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Abstract. We establish exponential mixing for the geodesic flow ϕt : T
1S → T 1S of

an incomplete, negatively curved surface S with cusp-like singularities of a prescribed
order. As a consequence, we obtain that the Weil-Petersson flows for the moduli spaces
M1,1 andM0,4 are exponentially mixing, in sharp contrast to the flows forMg,n with
3g − 3 + n > 1, which fail to be rapidly mixing. In the proof, we present a new
method of analyzing invariant foliations for hyperbolic flows with singularities, based
on changing the Riemannian metric on the phase space T 1S and rescaling the flow ϕt.
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Introduction

Let S be an oriented surface with finitely many punctures. Suppose that S is endowed
with a negatively curved Riemannian metric and that in a neighborhood of each puncture
the metric is “asymptotically modeled” on a surface of revolution obtained by rotating
the curve y = xr, for some r > 2, about the x-axis in R3 (where r may depend on the
puncture). The results in this paper allow us to conclude that the geodesic flow on T 1S
mixes exponentially fast.

Before stating the hypotheses precisely, we recall some facts about the metric on
a surface R of revolution for the function y = xr. This surface is negatively curved,
incomplete and the curvature can be expressed as a function of the distance to the cusp
point p0 where x = y = 0. Denote by ρ(·, ·) the induced Riemannian path metric and
δ : R→ R≥0 the Riemannian distance to the cusp:

δ(p) = ρ(p, p0).

Then for r > 1, the Gaussian curvature on R has the following asymptotic expansion in
δ, as δ → 0:

K(p) = −r(r − 1)

δ(p)2
+O(δ(p)−1).

Our main theorem applies to any incomplete, negatively curved surface with singularities
of this form. More precisely, we have:

Theorem 1. Let X be a closed surface, and let {p1, . . . , pk} ⊂ X. Suppose that the
punctured surface S = X \ {p1, . . . , pk} carries a C5, negatively curved Riemannian
metric that extends to a complete distance metric ρ on X. Assume that the lift of this

metric to the universal cover S̃ is geodesically convex. Denote by δi : S → R+ the distance
δi(p) = ρ(p, pi), for i = 1, . . . , k.

Assume that there exist r1, . . . , rk > 2 such that the Gaussian curvature K satisfies

K(p) =

k∑

i=1

−ri(ri − 1)

δi(p)2
+O(δi(p)

−1)

and

‖∇jK(p)‖ =
k∑

i=1

O(δi(p)
−2−j),

for j = 1, 2, 3 and all p ∈ S.
Then the geodesic flow ϕt : T

1S → T 1S is exponentially mixing: there exist constants
c, C > 0 such that for every pair of C1 functions u1, u2 : T 1S → R, we have∣∣∣∣

∫

T 1S
u1 u2 ◦ ϕt d vol−

∫
u1 d vol

∫
u2 d vol

∣∣∣∣ ≤ Ce−ct‖u1‖C1‖u2‖C1 ,

for all t > 0, where vol denotes the Riemannian volume on T 1S (which is finite) nor-
malized so that vol(T 1S) = 1.

The regularity hypotheses on u1, u2 are not optimal. See Corollary 5.2 in the last
section for precise formulations.

Theorem 1 has a direct application to the dynamics of the Weil-Petersson flow, which
is the geodesic flow for the Weil-Petersson metric 〈·, ·〉WP of the moduli spaces Mg,n of
Riemann surfaces of genus g ≥ 0 and n ≥ 0 punctures, defined for 3g− 3 + n ≥ 1. For a
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discussion of the WP metric and properties of its flow, see the recent, related work [7].
As a corollary, we obtain the following result, which originally motivated this study.

Corollary 0.1. The Weil-Petersson geodesic flow on T 1M(g,n) mixes exponentially fast
when (g, n) = (1, 1) or (0, 4).

Proof of Corollary. Wolpert shows in [20] that the hypotheses of Theorem 1 are satisfied
by the WP metric on Mg,n, for 3g − 3 + n = 1. �

Mixing of the WP flow (for all (g, n)) had previously been established in [9]. For
(g, n) /∈ {(1, 1), (0, 4)}, the conclusions of Corollary 0.1 do not hold [7]: for every k >
0, there exist compactly supported, Ck test functions u1, u2 such that the correlation
between u1 and u2 ◦ ϕT decays at best polynomially in T .

Remark: The geodesic convexity assumption in Theorem 1 can be replaced by a variety
of other equivalent assumptions. For example, it is enough to assume that δi = βi+o(δi),
where βi is a convex function (as is the case in the WP metric). Alternatively, one may
assume a more detailed expansion for the metric in the neighborhood of the cusps. For
example, the assumptions near the cusp are satisfied for a surface of revolution for the
function y = u(x)xr, where u : [0, 1] → R≥0 is C5, with u(0) 6= 0 and r > 2. One
can easily formulate further perturbations of this metric outside the class of surfaces of
revolutions for which the hypotheses of Theorem 1 hold near δ = 0.

To simplify the exposition and reduce as much as possible the use of unspecified
constants, we will assume in our proof that k = 1, so that S has only one cusp.

0.1. Discussion. In a landmark paper [13], Dolgopyat established that the geodesic
flow for any negatively-curved compact surface is exponentially mixing. His techniques,
building in part on work of Chernov [11], have since been extracted and generalized in
a series of papers, first by Baladi-Vallée [5], then Avila-Gouëzel-Yoccoz [3], and most
recently in the work of Araújo-Melbourne [4], upon which this paper relies.

Ultimately, the obstructions to applying Dolgopyat’s original argument in this context
are purely technical, but to overcome these obstructions in any context is the heart of
the matter. The solution to the analogous problem in the billiards context – exponential
mixing for Sinai billiards of finite horizon – has only been recently established [6].

To prove exponential mixing using the symbolic-dynamical approach of Dolgopyat,
Baladi-Vallée et. al., one constructs a section to the flow with certain analytic and
symbolic dynamical properties. In sum, one seeks a surface Σ ⊂ T 1S transverse to the
flow ϕt in the three manifold T 1S on which the dynamics of the return map can be
tightly organized.

In particular, we seek a return time function R : Σ0 → R>0 defined on a full measure
subset Σ0 ⊂ Σ, with ϕR(v)(v) ∈ Σ for all v ∈ Σ0 and so that the dynamics of F : v 7→
ϕR(v)(v) on Σ0 are hyperbolic and can be modeled on a full shift on countably many
symbols. For ϕt to be exponentially mixing, the function R should be constant along
stable manifolds, have exponential tails and satisfy a uniform non-integrability condition
(UNI) (which will hold automatically if the flow ϕt preserves a contact form, as is the
case here).

Whereas in [5] and [3] the map F is required to be piecewise uniformly C2, the
regularity of F is relaxed to C1+α in [4]. This relaxation in regularity might seem
mild, but it is crucial in applications to nonuniformly hyperbolic flows with singularities.
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The reason is that the surface Σ is required to be saturated by leaves of the (strong)
stable foliation Ws for the flow ϕt. The smoothness of the foliation Ws thus dictates
the smoothness of the surface Σ which then determines the smoothness of F (up to
the smoothness of the original flow ϕt). Even in the case of contact Anosov flows in
dimension 3, the foliation Ws is generally no better than C1+α, for some α ∈ (0, 1),
unless the flow is algebraic in nature.1

While it has long been known that this C1+α regularity condition holds for the stable
and unstable foliations of contact Anosov flows in dimension 3, this is far from the case for
singular and nonuniformly hyperbolic flows, even in low dimension. In the context of this
paper, the geodesic flow ϕt is not even complete, and the standard singular hyperbolic
theory fails to produce ϕt-invariant foliationsWu andWs, let alone foliations with C1+α

regularity.
The flows ϕt considered here, while incomplete, bear several resemblances to Anosov

flows. Most notably, there exist Dϕt-invariant stable and unstable cone fields that
are defined everywhere in T 1S. The angle between these cone fields tends to zero as
the basepoint in T 1S approaches the singularity. The action of Dϕt in these cones is
strongly hyperbolic, with the strength of the hyperbolicity approaching infinity as the
orbit comes close to the singularity.

The key observation in this paper is that by changing the Riemannian metric on T 1S
and performing a natural time change in ϕt one obtains a volume-preserving Anosov
flow on a complete Riemannian manifold of finite volume. This time change does not
change orbits and has a predictable effect on stable and unstable bundles. In particular,
since the weak stable and unstable bundles for the rescaled flow are codimension one, it
follows from the theory of Anosov flows that they are C1+α. This information transfers
to the original flow ϕt and gives that its weak stable and unstable bundles are also
C1+α. But ϕt has an invariant contact structure so this smoothness of the weak bundles
is inherited by the strong stable and unstable bundles for ϕt. One concludes that ϕt
possesses invariant stable and unstable foliations Wu and Ws that are locally uniformly
C1+α. This gives the crucial input in constructing the section Σ and return function R
defined above.

