems of [16 and 17] and then 

discuss the multiplicative properties of the James maps and certain analogous 

maps, the definition of which is based on ideas of Segal [46]. We shall see that an 

unstable version of the Kahn-Priddy theorem follows directly from these proper- 

ties, and we shall obtain a result on the Z-primary exponent of the homotopy group 

groups of spheres as an obvious corollary. Another fairly immediate application 

is a simple proof of Mahowald's theorem [34, 6.Z.8] on how to represent K(Z,0) as 

a Thorn spectrum. Nevertheless, I am sure that the most interesting applications 

belong to the future. 

Return to the general context established in section one. A collection of 

~..-spaces ~. with degeneracy operators is denoted ~ and called a coefficient 
J J 

system. A collection X = {Xq) of based spaces with all the formal properties 
th 

that would be present if X were the q power of a based space X is called a q 

If-space. Given ~ andX, there results a filtered based space CX. See [16,§§l,Z] 

for details of this generalization of the construction CX of section one. X might 
q 

be P^ X q for based spaces P andX, and this example leads to useful 

"parametrized" splitting theorems. However, the reader may prefer to think of 

X as X q 
q 

The splitting theorems of [I 6] all fit into a single general framework which 

we now sketch. Let ~ and ~' be coefficient systems and let q be given. Let 

+ 
^Z X[q] , Dq(e,x) = ~ q c x / ~ _ t c _ x  -- eq q 

where X[q] is the quotient of Xqby the generalized fat wedge present inXqfor a 
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H - s p a c e  X .  T h e s e  s p a c e s  f o r  ~ '  w i l l  b e  i r r e l e v a n t ,  a n d  w e  a b b r e v i a t e  

nq(~,  _X ) : nq_X. 
-~ 09 A J a m e s  s y s t e m  ~ ~ '  i s  a c o l l e c t i o n  o f  m a p s  C r  ( % r - q )  s u c h  t h a t  

c e r t a i n  s i m p l e  d i a g r a m s  c o m m u t e  [ 1 6 , 4 . 1 ] .  A J a m e s  s y s t e m  i n d u c e s  a J a m e s  m a p  

j :CX -~ C'D X q -- q-- 

for any H-space X [16,4.2]. In practice, C'X is an H-space for spaces X (but not 

for generalll-spaces). If we are given James systems ~ -~' for i<_ q<_ r, then 
r 

we candefine kr:CX_ -~ C'( V DqX)_ to be the sum over qofthe composites of 
q=l r 

the _jqwith the evident inclusions C'D X -* C'( V DqX). We can also restrict k 
q-- -- r 

q=l 
_ ' gives rise to a to the finite filtrations of CX. Any chosen basepoint of ~I 

natural map ~] :X -* C'X for spaces X. We can thus write down the following 

diagram: 

Fr_ l CX 

(*) k 
r - 1  

r - 1  

C'( V DqX_) 
q : l  

L iT 

- FCX • DX 
r -- r-- 

1 I 
r 

C '~ C h r  
' C'( V D q E )  , C'Dr_X 

q = l  

Here ~ and ~ are used generically for evident cofibrations and quotient maps. In 

practice, the left square always commutes on the nose (which allows passage to 

limits over r when we have James systems for all q) and the right square at least 

commutes up to homotopy. 

We are interested in homotopical splittings, but we digress momentarily to 

discuss homological splittings. The infinite symmetric product NX comes from 

the coefficient system ~ with each ~j a point. The unique maps ~r ~ ~(q,r-q) 

give a James system for each q. Here (*) commutes. ApplyingN to (*) and using 

the natural transformation NN -* N, we obtain the commutative diagram 

NL Nw 
N F  C X  ~- N F  C X  ~ ND X 

r-I -- r -- r-- 

1 J Ii 
r - 1  r 

N( V DqX) N~ , N( V nqX) N. ~ ND X 
q=l -- q= i r-- 
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Using the fact that N converts cofibrations to quasifibrations and the relationship 

between N and integral homology [24], and playing games with parameter spaces P, 

we derive the following general homological splitting theorem [l 6, 4.10]. 