In the setting of Weil-Petersson geometry, one can summarize the results of this time
change: in the exceptional case 3g − 3 + n = 1, the Weil-Petersson geodesic flow, when
run at unit speed in the Teichmüller metric is (like the Teichmüller flow) an Anosov flow.
For 3g − 3 + n > 1, the WP flow is not Anosov, even when viewed in the Teichmüller
metric (or an equivalent Riemannian metric such as in [19]), but it might be fruitful to
study the flow from this perspective. We remark here that Hamenstädt [15] has recently
constructed measurable orbit equivalences between the WP and Teichmüller geodesic
flows for all 3g − 3 + n ≥ 1.

A different approach, using anisotropic function spaces, has been employed by Liverani
to establish exponential mixing for contact Anosov flows in arbitrary dimension, even
when the foliations Wu and Ws fail to be C1 [18]. The arguments there take place in
the manifold itself (not a section) and avoid symbolic dynamics. This is the approach
employed in the recent work of Baladi, Demers and Liverani on Sinai billiards in [6]
mentioned above.

1This issue is bypassed in the application to the Teichmüller flow in [2, 3] because there the stable
and unstable foliations are locally affine.
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This paper is organized as follows. In Section 1 we recall some facts about geodesic
flows and basic comparison lemmas for ODEs. In Section 2, we establish (under the
hypotheses of Theorem 1) C4 regularity for the functions δi measuring distance to the
cusps in S. The arguments there bear much in common with standard proofs of reg-
ularity of Busemann functions in negative curvature, but additional attention to detail
is required to obtain the correct order estimates on the size of the derivatives of the δi.
In Section 3 we establish basic geometric properties of the surfaces considered here, in
close analogy to properties of surfaces of revolution. These results refine some known
properties of the Weil-Petersson metric.

Section 4 addresses the global properties of the flow ϕt. Here we construct a new
Riemannian metric on T 1S, which we call the ? metric, in which T 1S is complete.
Rescaling ϕt to be unit speed in the ? metric, we obtain a new flow ψt which we prove is
Anosov, with uniform bounds on its first three derivatives (in the ? metric). We derive
consequences of this, including ergodicity of ϕt and existence and C1+α regularity of ϕt
invariant unstable and stable foliations Ws and Wu.

In the final section (Section 5), we construct the section Σ to the flow and return time
function R satisfying the hypotheses of the Araújo-Melbourne theorem. In essence this
is equivalent to constructing a Young tower for the return map to Σ and is carried out
using standard methods. Here the properties of geodesics established in Section 3 come
into play in describing the dynamics of the return map of the flow to the compact part
of T 1S.

We thank Scott Wolpert, Sebastien Gouëzel, Carlangelo Liverani and Curtis Mc-
Mullen for useful conversations, and Viviane Baladi and Ian Melbourne for comments
on a draft of this paper. We also thank the referee for a very careful reading of the text
and for suggesting multiple improvements.

1. Notation and preliminaries

The book [10] is a good source for the background in this section. Let S be an oriented
surface endowed with a Riemannian metric. As usual 〈v, w〉 denotes the inner product
of two vectors and ∇ is the Levi-Civita connection defined by the Riemannian metric.
It is the unique connection that is symmetric and compatible with the metric.

The surface S carries a unique almost complex structure compatible with the metric.
We denote this structure by J ; for v ∈ T 1

pS, the vector Jv is the unique tangent vector

in T 1
pS such that (v, Jv) is a positively oriented orthonormal frame.

The covariant derivative along a curve t 7→ c(t) in S is denoted by Dc,
D
dt or simply ′

if it is not necessary to specify the curve; if V (t) is a vector field along c that extends to

a vector field V̂ on S, we have V ′(t) = ∇ċ(t)V̂ .

Given a smooth map (s, t) 7→ α(s, t) ∈ S, we let D
∂s denote covariant differentiation

along a curve of the form s 7→ α(s, t) for a fixed t. Similarly D
∂t denotes covariant

differentiation along a curve of the form t 7→ α(s, t) for a fixed s. The symmetry of the
Levi-Civita connection means that

D

∂s

∂α

∂t
(s, t) =

D

∂t

∂α

∂s
(s, t)

for all s and t.
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A geodesic segment γ : I → S is a curve satisfying γ′′(t) = Dγ γ̇(t) = 0, for all t ∈ I.
Throughout this paper, all geodesics are assumed to be unit speed: ‖γ̇‖ ≡ 1.

The Riemannian curvature tensor R is defined by

R(A,B)C = (∇A∇B −∇B∇A −∇[A,B])C

and the Gaussian curvature K : S → R is defined by

K(p) = 〈R(v, Jv)Jv, v〉,
where v ∈ T 1

pS is an arbitrary unit vector.
For v ∈ TS, we represent each element ξ ∈ TvTS in the standard way as a pair

ξ = (v1, v2) with v1 ∈ TpS and v2 ∈ TpS, as follows. Each element ξ ∈ TvTS is tangent
to a curve V : (−1, 1)→ T 1S with V (0) = v. Let c = π ◦V : (−1, 1)→ S be the curve of
basepoints of V in S, where π : TS → S is the standard projection. Then ξ is represented
by the pair

(ċ(0), DcV (0)) ∈ TpS × TpS.
Regarding TTS as a bundle over S in this way gives rise to a natural Riemannian

metric on TS, called the Sasaki metric. In this metric, the inner product of two elements
(v1, w1) and (v2, w2) of TvTS is defined:

〈(v1, w1), (v2, w2)〉Sas = 〈v1, v2〉+ 〈w1, w2〉.
This metric is induced by a symplectic form dω on TTS; for vectors (v1, w1) and (v2, w2)
in TvTS, we have:

dω((v1, w1), (v2, w2)) = 〈v1, w2〉 − 〈w1, v2〉.
This symplectic form is the pull back of the canonical symplectic form on the cotangent
bundle T ∗S by the map from TS to T ∗S induced by identifying a vector v ∈ TpS with
the linear function 〈v, ·〉 on TpS.

1.1. The geodesic flow and Jacobi fields. For v ∈ TS let γv denote the unique
geodesic γv satisfying γ̇v(0) = v. The geodesic flow ϕt : TS → TS is defined by

ϕt(v) = γ̇v(t),

wherever this is well-defined. The geodesic flow is always defined locally.
The geodesic spray is the vector field ϕ̇ on TS (that is, a section of TTS) generating

the geodesic flow. In the natural coordinates on TTS given by the connection, we have
ϕ̇(v) = (v, 0), for each v ∈ TS. The spray is tangent to the level sets ‖ · ‖ = const.
Henceforth when we refer to the geodesic flow ϕt, we implicitly mean the restriction of
this flow to the unit tangent bundle T 1S.

Since the geodesic flow is Hamiltonian, it preserves a natural volume form on T 1S
called the Liouville volume form. When the integral of this form is finite, it induces a
unique probability measure on T 1S called the Liouville measure or Liouville volume.

Consider now a one-parameter family of geodesics, that is a map α : (−1, 1)2 → S
with the property that α(s, ·) is a geodesic for each s ∈ (−1, 1). Denote by J (t) the
vector field

J (t) =
∂α

∂s
(0, t)

along the geodesic γ(t) = α(0, t). Then J satisfies the Jacobi equation:

(1) J ′′ +R(J , γ̇)γ̇ = 0,



RATES OF MIXING 7

in which ′ denotes covariant differentiation along γ. Since this is a second order linear
ODE, the pair of vectors (J (0),J ′(0)) ∈ Tγ(0)M × Tγ(0)M uniquely determines the
vectors J (t) and J ′(t) along γ(t). A vector field J along a geodesic γ satisfying the
Jacobi equation is called a Jacobi field.

The pair (J (t),J ′(t)) corresponds in the manner described above to the tangent
vector at s = t to the curve s 7→ ∂α

∂t (s, t) = ϕt ◦ V (s), which is Dϕt(V
′(0)). Thus

Proposition 1.1. The image of the tangent vector (v1, v2) ∈ TvTS under the derivative
of the geodesic flow Dvϕt is the tangent vector (J (t),J ′(t)) ∈ Tϕt(v)TS, where J is the
unique Jacobi field along γ satisfying J (0) = v1 and J ′(0) = v2.

Computing the Wronskian of the Jacobi field γ̇ and an arbitrary Jacobi field J shows
that 〈J ′, γ̇〉 is constant. It follows that if J ′(t0) ⊥ γ̇(t0) for some t0, then J ′(t) ⊥ γ̇(t)
for all t. Similarly if J (t0) ⊥ γ̇(t0) and J ′(t0) ⊥ γ̇(t0) for some t0, then J (t) ⊥ γ̇(t) and
J ′(t) ⊥ γ̇(t) for all t; in this case we call J a perpendicular Jacobi field. If α is a variation
of geodesics giving rise to a perpendicular Jacobi field, then we call α a perpendicular
variation of geodesics.

The space of all perpendicular Jacobi fields along a unit speed geodesic γ corresponds
to the orthogonal complement ϕ̇⊥(v) (in the Sasaki metric) to the geodesic spray ϕ̇(v)
at the point v = γ̇(0) ∈ T 1S. To estimate the norm of the derivative Dϕt on TT 1S, it
suffices to restrict attention to vectors in the invariant subspace ϕ̇⊥; that is, it suffices
to estimate the growth of perpendicular Jacobi fields along unit speed geodesics.

Because S is a surface, the Jacobi equation (1) of a perpendicular Jacobi field along
a unit speed geodesic segment can be expressed as a scalar ODE in one variable. Given
such a geodesic γ : I → S, any perpendicular Jacobi field J along γ can be written in the
form (J (t),J ′(t)) = (j(t)Jγ̇(t), j′(t)Jγ̇(t)), where j : I → R satisfies the scalar Jacobi
equation:

(2) j′′(t) = −K(γ(t))j(t).

To analyze solutions to (2) it is often convenient to consider the functions u(t) =
j′(t)/j(t) and ζ(t) = j(t)/j′(t) which satisfy the Riccati equations u′(t) = −K(γ(t)) −
u2(t) and ζ ′(t) = 1 + K(γ(t))ζ2(t), respectively. In the next subsection, we describe
some techniques for analyzing solutions to these types of equations.

1.2. Comparison lemmas for Ordinary Differential Equations. We will use a
few basic comparison lemmas for solutions to ordinary differential equations. The first
is standard and is presented without proof:

Lemma 1.2. [Basic comparison] Let F : R× [t0, t1]→ R be C1, and let ζ : [t0, t1]→ R
be a solution to the ODE

(3) ζ ′(t) = F (ζ(t), t).

Suppose that u, u : [t0, t1] → R are C1 functions satisfying u(t0) ≤ ζ(t0) ≤ u(t0). Then
the following hold:

• If F (u(t), t) ≤ u′(t) for all t ∈ [t0, t1], then ζ(t) ≤ u(t) for all t ∈ [t0, t1].
• If F (u(t), t) < u′(t) for all t ∈ [t0, t1], then ζ(t) < u(t) for all t ∈ (t0, t1].
• If F (u(t), t) ≥ u′(t) for all t ∈ [t0, t1], then ζ(t) ≥ u(t) for all t ∈ [t0, t1].
• If F (u(t), t) > u′(t) for all t ∈ [t0, t1], then ζ(t) > u(t) for all t ∈ (t0, t1].
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We will have several occasions to deal with Riccati equations of the form ζ ′(t) =
1− k2(t)ζ2(t) on an interval [t0, t1] (where typically −k2(t) = K(γ(t)) for some geodesic
segment γ). Since the curvature of the surfaces we consider is not bounded away from
−∞, most of the ODEs we deal with will have unbounded coefficients. This necessitates
reproving some standard results about solutions. A key basic result is the following.

Lemma 1.3. [Existence of Unstable Riccati Solutions] Suppose k : (t0, t1]→ R>0

is a C1 function satisfying limt→t0 k(t) =∞. Then there exists a unique solution ζ(t) to
the Riccati equation

(4) ζ ′ = 1− k2ζ2

for t ∈ (t0, t1] satisfying ζ(t) > 0 on (t0, t1] and limt→t0 ζ(t) = 0.
Moreover, if k : (t0, t1]→ R>0 is any C1 function satisfying k′(t) < 0 and k(t) ≤ k(t),

for all t ∈ (t0, t1], then ζ(t) ≤ k(t)−1, for all t ∈ [t0, t1].

Proof. Let k be a function satisfying the hypotheses of the lemma. Then there is a
function k0 : (t0, t1]→ R>0 such that k′0(t) < 0 and k(t) ≤ k0(t) ≤ k(t) for all t ∈ (t0, t1]

and k0(t)−1 → 0 as t → t0. Observe that (d/dt)(k−1
0 (t)) > 0 ≥ 1 − k(t)2k0(t)−2 for

t0 < t ≤ t1.
Now fix a decreasing sequence tn → t0 in (t0, t1). For each n > 1 let ζn be the solution

to (4) on [tn, t1] with ζn(tn) = 0. We can apply Lemma 1.2 to equation (4) on the
interval [tn, t1] with u(t) = 0 and u(t) = k0(t)−1. This gives us 0 < ζn(t) ≤ k0(t)−1 for
tn < t ≤ t1. We can also apply Lemma 1.2 on this interval with ζ = ζm for m ≥ n and
u = ζn. This gives us ζm(t) ≥ ζn(t), for tn ≤ t ≤ t1.

The sequence of solutions ζn is thus increasing, positive and bounded above by k−1
0 .

It follows that the function ζ := limn→∞ ζn is a solution to (4), is positive on (t0, t1],
is bounded above by k−1

0 , and thus satisfies limt→t0 ζ(t) = 0. Since k−1
0 ≤ k, we obtain

that ζ(t) ≤ k(t)−1, for all t ∈ [t0, t1].
It remains to show that ζ is the only solution of (4) with the desired properties.

Suppose η is another such solution. Since the graphs of two solutions of (4) cannot
cross, we may assume that ζ(t) ≥ η(t) ≥ 0 for t0 ≤ t ≤ t1. But then

(ζ − η)′(t) = k(t)2[(η(t)2 − ζ(t)2] ≤ 0

for t0 < t ≤ t1. Since (ζ − η)(t) → 0 as t → t0, this is possible only if ζ(t) = η(t) for
t0 ≤ t ≤ t1. �

We call the solution of the Riccati equation defined by the previous lemma the unstable
solution on (t0, t1].

Lemma 1.4. [Comparison of Unstable Riccati Solutions] For i = 1, 2, let ki :
(t0, t1] → R>0 be a C1 function satisfying limt→t0 ki(t) = ∞ and let ζi : (t0, t1] → R>0

be the unstable solution. Suppose k1(t) ≥ k2(t) for all t ∈ (t0, t1]. Then ζ1(t) ≤ ζ2(t) for
all t ∈ [t0, t1].

Proof. Suppose ζ2(t′0) ≥ ζ1(t′0) for some t′0 ∈ (t0, t1]. Then we can apply Lemma 1.2
to the equation ζ ′ = 1 − k2

1ζ
2 with ζ = ζ1 and u = ζ2 to obtain ζ2(t) ≥ ζ1(t) for all

t ∈ [t′0, t1]. It now suffices to show that if there is t′1 ∈ (t0, t1] such that ζ1(t) ≥ ζ2(t) for
all t ∈ [t0, t

′
1], then we must have ζ1(t) = ζ2(t) for all t ∈ [t0, t

′
1]. But if ζ1 ≥ ζ2 ≥ 0 on

(t0, t
′
1] we have

(ζ1 − ζ2)′(t) = k2(t)2ζ2(t)2 − k1(t)2ζ1(t)2 ≤ 0
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for t0 < t ≤ t′1. Since (ζ1 − ζ2)(t)→ 0 as t→ t0, this is possible only if ζ1(t) = ζ2(t) for
t0 ≤ t ≤ t′1. �

Lemma 1.5. Let k : (0, t1]→ R>0 be a C1 function satisfying limt→0 k(t) =∞, and let
ζ(t) be the unstable solution. Let r > 1.

(1) If k(t)2 ≥ r(r − 1)/t2 for all t ∈ (0, t1], then ζ(t) ≤ t/r for all t ∈ (0, t1].
(2) If k(t)2 ≤ r(r − 1)/t2 for all t ∈ (0, t1], then ζ(t) ≥ t/r for all t ∈ (0, t1].
(3) Suppose N > 0, 0 < t2 < min{t1, (r − 1)/N} and

k(t)2 ∈
[
r(r − 1)

t2
− N

t
,
r(r − 1)

t2
+
N

t

]
for all t ∈ (0, t2].

Then there exists M > 0 such that

ζ(t) ∈
[
t

r
−Mt2,

t

r
+Mt2

]
for all t ∈ (0, t2].

Proof. 1 and 2. These follow from Lemma 1.4 because ζ(t) = t/r is the unstable solution
for

ζ ′ = 1− r(r − 1)

t2
ζ2.

3. Choose δ > 0 such that 0 < t2 < 1/2δ < (r − 1)/N . Then,

(r − δt)(r − δt− 1)

t2
≤ r(r − 1)

t2
− N

t
and

(r + δt)(r + δt− 1)

t2
≥ r(r − 1)

t2
+
N

t

for 0 < t ≤ t2. It follows from parts 1 and 2 of this lemma that for each τ ∈
(0, t2] we have ζ(t) ∈ [t/(r + δτ), t/(r − δτ)], for all t ∈ (0, τ ]. Consequently, ζ(t) ∈
[t/(r + δt), t/(r − δt)], for all t ∈ (0, t2]. Now choose M > 2δ/r. We then have

t

r
−Mt2 ≤ t

(r + δt)
and

t

(r − δt) ≤
t

r
+Mt2,

for 0 < t ≤ t2. We conclude that ζ(t) ∈ [t/r −Mt2, t/r +Mt2], for 0 ≤ t ≤ t2. �

2. Regularity of the distance δ to the cusp

Suppose S satisfies the hypotheses of Theorem 1, with k = 1. Before considering the
global properties of the metric on S, we introduce local coordinates about the puncture
p1 and study the behavior of geodesics that remain in this cuspidal region during some
time interval.

In this section and the next, we thus assume that the punctured disk D∗ has been
endowed with an incomplete Riemannian metric, whose completion is the closed disk D.