Theorem 3.1. For all coefficient systems ~, H-spaces X, Abelian groups G, 

and r >__I ( i n c l u d i n g  r = co), ~ , ( F r C X ; G  ) i s  i s o m o r p h i c  to ~ ~ , (Dq_X;G) .  
q = l  

T h e s e  i s o m o r p h i s m s  a r e  n a t u r a l  in ~ , X ,  and G and c o m m u t e  wi th  B o c k s t e i n  

operations. 

The case C. : ~ recovers Steenrod's homological splitting [49] of the re- 

duced symmetric powers F NX and this example shows that we could not hope for 
r 

a stable homotopical splitting without some restriction on ~. 

For the homotopical splittings, ~ will always be E-free in the sense that E. 

acts freely on ~. for each j. Returning to the general context, assume given a 
J 

natural map ~t:C'X -*[2tEtx for spaces X and some t > i. The key example is 

C (R t, X) - 1 C ' X  = and ~3 t = c~tg as  in s e c t i o n  one .  C o m p o s i n g  the  d i a g r a m  (*) w i th  

~3 t and t a k i n g  a d j o i n t s ,  we ob t a in  a h o m o t o p y  c o m m u t a t i v e  d i a g r a m  

E t - I D  X 6 ~ • >ntD X 
r-- r-- 

E t F r -  1 ~ ~ t F  C X  - C X  
- -  r - -  

kr_  1 k r 

r-I ~ r 
V EtD x ~- ..... ~- V ~tD x ~ ,. EtD x 
q=1 q- q=l q- r- 

Assuming inductively that ~ is an equivalence, a trivial diagram chase implies 
r -1  

that 6 --'~ 0 in the top cofibration sequence. This implies that ~ is an equiva- 
r 

l e n c e .  The  s a m e  s o r t  of a r g u m e n t  w o r k s  w h e n  t = oo. 

With ~ : ~i = ~, where ~j : 2.j, this recovers and generalizes Milnor's 

s p l i t t i n g  [4Z] of NMX [ t 6 , 3 . 7 ] .  

Theorem 3.Z. For all H-spaces X and r > i (including r = oo), EF MX 
r -- r -- 

is naturally equivalent to nV_ Ex The equivalence is given by sums over q 
=l [ q ]  " 

of restrictions of James-Hopf maps h :EMX -- EX . 
q [q] 

Note that no connectivity hypothesis is needed; we use a map 61:MX -~ f~EX 

but do not require it to be an equivalence. It is an immediate consequence that 

there is a natural weak equivalence Eg~EX ~ V Ex [q] for all connected 

based spaces X. q>l 
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In [16,§5], we introduce "separated" coefficient systems. For such ~, if 

/ and ~tq) is the coefficient system given by the configuration spaces ~q = ~ ~ ~Eq 
[~ 

F(~qDj), there are tautological James systems ~-~ ~ for each q >_I. When 

= ~(Y) is itself the configuration space coefficient system of a space Y, we shall 

write down the resulting James maps explicitly below. If 8q embeds in R t for 

q<__ r, then ~j(q) maps to ~(R t) and we can apply the theory above with~' = ~(Rt). 

The product of any coefficient system with a separated system is separated, and by 

use of tricks involving both pairs of projections 

• ~ X~(R c°) ,C~(I~ °°) and ~(~= ~(gJ X~(R 0°) -~(R °°) 

we prove the following general splitting theorem [16, 8.Z]. The second pair of 

projections plays a critical role in the naturality, leads to a uniqueness assertion 

for the stable James-l-lopf maps, and allows one to avoid any choices of embedd- 

ings. This precision is crucial to the deeper theory discussed at the end of the 

section. On the other hand, as discussed in [16,§5], use of embeddings gives a 

good hold on the destabilization properties of the James-Hopf maps. 

Theorem 3.3. For all Z-free coefficient systems ~, ll-spaces X, and r >__i 
r 

(including r = oo), ~°°F CX is equivalent to \/ ~C°DqX_, naturally in ~ and X. 
r -- q'l -- 

The equivalence is given by restrictions of staSle $ames-Hopf maps 

h s:Zc°CX -~ N°°D X. 
q -- q-- 

Specializing either to ~ = ~(R n) or @ = @n' compatibly in view of 

g: @n-~ ~(Rn)' we obtain the following immediate consequence [16,8.4]. 

Corollary 3.4. For all connected based spaces X, there is a natural equiva- 

lence in the stable category between ~°°~n~nx and V ~°°D (Rn, X), n >_I or 
q>__l q 

n = oo, and these equivalences are compatible as n varles. 

Such equivalences were first obtained by Snaith [48], but our proof has a 

number of advantages (discussed in [16, § 7]). In particular, it is not clear that 

Snaith's splitting maps ~tF C X -- ~tD X can be extended over all of ~tc X; 
r n n,q n 

that is, they are not given by globally defined Sames-Hopf maps. 

We shall come back to these splittings shortly, but I want first to explain the 

further splittings obtained in [17], which partially remove the restriction to con- 

nected spaces in the corollary above. 

In [17,§i], we introduce the notion of a "directed" coefficient system. The 

details are rather delicate and the range of examples is peculiar; ~ and ~ are 

directed but the ~n are not; ~(Y) is directed if Y is an open manifold but is 
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not directed if Y is a compact ANR. 

~r: ~r X~rXr -~ C'r+l X Xr+ 1 
r+l 

for a H-space X, and we define CX to be the resulting eolimit. 

James system, there result James maps 

j : CX -~ C'D X, q -- q-- 

where Dq_X is a certain spaCer equivalent to the cofibre of ~q-l" 

we define k :CX-* C'(q L-IV ~qX) by summingthe -H ~- for 
r -- _ -- 

the diagram 

~r-i X ~riiXr_l 

kr-i [ 

r-I 

c,( V nq_X) 
q=l  

When ~ is directed, there are inclusions 

L w 

C~ r X.X, X r P 
r 

r 

If ~, -~' is a 

Just as before, 

q <__ r and write down 

DrX 

r 
C'~ C'~ 

.c,( V ~x_) . c,5~x 
q=l 

From here, the derivation of splitting theorems is precisely the same as in 

the discussion above, and we obtain the following theorems [17,§Z]. 

Theorem 3.5. For all directed coefficient systems ~, ll-spaces X, Abelian 

groups G, and rk i, there are isomorphisms 

r 

~*(OrXE Xr;G) ~ E ~,.(DqX;G) and ~.,,(C-X;G)., ~ E ~,(DqX;G) 
r q=l q~l 

which are natural in ~, X, and G and commute with Bocksteins. 

With ~ = ~, this recovers Steenrod's isomorphisms [49] 

r 

~ r q/~q. xq-l/~q_l; H,(X /~r;G)~ E ~:.(X G) 
q=l 

for the unreduced symmetric powers of a space. 

Theorem 3.6. For all H-spaces X and r > i, there are natural equiva- 

lences r 

ZXr~ V Z(Xq/ImXq_ I) and Z~X--~ V Z(Xq/ImXq_1)" 
q=l q>_l 

For spaces X, IVlX is the weak infinite product of countably many copies 

ore and the successive quotients are xq/x q-l, X q-I being embedded as points 

with last coordinate the basepoint. 
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Theorem 3.7. For all E-free directed coefficient systems 0. and all 

ll-spaces X, there are natural equivalences 
r 

~°°(~-~r X3q X r) --~ V 32°°D X and ~°°~X --~ V oo~ X. q-- -- q-- 
r q=l q>__l 

For example, with 0. = ~(RC°), the case of spaces BG for a topological 

monoid G gives that B(Eoo[G )_ is stably equivalent to the wedge of the cofibres of 

the n a t u r a l  m a p s  B ( E q _ I ;  G) ~ B ( E q ] G ) .  

F o r  the  p r o m i s e d  a n a l o g  of C o r o l l a r y  3.4,  we use  an  a p p r o x i m a t i o n  of the 

form 
~" n 

~-(Rn, x), 7 ~n(X +) n , [20 n(x+ ) . 

Here X is a connected space and X + is the union of X and a disjoint basepoint. 

space <(X +) is the telescope of a sequence of "right translations" The 

r r+l 
x X -~ ~ x X 

n,r ~ n,r+1 ' 
r Er+l 

and the map ~n is a homology isomorphism constructed at the end of [14,1§5]. 

While [ is defined there for generalX, it is only a homology isomorphism for 
n 

connected X; in general, the two-variable Browder operations mix components 

n n(x+ ) non-trivially in H.f20 but not in H, (X+). The map ~ is an equiva- 

lence analogous to g [17, 3.1]. 