Assume that the lift of this metric to D̃∗ is geodesically convex: that is, any two points

in D̃∗ can be connected by a unique geodesic in D̃∗.
Let ρ be the Riemannian distance metric on D and for z ∈ D, let δ(z) = ρ(z, 0). For

δ0 ∈ (0, 1), we denote by D∗(δ0) the set of z ∈ D∗ with δ(z) < δ0.
Assume that that there exists r > 2 such that for all z 6= 0 the curvature of the

Riemannian metric satisfies:

(5) 0 > K(z) = −r(r − 1)

δ(z)2
+O(δ(z)−1),
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and

(6) ‖∇jK(z)‖ = O(δ(z)−2−j),

for j = 1, 2, 3.
The main result of this section establishes regularity of the function δ and estimates

on the size of its derivatives. We also introduce a function c that measures the geodesic
curvature of the level sets of δ and establish some of its properties. The results in this
section establish in this incomplete, singular setting the standard regularity properties
of Busemann functions for compact, negatively curved manifolds (see, e.g. [16]) – in
particular, Busemann functions for a Ck metric are Ck−1. The main techniques are thus
fairly standard but require some care in the use of comparison lemmas for ODEs. To
avoid tedium, we have described many calculations in detail but have left others to the
reader.

Proposition 2.1. The cusp distance function δ is C4. Let V = ∇δ, and let c : D∗ → R>0

be the geodesic curvature function defined by

(7) c = 〈∇JV V, JV 〉.
Then:

(i) ∇JV V = [JV, V ] = cJV ;
(ii) for any vector field U : ∇UV = c〈U, JV 〉JV, and ∇UJV = −c〈U, JV 〉V ;

(iii) c = r/δ +O(1);
(iv) ‖∇c‖ = O(δ−2);
(v) ‖∇2c‖ = O(δ−3).

Corollary 2.2. The function δ satisfies: ‖∇δ‖ = 1 and ‖∇iδ‖ = O(δ1−i), for i = 2, 3, 4.

Proof. This follows from the facts: ∇Uδ = 〈U, V 〉, ∇UV = c〈U, JV 〉JV = O(δ−1)‖U‖,
and ‖∇jc‖ = O(δ−1−j), j = 1, 2, proved in Proposition 2.1. �

Proof of Proposition 2.1. We prove first that δ is C4, in several steps.

Step 0: δ is continuous. We realize the universal cover of the punctured disk D∗ as
the strip R × (0, 1) with the deck transformations (x, t) 7→ (x + n, t), n ∈ Z. Endow
R × (0, 1) with the lifted metric, which is geodesically convex by assumption, and lift

δ to a function δ̃. By assumption, the completion of D∗ is D, and so the completion
R× (0, 1) in this metric is the union of R× (0, 1] with a single point p∗.

Since R×(0, 1) is negatively curved and geodesically convex, it is in particular CAT (0).

The CAT (0) property is preserved under completion, and so R× (0, 1] is also CAT (0).
Thus for every for every z̃0 ∈ R× (0, 1], there is a unique unit-speed geodesic from z̃0 to
p∗. This projects to a (unique) geodesic in D from z0 to 0. Except for the endpoint 0,
this geodesic lies entirely in D.

Fix z0 ∈ D∗ with lift z̃0 ∈ R × (0, 1], and let γ0,z0 : [0, δ(z0)] → D be the unit-
speed geodesic from 0 to z0 found by the previous argument. It has the property that
δ(γ0,z0(t)) = ρ(0, γ0,z0(t)) = t for every t ∈ [0, δ(z0)]. Let tn → 0 be a sequence of

times in (0, δ(z0)), and define a sequence of functions δ̃n : R × (0, 1] → R>0 by δn(z̃) =

ρ̃(z̃, γ̃0,z̃0(tn)). The δ̃n are convex, C3 away from γ̃0,z̃0(tn), and ‖∇δn‖ = 1 for all n.
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Lemma 2.3. For every z̃ ∈ R× (0, 1] and all m ≥ n, we have

(8) |δ̃n(z̃)− δ̃m(z̃)| ≤ tn − tm ≤ tn,
Proof. This follows from the triangle inequality. �

Since δ̃n is Cauchy, it converges (locally uniformly in R×(0, 1]) to a continuous, convex

function δ̂. Moreover δ̂(z̃) is the distance ρ̃(z̃, p∗). It follows that δ̃ is continuous (and
convex), and so δ is continuous.

Step 1: δ is C1. Let Ṽn = ∇δ̃n be the corresponding sequence of radial vector fields
on R× (0, 1].

Lemma 2.4. Fix z̃ ∈ R× (0, 1]. For all m ≥ n sufficiently large, we have:

‖Ṽn(z̃)− Ṽm(z̃)‖ ≤ tn

δ̃(z̃)− tn
.

Thus Ṽn is a Cauchy sequence in the local uniform topology.

Proof. This is a standard argument in negative curvature (in fact nonpositive curvature
suffices). This uses that ‖∇δn‖ = 1 for all n. �

This lemma implies that δ is C1. Let Ṽ be the local uniform limit of the Ṽn: by
definition, Ṽ = ∇δ̃. Let V = ∇δ be the projection of Ṽ to D∗. It remains to show that
V is C3, which implies that δ is C4.

Step 2: V is C1.

Lemma 2.5. There exists δ0 > 0, such that for every z0 ∈ D∗ with δ(z0) < δ0, the
following holds. For every vector field U , ∇UV exists and is continuous in a neighborhood
of γ0,z0((0, δ(z0)]). Moreover:

(9) ∇JV V (γ0,z0(t)) = ζ(t)−1JV (γ0,z0(t)),

for all t ∈ (0, δ(z0)], where ζ is the positive solution to the Riccati equation

(10) ζ ′(t) = 1 +K(γ0,z0(t))ζ(t)2,

given by Lemma 1.3, satisfying ζ(0) = 0.

Proof. Fix δ0 > 0 (we will specify how small it must be later). Fix z0 with δ(z0) ≤ δ0,
and denote by γ the geodesic γ0,z0 .

For each n, define a perpendicular, radial variation of geodesics γn(s, t) by the prop-
erties: γn(0, t) = γ(t), γn(s, tn) = γ(tn) and

D2γn
∂s∂t

(s, δ0) = Jγ̇n(s, δ0),

for all s, t with t ≥ tn (and s belonging to a small, fixed neighborhood of 0). Let
δn : D∗ → R>0 be defined by δn(z) = ρ(z, γ(tn)); then for t ≥ tn, and s sufficiently small,
we have

δn(γn(s, t)) = t− tn.
It follows that for any ε > 0, and t > 0, if n is sufficiently large so that t ≥ (1 + 2/ε)tn,
we have

(11) δ(γn(s, t)) ∈ [(1− ε)t+ εtn, t].
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We have already shown (working on the universal cover) that in a neighborhood of
γ, we have δn → δ and Vn = ∇δn → V uniformly on compact sets. Let γ(s, t) be
the limiting variation of geodesics, which satisfies γ(0, t) = γ(t), and δ(γ(s, t)) = t. At
this point we have shown that γ is C1, with ∂γ/∂s(s, δ0) = JV (γ(s, δ0)). Note that
Vn(γn(0, t)) = V (γn(0, t)) = V (γ(t)), for all n, t ≥ tn.

Since Vn → V , it suffices to show that

∇VnVn(γn(s, t))→ ∇V V (γ(s, t)) and ∇JVnVn(γn(s, t))→ ∇JV V (γ(s, t)).

The proof that ∇VnVn(γn(s, t))→ ∇V V (γ(s, t)) is immediate: since γn is a variation
of geodesics, we have γ′′n = ∇VnVn ≡ 0 ≡ ∇V V = γ′′.

We now show that∇JVnVn(γn(s, t))→ ∇JV V (γ(s, t)). Let jn(s, t) be the scalar Jacobi
field associated with the perpendicular variation γn:

∂γn
∂s

= jn(s, t)Jγ̇n(s, t) = jn(s, t)JVn(s, t).

On the one hand,

D

∂s
Vn(γn(s, t)) =

D2

∂s∂t
γn(s, t) = j′n(s, t)JVn(s, t),

while on the other hand,

D

∂s
Vn(γn(s, t)) = ∇jn(s,t)JVn(s,t)Vn = jn(s, t)∇JVnVn(γn(s, t)).

Writing ζn(s, t) = jn(s, t)/j′n(s, t), we thus have ζn(s, t)∇JVnVn(γn(s, t)) = JVn(γn(s, t)).
We prove that ζn(s, t) converges to ζ(s, t), the positive solution to (10).

To see this, we first establish uniform upper and lower bounds for ζn(s, t), for t ≥
(1 + 2/ε)tn. Then, since ζn = jn/j

′
n, the Jacobi equation (2) implies that the ζn satisfy

the Riccati equation:

(12) ζ ′n(s, t) = 1 +K(γn(s, t))ζn(s, t)2,

with ζn(s, tn) = 0, for all s. Now

K(γn(s, t)) = − r(r − 1)

δ(γn(s, t))2
+O(δ(γn(s, t))−1).

By (11) we thus have:

(13) K(γn(s, t)) ∈
[
−r

2

t2
,−(r − 1)2

t2

]
,

if δ(z0) ≤ δ0 is sufficiently small, t ≥ (1 + 2/ε)tn, and n is sufficiently large.
We show that there exists µ ∈ (0, 1) such that, for n sufficiently large, we have

(14) ζn(t) ∈ [µ(t− tn), µ−1(t− tn)].