Corollary 3.8. For all connected based spaces X, there is a natural equiva- 
co n n. + V oo- n 

fence in the stable category between E ~0 E (X) and q>--i E Dq(R ,X), n >__ 2 or 

n = oo, and these equivalences are compatible as n varies. 

These results by no means exhaust the possibilities of the basic line of argu- 

ment, and there are various other such splittings known to Cohen, Taylor, and 

myself but not written down. For example, Joe Neisendorfer reminded us of 

[36,6.6], in which I introduced a relative construction En(X ,A) for a based pair 

(X,A). When A -~X is a cofibration and A is connected, there is a quasifibering 

CnA --  E n ( X , A )  --  C n _ I ( X / A  ) , n>__l , 

w h e r e  C 0 is  the  i d e n t i t y  f u n c t o r  [36, 7.3].  T h e r e  a r e  f i l t r a t i o n  p r e s e r v i n g  i n c l u s -  

sions CnA C E (X,A) C C X and it is perfectly straightforward to trace through 
n n 

the proof of the stable splitting of C X and see that it restricts to give a stable 
n 

splitting of En(X , A). 
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Theorem 3.9. Let A -~ X be a cofibration. For all r>l (including r = oo), 

and all n >_ l (including n = co), there is a natural equivalence 

r 

~co~En(X, A) --~ V ~co(~n (x, a)/rq_iEn(X, a)). 
q=1 

These equivalences are compatible as r and n vary and are also compatible with 

the stable splittings of C A and C X. 
n n 

The relationship between the splittings of En(X,A) and of C I(X/A) is 
n- 

unclear and deserves study. 

Again, it is a simple matter to give equivariant versions of our splitting 

theorems, putting actions of a finite group G on all spaces in sight (see [39,§5]), 

and this in turn is surely a special case of a general categorical version of the 

argument. 

We return to the original splitting theorem and specialize to configuration 

space coefficient systems ~(Y), the case Y = R n being of most interest. 

Actually, we are wholly uninterested in splitting theorems in the rest of the paper, 

being concerned instead with the analysis of the James maps as a topic of inde- 

pendent interest. 

As in section one, think of points of C(Y,X) as pairs (L,X), where L is a 

finite subset of Y and X" L -~ X is a function. Recall that B(Y, q) = F(Y, q)/~q. 

As mentioned above, there are canonical James systems which give rise to /ames 

maps 

jq: C(Y,X) ~ C(B(Y, q), mq(Y,X)). 

Explicitly, jq(h,k) = (M,g), where M is the set of all subsets of b with q elements 

(such a set of q elements of Y being a typical point of B(Y, q))and ~: M -~ Dq(Y,X) 

s e n d s  a p o i n t  m c M t o  t he  i m a g e  in  Dq(Y,X)  of (m ,  k l m  ) • F q C ( Y , X ) .  Of c o u r s e ,  

it is not immediately apparent that j is well-defined. To check this, the more 
q 

combinatorial description in [16,§5] is perhaps more appropriate. To proceed 

further, one can assume that B(Y, c~ embeds in R t say via and then corn- , eq, 

pose with C(eq, l) to obtain a James map 

c(~  x)  ~ C(R t,Dq(Y,x)) .  J q: 
n 

W h e n Y  = R , we m a y  t a k e  t : 2 q n  ( o r  ( Z q - 1 ) n ,  by  [ 1 6 , 5 . 7 ] ) .  

This functional description of these James maps is due to Koschorke and 

Sanderson [30], who discovered them independently of Cohen and Taylor. (To see 

the comparison, their C~m(X) is our C(B(Rm, k),X).) Their emphasis is not on 

the maps and their homotopical implications but rather on their geometrical 
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interpretation. Let V be a smooth manifold without boundary with one-point com- 

pactification V . Also, let ~ be a vector bundle over some space B, with Thorn 
c 

m Bk 
complex T~ , and let ~ m,k be the evident derived bundle over Bk= F(R ,k) ×Zk 

Consider immersion data consisting of a smooth closed manifold M, an immersion 

gl:M ~ V with normal bundle v, and a bundle map ~: v-~" ~m,k such that 

(gl'g2):M-* V X B(Rm, k) is" an embedding, where gz:M ~ B(Rm, k) is the com- 

posite of the base space map of g and the projection B k-~ B(R re,k). Let 4(V,~) 

be the set of bordism classes of such immersions. Koschorke and Sanderson 

first prove that Ckm(T~) classifies this set, 

Jkm(V,~) ~ [V c,Ck(T~)], 

and then explain how to interpret the maps jqabOve (for X a Thom space) in terms 

of certain operations Im(V,~) -~km(V,$) specified by associating to an immer- 
k 

sion gl,M ~ V with normal bundle ~ an immersion gl:M(k) -~ V with normal 

bundle mapping appropriately to ~m,k' where M(k) C B(M, k) is the manifold of 

k-tuple self-intersection points of gl" In this context, they obtain geometric 

proofs and interpretations of some of the multiplicative properties of James maps 

we are about to discuss. 

In [i0], we shall discuss multiplicative properties of James maps in full 

axiomatic generality. Given suitably related James systems ~-~ ~(q) and suitable 

structure on ~ and the ~(q), there is a ring space structure on the infinite product 

X C(~DqX and the map 
q>_0 

(jq): CX -- × C(OJDqX 
q k 0  

is  an exponen t i a l  H - m a p .  H e r e  D0X = S 0 and J0 c a r r i e s  CX to 1 ~S 0 r C(0)S 0. 

Up , the trivial For any coefficient system ~ with appropriate sums X ~q -~p+q 

James systems C, -~ ~ used to prove Theorem 3.1 satisfy the relevant axioms. 

For any separatedC, with sums, the canonical James systems ~ --~_,(~q) satisfy 

the axioms. If ~ = ~(Y), where Y admits an injection YJJ. Y -- Y each component 

of which is homotopic through injections to the identity map, then~, admits sums 

of the sort required. In particular, this applies to Y = R n. Here the following are 

all H-maps with respect to the appropriate multiplication on the infinite products: 
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x C(eq, 0 
× C(B(R n, q),Dq(Rn,X)) q>O ~, X 

q>_O q>_0 

(Jq) 

C(R Zqn, Dq(R n , x ) )  

g 

(J 
q) x R n x )  C(Rn, X ) . . . . . . . . . . . . . . .  -IP [2Z qnEZ qnDq( , 

q>O 

-i 
We continue to write jqfor the composite azqng C(eq, l)jq. We could also have 

stabilized, replacing Zqn by co on the right. The product on the loop space level is 

induced in an evident way from smash products f21YX~2JZ-~f/I+J(Y^Z) and the pairings 

%(Rn,X) ^ Dt(Rn,x) --~ Ds+t(Rn,x ) 

n 
induced by the additive H-space structure on C(R ,X). 

We digress to mention an application to Thorn spectra in [18]. There we give 

a simple proof, based solely on use of Steenrod operations, of the following 

theorem. Let $3<3> denote the 3-connective cover of $3. 

Theorem 3.10. (i) The Thorn spectrum associated to any H-map 

~Zs3 -~ BF with non-zero first Stiefel-Whitney class is K(Z Z,0). 

(ii) The Thorn spectrum associated to any H-map ~Zs3<3> ~ BSF with non-zero 

second Stiefel-Whitney class and non-zero first Wu class at each odd prime is 

K(Z, 0). 

Part (i) gives a new proof of Mahowald's result that M{ : K(Zz,0 ). .At p>Z, 

Di(RZ, s Z q - 1 )  ~ 0 for  l<i<p and D (R2,S Zq-l) "~ M 2pq-2. It follows f rom t h e d i s -  
L "  

cuss ion  above that  . Z ~ Z q + I  C z s Z q - 1  QMZpq-1  

is  a p - l oca l  H - m a p .  As expla ined  in [18], with q=  1 this ea s i ly  leads  to an H - m a p  

as prescribed in part (ii) and so gives Mahowald's result that K(Z,0) is a Thorn 

spectrum. 

Returning to the work in [i0], we now head towards the Kahn~Priddy 

theorem. We follow the ideas" of Segal [46], but we work unstably with general 

spaces X and thus introduce a great deal of new structure into iterated loop space 
n n 

theory. We want first to extend the James maps over [2 IE X. There is no prob- 

lem whenX is connected, but it is the case X = S O in which we are most interested. 