To see the lower bound, let u = µ(t−tn). Then u′ = µ. On the other hand, when ζn(t) =
u, we have ζ ′n = 1+Kµ2(t−tn)2. This is larger than u′ provided that 1+Kµ2(t−tn)2 > µ.

But this will hold if 1 − r2

t2
µ2(t − tn)2 > µ, which will hold if 1 − r2µ2 > µ, since

(t − tn)2 ≤ t2. By Lemma 1.2, ζn(t) ≥ µ(t − tn) for all t ≥ tn, which proves (14). The
upper bound is similarly obtained.

We now use Lemma 1.2 to prove that for some large but fixed C:

(15) |(ζm − ζn)(s, t)| ≤ Ctn,



RATES OF MIXING 13

for all s and t ≥ (1 + 2/ε)tn. To this end, fix m ≥ n. First note that the inequality
ζm(t) ≤ µ−1(t− tm) in (14) implies that for t ≥ (1 + 2/ε)tn, and m ≥ n, we have:

ζm(s, (1 + 2/ε)tn) ≤ µ−1((1 + 2/ε)tn − tm) ≤ µ−1(1 + 2/ε)tn,

We thus obtain

|(ζm − ζn)(s, (1 + 2/ε)tn)| ≤ |ζm(s, (1 + 2/ε)tn)|+ |ζn(s, (1 + 2/ε)tn)| ≤ 2µ−1(1 + 2/ε)tn,

and so (15) holds for t = (1 + 2/ε)tn, with C = 2µ−1(1 + 2/ε).
Subtracting the ODEs for ζm and ζn, we have for t > (1 + 2/ε)tn:

(ζn − ζm)′(s, t) = K(γn(s, t))ζn(s, t)2 −K(γm(s, t))ζm(s, t)2 =

(K(γn(s, t))−K(γm(s, t))) ζm(s, t)2 +K(γn(s, t))
(
ζn(s, t)2 − ζm(s, t)2

)

= O

(
tn(t− tn)2

t3

)
+K(γn(s, t))(ζn(s, t) + ζm(s, t))(ζn(s, t)− ζm(s, t)),

since ‖∇K(γn(s, t))‖ = O(δ(γn(s, t))−3) = O(t−3), ρ(γn(s, t), γm(s, t)) = O(tn), and
ζm(s, t) = O(t − tm) (these three facts follow from the standing assumption (6) on the
derivative of K, from the triangle inequality and from equations (11) and (14)).

Writing y = ζn − ζm, we have that y satisfies the ODE

(16) y′ = O

(
tn(t− tn)2

t3

)
+K(γn(s, t))(ζn(s, t) + ζm(s, t))y.

Fix n and let u(t) = Ctn. Then u′(t) = 0, and y′ evaluated at y = u is

y′ = O

(
tn(t− tn)2

t3

)
+K(γn(s, t))(ζn(s, t) + ζm(s, t))Ctn

We claim that if C ≥ 2µ−1(1 + 2/ε) is sufficiently large, then y′ ≤ 0 = u′. To see this fix
N > 0 such that

y′ ≤ Ntn(t− tn)2

t3
+K(γn(s, t))(ζn(s, t) + ζm(s, t))y.

Then (13) and (14) imply that

y′ ≤ Ntn(t− tn)2

t3
− 2

(r − 1)2

t2
µ(t− tn)Ctn ≤

tn(t− tn)

t2
(
N − 2(r − 1)2µC

)
.

Clearly this is ≤ 0 for t ≥ tn if C is sufficiently large. Since y(tn) ≤ tn ≤ u, for all C ≥ 1,
this implies by Lemma 1.2 that y ≤ u for all t ≥ (1 + 2/ε)tn; a similar argument shows
that y ≥ −u, and hence if C is sufficiently large and m ≥ n, then for all t ≥ (1 + 2/ε)tn,
inequality (15) holds.

Thus |(ζm− ζn)(s, t)| tends to 0 as tn → 0, with s, t fixed. Thus the ζn(s, t) converge,
and since they satisfy (12), their limit ζ(s, t) satisfies (10). We obtain that the functions
ζn(s, t)∇JVnVn(γn(s, t)) = JVn(γn(s, t)) converge locally uniformly, and hence ∇JV V
exists and is continuous.

Since ∇JVnVn(γn(s, t)) = ζn(s, t)−1JVn(γn(s, t)), ζn → ζ, and JVn → JV , we obtain
(9) by taking a limit and setting s = 0.�
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In light of Lemma 2.5, we define a function ν : D∗ → R>0 as follows. For each z ∈ D∗,
let ζ : [0, δ(z)]→ R>0 be the positive solution to (10) given by Lemma 1.3. We then set
ν(z) := ζ(δ(z)). It follows immediately from Lemma 2.5 that for every z ∈ D∗, we have

(17) ∇JV V (z) = ν(z)−1JV (z).

Step 3: ν is C1.
To prove that δ is C3, it thus suffices to show that ν is C1. Equation (10) implies that

∇V ν exists and is continuous. It remains to show that ∇JV ν exists and is continuous.
We fix δ0 > 0 as above and let z0 ∈ D∗(δ0), and we reintroduce the variations of

geodesics γn(s, t) defined by the properties: γn(0, t) = γ0,z0(t), γn(s, tn) = γ0,z0(tn) and

D2γn
∂s∂t

(s, δ0) = j′n(s, δ0)Jγ̇n(s, δ0),

for all s. As above, write γ = γ0,z0 , and let γ(s, t) be the limiting variation of geodesics.
We observe that Lemma 2.5 also implies that jn → j and j′n → j′, locally uniformly,
where ∂γ/∂s = jJV and D2γ/∂s∂t = j′JV . The convergence follows from the formulae:

j′n(s, t) = exp

(∫ δ0

t
K(γn(s, x))ζn(x) dx

)
, j′(s, t) = exp

(∫ δ0

t
K(γ(s, x))ζ(x) dx

)
,

jn(s, t) = ζn(s, t)j′n(s, t), and j(s, t) = ζ(s, t)j′(s, t).

Thus the variation γ is C2 on D∗, and satisfies γ(s, 0) = 0. We record here a lemma,
which follows easily from these formulae, combined with (8), (13) and (15).

Lemma 2.6. For all t ≥ tn, we have j′n(t)/j′m(t) = 1 + O (tn/t), and for all t ≥
(1 + 2/ε)tn, we have jn(t)/jm(t) = 1 +O (tn/t).

As above, let ζn(s, t) be the solution to (12), and let ζ(s, t) be the solution to (10).
Note that ν(γ(s, t)) = ζ(s, t).

To prove that ∇JV ν exists and is continuous, we show that ∂sζn(s, t) converges uni-
formly to ∂sζ(s, t), the unique bounded solution to

(18) ∂sζ
′(s, t) = ∂sK(γ(s, t))ζ(s, t)2 + 2ζ(s, t)K(γ(s, t))∂sζ(s, t),

which satisfies ∂sζ(s, 0) = 0, for all s. Since ∂sζ = j(s, t)∇JV ζ and jn → j > 0 locally
uniformly, this will imply that ∇JV ζ exists and is continuous.

Lemma 2.7. There exists M > 0 such for all m ≥ n and all t ≥ (1 + 2/ε)tn, we have

(19) |∂sζn(s, t)− ∂sζm(s, t)| ≤Mtnj
′
n(s, t).

Proof. Differentiating equation (12) with respect to s, we obtain:

(20) ∂sζ
′
n(s, t) = ∂sK(γn(s, t))ζn(s, t)2 + 2ζn(s, t)K(γn(s, t))∂sζn(s, t).

Note that since ζn(s, tn) = 0, for all n, we have that ∂sζn(s, tn) = 0, for all n.
To simplify notation, fix s, and write wn(t) = ∂sζn(s, t), un(t) = ζn(s, t), and u =

ζ(s, t). Then un(tn) = 0, for all n. From equations (14) and (15), we have |un| ≤ Ct
and |un − um| ≤ Ctn. Then equation (20) gives

(21) w′n = jn(∇JVnK)u2
n + 2un(K ◦ γn)wn

We first claim there exists C > 0 such that |wn(t)| ≤ Cjn(t), for all t ≥ tn. Let y =
Cjn(t). Then y′ = Cj′n(t), whereas w′n evaluated at wn = y gives w′n = jn(∇JVnK)u2

n +
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2Cun(K ◦ γn)jn. Then w′n ≤ y′ if and only if jn(∇JVnK)u2
n + 2Cun(K ◦ γn)jn ≤ Cj′n;

dividing through by j′n, and recalling that un = jn/j
′
n, we are reduced to showing:

∇JVnKu3
n + 2Cu2

n(K ◦ γn) ≤ C,
which holds if and only if C(1 − 2u2

n(K ◦ γn)) ≥ (∇JVnK)u3
n. Since un = O(t), K < 0,

and ‖∇JVnK‖ = O(δ−3) = O(t−3), for n sufficiently large, this will hold provided that
C and n are sufficiently large. We conclude that

(22) |wn(t)| ≤ Cjn(t),

for all t ≥ tn.
We next claim that there exists M > 0 such that for m ≥ n sufficiently large and

t ≥ (1 + 2/ε)tn, we have

(23) |wn(t)− wm(t)| ≤ Mtnj
′
n(t)

This will give the conclusion (19) of Lemma 2.7.
For m ≥ n, subtracting the corresponding equations in (21), we obtain:

(24) (wn−wm)′ = jn(∇JVnK)u2
n− jm(∇JVmK)u2

m+2un(K ◦γn)wn−2um(K ◦γm)wm.