As Segal points out [46], the following obstruction theoretical observation allows 

use of the exponential H-map property above to extend the jq simultaneously for 
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all q. Henceforward, all H-spaces are to be homotopy associative and com- 

mutative. 

Lemma 3.11. Let g:X -~ Y be a group completion of H-spaces, where w0X 

has a countable cofinal sequence. Then for any grouplike H-space Z and weak 

H-map f:X -~ Z, there is a unique weak H-map f:Y -~ Z such that is weakly 

homotopic to f. 

The "weak" aspect is that we are ignoring lira I terms. The interpretation is 

that, on finite-dimensional CW-complexes A, g:[A,X]-~ [A,Y] is universal with 

respect to natural transformations of monoid-valued functors from [A,X] to group- 

valued represented functors [A,Z]. We take [ , ] in the sense of based homotopy 

classes. 

Zqn Zqn , n 
By a p o w e r  s e r i e s  a r g u m e n t ,  (1, × ~ z~ mq(m ,X))  is g r o u p l i k e ;  that  

q>_l 
i s ,  i t s  m o n o i d  of  c o m p o n e n t s  is  a g r o u p .  T h i s  g i v e s  the  f o l l o w i n g  g e n e r a i i z a t i o n  

of r e s u l t s  of S e g a l  [46]. We a s s u m e  tha t  ~0 X is  c o u n t a b l e  and w r i t e  ~](r,s) f o r  the  

n a t u r a l  i n c l u s i o n  a r z r x  -- f2SzSx ,  s > r ;  1](r,s) i n d u c e s  ( s - r ) - f o l d  s u s p e n s i o n  on 

h o m o t o p y  g r o u p s .  

Theorem 3.12. For n >__ 2 and aliX, there exist maps 

jq.. anznx - aZnqzZnq~(R n, x) 

such that J0 is constant at i ¢ S 0, Jl is -q(n, 2n), and 

Jr(O~+ ~3)= ~ Jp(~)J q(~) 
p+q= r 

for if, ~ ~ [A,g2nEnx]. 

Here the sums are loop addition and the products are those specified above. 

S e g a l  [46] a l s o  i n t r o d u c e d  v e r y  s p e c i a l  c a s e s  of the g e n e r a l  m a p s  

s :C(Z,Dq(Y,X)) -~ C(Z xYq, X [q]) 
q 

specified by Sq(M,M) = (N,v) where if ~x(m) is the image in Dq(Y,X) of an ele- 

ment (Lm, Xm) ~ FqC(Y,X) such that LmC Y has qelements, then 

N = U (m,~(~) . . . . .  ~(q)) C Z xYn 
m ( M , £ i ~  L m ,  c~e 2 q 

and 

u ( m , ~ ( l )  . . . . .  ~ ( q ) )  = X m [ ~ ( t ) )  ^ " ' "  ^ l m ( ~ ( q )  ) '  

It is easy to analyze the additive and multiplicative properties of the SqCOm- 
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binatorially, and we arrive at the following complement to the previous result. 

L e t  X [0]  = S O. 

Theorem 3.13. For m >_ Z, n >_ i, and aliX, there exist weak H-maps 

m m n ~m+nq m+nqx[q ] 
s :e ~ Dq(R ,X)-~ 
q 

such that s o is the identity map of f2ms m, s I is D(n,m+n), and 

Sr(~'f) = (p,q)Sp(~)Sq(7), r = p+ q, 

for ~ ~ [A,f~tp~tPD (Rn, x)] and ? ~ [A,f~tq~tqDq(Rn, x)], t >_ 2. Moreover, 

m m ~ 
for ~ ~ [A,~ ~ X], 

(s o~mzm~)(~) = q:(~q(m,m+nojo~mEmA)(~), 
q 

where A:X -~ Y[q] is the diagonal and ~:X -- Dq(Rn, X) is induced from A (via 

any chosen basepoint in F(R n, oJ). 

The product ~? is that above, while that on the right is just smash product 

of maps. Here s is obtained by application of Lemma 3.11 to the additive H-space 
q 

structures, and the uniqueness clause of that lemma implies the last formula. The 

passage from the combinatorial level product formula to the loop space level is 

more subtle and requires use of the following result (the need for which was over- 

looked in [46]). 

Lemma 3.14. Let g:X -" Y and g':X' -" Y' be group completions, where 

~0 X and ~0 X' have countable cofinal sequences. Then for any grouplike H-space 

Z and weakly homotopy bilinear map f:X^X' -- Z there exists a unique weakly 

hornotopy bilinear map ~:Y^y' -- Z such that ?(gAg') is weakly hornotopic to f. 

Setting m = 2nq, we can compose S qwith jq. To analyze this composite, 

we need the map [ ] 
k :C(Y,X) -- G(Yq, X Lqj) 
q 

specified by k (U,~) = (m,~) where M is the set of allordered q-tuples of ele- 
q 

mentsofLand ~(~I ..... fq) = ~(~) .... ^ ~(~q). Again, easycombinatorics, 

a power series argument, and use of Lemma 3.11 give the following result. 

Theorem 3.15. For n>__ Z and aliX, there exist maps 

k :$]nznx -- ~nqznqx[q] 
q 

S O ' such that k 0 is constant at 1 c k I is the identity map, and 

kr(~+8) : ~ (p, q)kp(~)k(8 ) 
p+q= r 
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for e , ~  ~ [ A , f 2 n ~ r ~ ] .  M o r e o v e r ,  

(~q(nq, 3nq)okq) (a )  = (Sq*jq)(C~) . 

While  a l l  th i s  g e n e r a l  s t r u c t u r e  is  b o u n d  to p r o v e  u se fu l ,  the c o m b i n a t o r i c s  

fo r  the l a s t  s t ep  t o w a r d s  the K a h n - P r i d d y  t h e o r e m  r e q u i r e  A : X  -~X [q] to be the 

i d e n t i t y  m a p ,  tha t  is  to s ay  X = S O . Le t  c. be the  n u m b e r  of ways  of d iv id ing  a 
l q  

se t  of q e l e m e n t s  in to  i u n o r d e r e d  s u b s e t s .  The " t h e r e f o r e "  in  the fo l lowing  r e s u l t  

c o m e s  f r o m  a p u r e l y  a l g e b r a i c  a r g u m e n t .  

n n 
T h e o r e m  3.16.  F o r  n > _ 2  and  e e [A,~2 S ], 

q q 
e = ~ .  Ciq(n (ni ,  nq) o ki) (c~) . 

i = l  

T h e r e f o r e  kq(C~) = ~ ( e - 1 ) . . .  ( a - q +  1) if A = B +, w h e r e  r c [a,ans n] is r t i m e s  

the  m a p  wh ich  s ends  B to 1. If, f u r t h e r ,  B is  a s u s p e n s i o n  and c~ m a p s  B to 
n n 

~0 S , t h e n  

kq(e) = ( -1 )q - I (q -1 ) ' 13  (n, nq)(~) . 

The last assertion holds since e~ = 0 by the standard argument that cup 

products are trivial for a suspension. 
n + n 0 0 Note tha t  Dq(R n , S  O ) = B(R , q) and  le t  6 :D  (R ,S )-~ S m a p  0 to 0 and  

t t q t  t n 0 t t 
B(R n, q) to 1. Le t  Fq (n , t )  be the  f ib re  of f~0 N 6:~0 ~, Dq(R ,S ) f20S and  note  

tha t  F (n, oo) ~ QB(R n, q). Any cho ice  of b a s e p o i n t  in  B(R n, q) y i e id s  q 
S 0 ~  Dq(Rn, S0), and  t h e r e  r e s u l t s  a c o m p o s i t e  e q u i v a l e n c e  

Fq(n, t )  X a t s  t -- a tNtD (Rn,S °)  X a t~ tDq(R n, S °) -* at~.tD (R n,  S °) . 
"~ q 

q(R n, S 0) • ,, Let jq:f2ns n -~ enqNnqD have components jlq and Jq in Fq(n,t) and ets t. 

Theorem 3.15 gives a homotopy commutative diagram 

n s n  (J . . . .  ) a Z n q s Z n q  q ' J q  i- F (n, Znq) X ~ a Z n q z Z n q D  (Rn,  S 0) 
q q 

q q 

a n ~ n q  ~](nq, 3 n ~  • n 3 n ~ 3 n q  

On ~r~O Sn , r > 0, Theorems 3.13 and 3.16 yield the formula 

(si')(e) = (-l)q-l(q-l)! ~ 3 n q - n  q' n q . ,  
e - ~ jq (4) q-q D 
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This is our unstable version of the Kahn-Priddy theorem. Taking qto be a 

prime p, we conclude that, up to a constant, Sqj'q_iS congruent rood p to the 

iterated suspension homomorphism. All maps in sight are compatible as n varies. 