We claim that there exists N > 0 such that for m ≥ n, and t ≥ (1 + 2/ε)tn, we have

(25) |(wn − wm)′ − 2un(K ◦ γn)(wn − wm)| ≤ Ntnjn
t2

.

Assuming this claim, let us complete the proof of (23). Let N be given so that (25)
holds for m ≥ n, and t ≥ (1+2/ε)tn. Let y(t) = wn(t)−wm(t). Then |y′−2un(K◦γn)y| ≤
εjn/t

2, and (22) implies that

y((1+2/ε)tn) = |wn((1+2/ε)tn)−wm((1+2/ε)tn)| ≤ |wm((1+2/ε)tn)|+|wn((1+2/ε)tn)|
≤ C(jm((1 + 2/ε)tn) + jn((1 + 2/ε)tn))

≤ C
(
j′m((1 + 2/ε)tn)um((1 + 2/ε)tn) + j′n((1 + 2/ε)tn)un((1 + 2/ε)tn)

)

< Ntnj
′
n((1 + 2/ε)tn),

for some N > 0, since um((1 + 2/ε)tn), un((1 + 2/ε)tn) ≤ 2ε−1µ−1tn, by (14), and
j′n(t)/j′m(t) = 1 +O(tn/t), by Lemma 2.6. This shows that (23) holds at t = (1 + 2/ε)tn,
provided n is sufficiently large.

We claim that there exists M > 0 such that for all such m,n, we have |y(t)| ≤
Mtnj

′
n(t), for t ≥ (1 + 2/ε)tn. We prove the upper bound; the lower bound is similar.

We will employ Lemma 1.2.
To this end, let z(t) = Mtnj

′
n(t). Note that z′ = Mtnj

′′
n = −Mtn(K ◦ γn)jn, whereas

evaluating y′ at y = z, we get

y′(t) ≤ 2Mtnun(K ◦ γn)j′n +
Ntnjm
t2

= 2Mtn(K ◦ γn)jn +
Ntnjm
t2

.

To satisfy the hypotheses of Lemma 1.2, we require that y′(t) ≤ z′(t) whenever y = z,
which is implied by:

2Mtn(K ◦ γn)jn +
Ntnjn
t2

≤ −Mtn(K ◦ γn)jn,

or:
Ntnjn
t2

≤ −3Mtn(K ◦ γn)jn.
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Since −K ◦ γn(t) ≥ (r − 1)2/t2 (by 13), we see that this will hold (for all n sufficiently
large) if M > N/3(r − 1)2. This establishes (23).

We return to the proof of the claim that there exists anN > 0 such that form ≥ n, and
t ≥ (1 + 2/ε)tn the inequality (25) holds. The proof amounts to adding and subtracting
terms within the left hand side of (25), varying one at a time the multiplied quantity in
each term. The added and subtracted terms are grouped in twos and the absolute value
of the difference in each pair is bounded above. To illustrate, consider the difference
appearing on the left hand side of (25). The first two terms appearing in that difference,
coming from (24), are:

jn(∇JVnK)u2
n − jm(∇JVmK)u2

m

=
(
jn(∇JVnK)u2

n − jm(∇JVnK)u2
n

)
+
(
jm(∇JVnK)u2

n − jm(∇JVmK)u2
m

)
.

The quantity jn(∇JVnK)u2
n − jm(∇JVnK)u2

n can be bounded, and the remaining term
jm(∇JVnK)u2

n − jm(∇JVmK)u2
m can be further decomposed, as follows. First, using

(14) to bound |un|, the assumption that ‖∇K‖ = O(δ−3) together with (11) to bound
‖∇JVnK‖, and the fact from Lemma 2.6 that (jm − jn) = jnO(tn/t), we have that

|jn(∇JVnK)u2
n − jm(∇JVnK)u2

n| = jnu
2
n |∇JVnK|

∣∣∣∣1−
jm
jn

∣∣∣∣ ≤ jnO
(
tn
t2

)
.

Second, to deal with the remaining term jm(∇JVnK)u2
n − jm(∇JVmK)u2

m, we write:

jm(∇JVnK)u2
n − jm(∇JVmK)u2

m

=
(
jm(∇JVnK)u2

n − jm(∇JVnK)u2
m

)
+
(
jm(∇JVnK)u2

m − jm(∇JVmK)u2
m

)
,

and bound each term separately in a similar way to give a bound on the initial quantity
|jn(∇JVnK)u2

n− jm(∇JVmK)u2
m| of order jntn/t

2. The same procedure is used to bound
the remaining part of the difference appearing in (25), which is:

| (2un(K ◦ γn)wn − 2um(K ◦ γm)wm)− 2un(K ◦ γn)(wn − wm)|
= | − 2um(K ◦ γm)wm + 2un(K ◦ γn)wm|.

In all, we use the following bounds:

• δ is comparable to t, by (11);
• un = O(t), by (14);
• |un − um| = O(tn), by (15);
• |jn − jm| = O(jntn/t), for t ≥ (1 + 2/ε)tn, by Lemma 2.6;
• |K ◦ γn −K ◦ γm| = O(tnt

−2), since |K| = O(t−2) and d(γn, γm) = O(tn);
• |∇JVnK − ∇JVmK| = O(tnt

−3), which uses the bounds on ‖∇K‖ and ‖∇2K‖,
as well as (11) and Lemma 2.4.

The details are left to the patient reader.

This finishes the verification of the claim in (25), and thus the proof of Lemma 2.7.�

To finish the proof that ν is C1, note that equation (19) can then be re-expressed
using (14):

(26) |∂sζn(s, t)− ∂sζm(s, t)| ≤Mtnζ
−1
n (s, t)jn(s, t) ≤ Mtnjn(s, t)

µ(t− tn)
≤ 2Mtnjn(s, t)

µt
,
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for t ≥ (1+2/ε)tn. Recalling that jn → j, we conclude that ∂sζn(s, t)→ ∂sζ(s, t) locally
uniformly in s, t. The bounds |∂sζn(s, t)| ≤ Cjn(s, t) from (22) become in the limit
|∂sζ(s, t)| ≤ Cj(s, t). But ∂sζ(s, t) = j(s, t)∇JV ζ, and so we conclude that

(27) |∇JV ν| ≤ C.
Step 4: ν is C2. A very similar proof to the one in Step 3 (with more terms to estimate,
but using, in addition to the previously obtained bounds, the bound ‖∇3K‖ = O(δ−5))
gives that ν is C2 with ‖∇2ν‖ = O(δ−1). One obtains this estimate as in the previous step
by bounding ‖∇2

V ν‖, ‖∇V∇JV ν‖, ‖∇JV∇V ν‖, and ‖∇2
JV ν‖. Each of these is controlled

by a differential equation, whose solutions can be estimated using a double variation
of geodesics γ(s1, s2, t). The key point, illustrated by the previous computations, is
that because K has the “expected” order of derivatives with respect to δ, any quantity
obtained by solving a first-order linear differential equation derived from the Riccati
equation with coefficients expressed in terms of these derivatives will have the “expected”
order in δ as well. Thus, ‖∇iK‖ = O(δ−2−i) for i = 1, 2, 3 implies that ‖∇iν‖ = O(δ1−i),
for i = 1, 2.

This completes the proof that δ is C4. We now turn to items (i)–(v).

(i) ∇JV V − ∇V JV = [JV, V ] by the symmetry of the Levi-Civita connection. But
∇V JV = 0.

(ii) For arbitrary U , we have ∇UV = 〈U, V 〉∇V V + 〈U, JV 〉∇JV V = c〈U, JV 〉JV ,
giving the first conclusion: ∇UV = c〈U, JV 〉JV . The second conclusion follows from
the first and the fact that J is parallel.

(iii) Note that ν = c−1. It then is equivalent to prove that ν = δ/r + O(δ2). Fix z
and let γ = γ0,z. Along this geodesic, ζ(t) = ν(γ(t)) satisfies the equation (10). On the
other hand −K(γ(t)) = r(r − 1)/t2 + O(t−1). Part 3 of Lemma 1.5 implies the desired
result.

(iv) The desired estimate ∇JV c = O(δ−2) is equivalent to ∇JV ν = O(1) because
∇JV ν = −c−2∇JV c and c = O(δ−1). But (27) gives that ∇JV ν = O(1).

(v) The estimate ‖∇2c‖ = O(δ−3) is equivalent to ‖∇2ν‖ = O(δ−1). This estimate
was obtained in Step 4 above. �

3. Geometry of the cusp: commonalities with surfaces of revolution

We continue to work locally in D∗ with a metric satisfying (5) and (6). In this section
we establish properties of geodesics in this cuspidal region. The theme of this section is
that metrics of this form inherit many of the geodesic properties of a surface of revolution
for a profile function y = xr, with r > 2. In R3, coordinates on this surface are

(x, φ) 7→ (x, xr cosφ, xr sinφ), x ∈ (0, 1], φ ∈ [0, 2π].