Since B(R c°,p) ~ BE , we obtain Segal's version [46] of the usual Kahn-Priddy 
P 

theorem on passage to limits. 
.I 

s QoS0 composite Q0 S0 QBE P~ is a p-local Theorem 3.17. The 
P 

homotopy equivalence. 

I t  i s  n o t  c l e a r  t o  u s  t h a t  s i s  a n  i n f i n i t e  l o o p  m a p .  A c c o r d i n g  to  A d a m s  [1 ], 
P 

t h i s  i s  a n e c e s s a r y  a n d  s u f f i c i e n t  c o n d i t i o n  t h a t  s a g r e e  w i t h  t h e  m a p  u s e d  by  
P 

K a h n  a n d  P r i d d y  [28] .  

B y  c o n s t r u c t i o n ,  w e  h a v e  the  c o m m u t a t i v e  d i a g r a m  

~2n n 
0 S Q B ( R  n,  Z) ----- Q ( R P  n - I )  

~I Jz' 1 s z 

Q0 S0 , QB(RC°,z) ~, Q(Rp °°) ~ Q0 S0 . 

Thus stabilization factors through Q(Rpn-I). This has the following consequence. 

S 
Theorem 3.18. If ~ ~ ~ is a Z-torsion element in the image under stahili- 

r 

Zn+ 1 2n+~ 
zation of WZn+l+r S , then = 0, where g= 0 if n -- 0 or 3 rood 4 and E= 1 

if n -= 1 or 2 mod 4. 

Indeed, Toda [50] proves that the identity of E2nRp2n has this order. 

All of this is quite easy. We close with some remarks onthe deeper theory, 

to appear in [19], which explains what structure the James maps 

jq:C(Rn, X) "~ QDq(Rn, x) really carry. As mentioned before, C(Rn, X) is not just 

n 
an H-space but a %-space. Since H,C(R ,X) is functorially determined by H.X 

via homology operations derived from this structure, one wants to know how this 

structure behaves with respect to the James maps. Consider the infinite product 

n 
X QD (R ,X). We have said that this is a ring space. In fact, it is an E ring 

q>0 q n 

space (more precisely, it has an equivalent subspace so structured). This means 

that there is an operad pair (~,~) in the sense of [37,VI.1.6] such that ~ is an 

]72oo operad and .~ is an E n operad (that is, ~, is equivalent to On) and there is an 

action in the sense of [37,VI.I.I0] of (~.,.~) on q X 0>-- QDq(Rn,X). (For the 

aficionados, ~ is the little convex bodies operad ~ao and ~ = ~n X ~[, where ~is 

the linear isometrics operad.) The additive action, by ~, is the evident product 

action. The multiplicative action, by ~,, is a parametrization of the multiplicative 
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H-space structure described earlier. ~ also acts on c(Rn, x) (viathe pro- 

jection ~ ~ %) , and the crucial fact is that 

n 
( j q ) : G ( R n , x ) - ~  X QDq(IR , X )  

q > 0  
th  

i s  a m a p  of J - s p a c e s .  U p o n  r e s t r i c t i o n  of i t s  t a r g e t  to the  un i t  s p a c e  ( z e r o  

c o o r d i n a t e  1), t h e  r e c o g n i t i o n  p r i n c i p l e  of [36] i m p l i e s  t h a t  t he  e x t e n s i o n  

n q(R n, X (jq):a ZnX ~ (i, X QD )) 
q>_l 

is actually an n-fold loop map for a suitable n-fold delooping of the target (not, of 

course, the obvious additive one). 

To compute all the jq on homology, it suffices to determine the multiplicative 

homology operations on the target. In principle, these are completely determined 

by the known additive operations and general mixed Cartan and mixed Adem rela- 

tions for E n ring spaces like those developed for E ring spaces in [14, II]. 
oo 

I have no doubt that such calculations will eventually become a powerful tool for 

the working homotopy theorist, just as the earlier calculations of [14], which once 

seemed impossibly complicated, are now being assimilated and exploited by many 

workers in the field. 
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