As remarked in the introduction, if δ denotes the distance to the cusp (0, 0, 0) on this
surface, then δ(x, φ) = x+ o(x) and (5) holds. Other properties are:

• Area: The area of the region {δ ≤ t0} is 2π(r + 1)−1tr+1
0 +O(tr+2

0 ).
• Clairaut Integral: Let γ(t) be a geodesic segment in the surface of revolution,

and let θ(t) be the angle between γ̇(t) and the foliation {φ = const.}. Then the
function t 7→ x(γ(t))r sin θ(t) is constant.
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We establish here in Sections 3.1-3.3 the analogues of these properties in our setting. We
also establish in Section 3.4 some coarse invariance properties of positive Jacobi fields
in D∗.

3.1. Area. Fix δ0 > 0, and for t0 ≤ δ0, denote by D∗(t0) the disk δ ≤ t0. Let c be
the geodesic curvature function defined in the previous section, d` the arclength element
and d vol is the area element defined by the metric.

Let γ(s, t) be the radial unstable variation of geodesics described in the previous
section, defined by the properties

• γ(s, 0) = 0, for all s,
• γ′(s, t) = V (γ(s, t)), for all s, t, and
• ∂sγ(s, δ0) = JV (γ(s, δ0)), for all s.

The arclength element is found by differentiating γ(s, t) with respect to s:

d`(γ(s, t)) = ∂sγ ds = j(s, t) ds.

Using part 3 of Proposition 2.1, we estimate j(s, t) by

j(s, t) = j(s, δ0) exp

(∫ δ0

t
−c(γ(s, x)) dx

)
= exp

(∫ t

δ0

(
r

x
+O(1)) dx

)
=
tr

δr0
+O(tr+1),

and so d`(γ(s, t)) = (trδ−r0 +O(tr+1)) ds. We obtain that:

(28) d vol(γ(s, t)) =

(
tr

δr0
+O(tr+1)

)
ds dt.

The volume of the region D∗(t0) is obtained by integrating d vol(γ(s, t)) over the region
s ∈ [0, `(δ0)]; t ∈ [0, t0], where `(δ0) is the length of the curve δ = δ0. It follows that

vol(D∗(t0)) =
`(δ0)tr+1

0

(r + 1)δr0
+O(tr+2

0 ).

3.2. The angular cuspidal functions a and b. For v ∈ T 1D∗, we define a(v), b(v)
by:

(29) a(v) = 〈v, V 〉, and b(v) = 〈v, JV 〉.
Thus the vectors v with b(v) = 0 and a(v) = −1 point directly at the cusp 0 – that
is, the geodesics that they determine hit the cusp in finite time – and the vectors with
b(v) = 0 and a(v) = 1 point away from 0.

The functions a, b : T 1D∗ → [−1, 1] satisfy a2 + b2 = 1; in the example of the surface
of revolution mentioned in the beginning of the section we have a(v) = cos θ(v) and b =
sin θ(v), where θ(v) is the angle between v and the foliation {φ = const.}, measured from
the direction pointing into the cusp. Recall the definition c(p) = 〈∇JV V (p), JV (p)〉p
from (7). We study here how the functions a, b and c vary along a geodesic in D∗.

Lemma 3.1. Let γ : [0, T ]→ D∗ be a geodesic segment, and for t ∈ [0, T ], write a(t) =
a(γ̇(t)), b(t) = b(γ̇(t)), and c(t) = c(γ(t)). Then:

(1) δ′ = a;
(2) a′ = b2c = rb2/δ +O(b2);
(3) b′ = −abc = −rab/δ +O(ab);
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Proof. This is a straightforward verification. From the definitions, we have δ′ = 〈γ̇,∇δ〉 =
〈γ̇, V 〉 = a, and a′ = ∇γ̇〈γ̇, V 〉 = 〈γ̇,∇γ̇V 〉 = 〈γ̇, bcJV 〉 = b2c. Similarly, b′ =
〈γ̇,∇γ̇JV 〉 = −〈γ̇, bcV 〉 = −abc. We apply conclusion 3 of Proposition 2.1 to get the
final estimate. �

3.3. Quasi-Clairaut Relations. We next prove that there is a Clairaut-type integral
for geodesic rays in D∗. Recall that for δ0 ∈ (0, 1), D∗(δ0) denotes the set of z ∈ D∗ with
δ(z) ≤ δ0.

Proposition 3.2. If δ0 is sufficiently small, then there exists C = 1 + O(δ0), such
that for every geodesic segment γv : [0, T ]→ D∗(δ0), the following quasi-Clairaut formula
holds, for all t1, t2 ∈ [0, T ]:

C−1δ(γv(t2))rb(γ̇v(t2)) ≤ δ(γv(t1))rb(γ̇v(t1)) ≤ Cδ(γv(t2))rb(γ̇v(t2)).

Proof of Proposition 3.2. First note that the statement is trivially true if b(γ̇v(0)) = 0;
hence we may assume b(γ̇v(t)) 6= 0. Let γv : [t1, t2] → D∗(δ0), where δ0 will be specified
later.

As in the previous section, write

a(t) = a(γ̇v(t)), b(t) = b(γ̇v(t)), c(t) = c(γv(t)), and δ(t) = δ(γv(t)).

The first main ingredient in the proof of Proposition 3.2 is the following lemma.

Lemma 3.3. For every v ∈ T 1D∗, the function δ is convex along γv and strictly convex
if a(v) /∈ {−1,+1},
Proof. At any time t where δ′(t) = a(t) = 0 we have b(t) = 1 so that by Lemma 3.1, we
have δ′′(t) = a′(t) = b(t)2c(t) = c(t), which is positive, by Proposition 2.1. �

Returning to the proof of Proposition 3.2, let g = δrb. We first calculate:

g′ = (δrb)′ = rδr−1bδ′ + δrb′ = rδr−1ab+ δr
−rab
δ

+O(|a|bδr),

and so g′/g = O(|a|). Thus there is a constant C such that |g′/g| ≤ C|a| = C|δ′|. Fixing
t1 < t2, we have ∣∣∣∣

∫ t2

t1

g′

g

∣∣∣∣ ≤
∫ t2

t1

∣∣∣∣
g′

g

∣∣∣∣ ≤
∫ t2

t1

C|δ′|.

Thus

exp

(
−C

∫ t2

t1

|δ′|
)
≤ g(t1)

g(t2)
≤ exp

(
C

∫ t2

t1

|δ′|
)
.

Since δ is convex and δ(t1), δ(t2) ≤ δ0, we have δ(t) ≤ δ0 for all t ∈ [t1, t2], and there

is at most one t∗ ∈ [t1, t2] where δ′ vanishes. It follows easily that
∫ t2
t1
|δ′| ≤ 2δ0, which

implies the conclusion. �

Corollary 3.4. Every unit-speed geodesic in D∗ that enters the region D∗(δ0) leaves the
region in time ≤ 2δ0.
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3.4. Cuspidal Jacobi fields. For γ a geodesic segment in D∗, we consider solutions to
the Riccati equation:

(30) ζ ′(t) = 1 +K(γ(t))ζ(t)2,

which is defined on a time interval containing 0. The next lemma shows that there is a
“cone condition” on initial data that is preserved by solutions to (30). We use this in
the next section to construct an invariant cone field for solutions to (30) in S.

Lemma 3.5. For every ε ∈ (0, 1) there exists δ0 > 0 such that the following holds for
every geodesic segment γ : [0, T ]→ D∗(δ0). Let ζ be a solution to (30) for this γ.

(1) If ζ(0) ≤ δ(γ(0))/(r − 1 − ε), then ζ(t) ≤ δ(γ(t))/(r − 1 − ε) for all t ∈ [0, T ],
and

(2) if ζ(0) ≥ δ(γ(0))/(r + ε), then ζ(t) ≥ δ(γ(t))/(r + ε), for all t ∈ [0, T ].

Proof. We establish the lower bound first. Let γ be given, and let ζ be the solution to
(30). As in the previous sections, denote by a(t) and δ(t) the quantitiies a(γ̇(t)) and
δ(γ(t)). In this notation, let w(t) = δ(t)/(r + ε). Then w′ = a/(r + ε). To show that
w ≤ ζ, it suffices by Lemma 1.2 to show that

a

r + ε
≤ 1 +Kw2 = 1 +

(
−r(r − 1)

δ2
+O(δ−1)

)
δ2

(r + ε)2
;

equivalently, it suffices to show that r − ar + 2rε − aε + ε2 ≥ O(δ). Since a ≤ 1, this
clearly will hold if δ0 is sufficiently small. The upper bound is proved similarly. �

4. Global properties of the flow in T 1S

Now consider the surface S with one puncture, satisying the hypotheses of Theorem 1.
Let δ be the distance to the cusp. For δ0 > 0, denote by N (δ0) = {p : δ(p) ≤ δ0} the
convex δ0-neighborhood of the cusp. In this section, we modify the function δ outside
of a neighborhood N (δ1) and use the modified function δ to construct a Dϕt-invariant
conefield on TT 1S. We also use the modified function δ to construct a new Riemannian
metric on T 1S, called the ? metric, that makes T 1S complete.

Having done this, we consider the flow ψt on T 1S given by rescaling ϕt to have unit
speed in the ? metric. We prove that this flow is Anosov in the ? metric and preserves
a smooth, finite volume. This allows us to conclude that ϕt is ergodic and has smooth
invariant stable and unstable foliations on which ϕt acts with bounded distortion.

4.1. Invariant cone field. In this subsection, we prove the following key technical
result, which we will use to prove that a rescaled version of ϕt is Anosov.

Proposition 4.1. [Cones] For every ε > 0 sufficiently small, if δ1 is sufficiently small,
then the following holds.

There exists β > 0, an extension δ : S → (0,∞) of δ|N (δ1/2) and a function χ : S →
[β, r − 1− ε] satisfying χ(p) = r − 1− ε for δ(p) ≤ δ1,

χ(p)− ‖∇δ(p)‖ ≥ β,
for all p ∈ S, and such that the following holds. Let γ : [0, T ]→ S be a geodesic segment
in S. Then:
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(1) If u is a solution to (31) below then

u(0) ∈
[
χ(γ(0))

δ(γ(0))
,
r + ε

δ(γ(0))

]
=⇒ u(t) ∈

[
χ(γ(t))

δ(γ(t))
,
r + ε

δ(γ(t))

]
,

for all t ∈ [0, T ],
(2) If u is a solution to (31) below then

u(T ) ∈
[
− r + ε

δ(γ(T ))
,−χ(γ(T ))

δ(γ(T ))

]
=⇒ u(t) ∈

[
− r + ε

δ(γ(r))
,−χ(γ(t))

δ(γ(t))

]
,

for all t ∈ [0, T ].

Proof. The proof is broken into a few steps.

4.1.1. The lower edge of the cone: j′/j ≥ g.

Lemma 4.2. For every ε > 0, there exist µ ∈ (0, 1) and for every δ0 > 0 sufficiently
small, a continuous function g : S → (0,∞) with the following properties:

(1) For every p ∈ S, we have g(p) ≤ (r − 1− ε)/δ(p).
(2) For every p ∈ N (µδ0), we have g(p) = (r − 1− ε)/δ(p).
(3) Let γ : [0, T ]→ S be a geodesic segment in S, and let u be any solution to

(31) u′(t) = −K(γ(t))− u(t)2.

Suppose that u(0) ≥ g(γ(0)). Then u(t) ≥ g(γ(t)), for all t ∈ [0, T ].

Proof. Given ε < (r−2)/2, we choose δ0 ∈ (0, 1) sufficiently small according to Lemma 3.5.
Let −κ2

0 be an upper bound on the curvature on S, and let

θ = min

{
κ0, inf

p∈S

r − 1− ε
δ(p)

}
.

We fix µ = µ(ε) > 0 very small (to be specified later). Let η : [µδ0, δ0]→ R>0 be the
affine function satisfying

η(µδ0) = r − 1− ε, and η(δ0) = θδ0,

and define g : S → (0,∞) by:

g(p) =





θ if p ∈ S \ N (δ0),
η(δ(p))
δ(p) if p ∈ N (δ0) \ N (µδ0),

r−1−ε
δ(p) if p ∈ N (µδ0).

By construction, g satisfy conditions 1 and 2. We check invariance of the condition
u(t) ≥ g(γ(t)); to this end, let γ : [0, T ] → S be a geodesic, and suppose that u is a
solution to (31) satisfying u(0) ≥ g(γ(0)). By breaking γ into pieces if necessary, we
may assume that one of the following holds:

Case 1. γ[0, T ] ⊂ S \ N (δ0),
Case 2. γ[0, T ] ⊂ N (δ0) \ N (µδ0), or
Case 3. γ[0, T ] ⊂ N (µδ0).
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Cases 1 and 3 are pretty trivial. In Case 1, g ≡ θ, and the fact that −K ≥ κ2
0 ≥ θ2

implies that the condition u ≥ θ is invariant. In Case 3, g = (r− 1− ε)/δ, and we apply
Lemma 3.5.

In Case 2, we will apply Lemma 1.2 to the function u0(t) := g(γ(t)). Differentiating
u0, we have

u′0(t) =

(
η(δ(γ(t)))

δ(t)

)′
=
η′(δ(γ(t)))a(γ(t))

δ(γ(t))
− η(δ(γ(t)))a(γ(t))

δ(γ(t))2
.

Lemma 1.2 implies that u(t) ≥ u0(t) for all t ∈ [0, T ] provided that u(0) ≥ u0(0) and
−K(γ(t))− u0(t)2 ≥ u′0(t), for all t. The latter is equivalent to:

(32) −K(γ(t))−
(
η(δ(γ(t)))

δ(γ(t))

)2

≥ η′(δ(γ(t)))a(γ(t))

δ(γ(t))
− η(δ(γ(t)))a(γ(t))

δ(γ(t))2
.

Since K = −r(r − 1)/δ2 +O(1/δ), if ε and δ0 are sufficiently small, inequality (32) will
hold provided that

(33) r(r − 1− ε)− η2 ≥ aη′δ − aη.
Since η ∈ (0, r − 1− ε] and η′ < 0, inequality (33) holds automatically when a ≥ 0. For
a ≤ 0, inequality (33) will hold provided that for all δ ∈ [µδ0, δ0], we have:

(34) r(r − 1− ε)− η2 − η ≥ −η′δ.
Since −η′ ≤ (r − 1− ε)/((1− µ)δ0), we are reduced to proving the inequality

r(r − 1− ε)− η2 − η ≥ (r − 1− ε)δ
(1− µ)δ0

.

To verify this, it suffices to show that the correct inequality holds at the endpoints
δ = µδ0 and δ = δ0; this is easily verified provided δ0 and µ = µ(ε) are sufficiently
small.�

4.1.2. Definition of the modified distance function δ. Fix ε ∈ (0,max{(r− 2)/2, 1}), and
let δ0 > 0 and µ ∈ (0, 1) be given by Lemma 4.2. Let δ1 = µδ0. Since S \ N (δ1) is
compact, we may assume that δ0 (and hence δ1) is small enough that

−κ2
1(δ1) := inf

p∈S\N (δ1)
K(p) > −(r + ε)(r − 1 + ε)

δ2
1

.

Fix λ ∈ (0, 1) close enough to 1 that

−κ2
1(δ1) > −(r + ε)(r − 1 + ε)

(λδ1)2
,

and β0 := λ(r − 1− ε)− 1 > 0.
We extend δ to a C4 function δ : S → R>0 satisfying δ(p) = δ(p) for p ∈ N (δ1/2) and

δ(p) = λδ1, for p ∈ S \ N (δ1). We may do this so that λ ≤ δ/δ ≤ 1, and ‖∇δ‖ ≤ 1 in
N (δ1). We also denote by δ the function on T 1S defined by δ(v) = δ(π(v)), which is
constant on the fibers of T 1S. Thus if v ∈ T 1S, and t ∈ R, we have:

δ(ϕt(v)) = δ(γv(t)),

and we will at times write these expressions interchangeably.
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Let g : S → R>0 be the lower cone function given by Lemma 4.2. Define χ : S → R>0

by χ(p) = δ(p)g(p). As with δ, we will lift χ to a function on T 1S and write χ(v) =
χ(π(v)). Our choice of λ ensures that the following lemma holds

Lemma 4.3. For all p ∈ S, we have χ(p) ≤ r − 1− ε. There exists β > 0 such that for
all p ∈ S, we have χ(p)− ‖∇δ(p)‖ ≥ β.

Proof. The first assertion follows easily from the fact that δ/δ ≤ 1 and part 1 of
Lemma 4.2.

If p ∈ S \N (δ1), then ∇δ(p) = 0, and the conclusion holds with β1 = infS\N (δ1) χ > 0.

If p ∈ N (δ1), then χ(p) = (r − 1 − ε)δ(p)/δ(p), δ(p)/δ(p) ≥ λ and ‖∇δ(p)‖ ≤ 1; thus
χ(p)−‖∇δ(p)‖ ≥ λ(r−1− ε)−1 = β0 > 0. We conclude by setting β = min{β0, β1}. �

4.1.3. The upper edge of the cone: j′/j ≤ (r+ε)/δ. Using the modified cuspidal distance
function δ, we now can define an upper edge to an invariant cone field for solutions to
(31).

Lemma 4.4. Let δ be defined as in Section 4.1.2. Let γ : [0, T ] → S be a geodesic
segment in S, and let u be any solution to (31) with u(0) ≤ (r + ε)/δ(γ(0)). Then
u(t) ≤ (r + ε)/δ(γ(t)), for all t ∈ [0, T ].

Proof. This is a straightforward application of Lemma 1.2, using only the facts that
‖∇δ‖ ≤ 1, and −K(p) ≤ (r + ε)(r − 1 + ε)/δ(p)2, for all p ∈ S. �

Lemmas 4.2, 4.3 and 4.4 can be applied as well to the flow ϕ−t to obtain invariant
negative cones for solutions to the equation (31). One can do this using the same
functions χ, δ satisfying both (1) and (2) in the conclusion of Proposition 4.1. This
completes the proof of the proposition. �

4.2. An adapted, complete metric on T 1S. Define a new Riemannian metric on
T 1S by

〈(w1, w
′
1), (w2, w

′
2)〉?,v =

1

δ(v)2
〈w1, w2〉π(v) + 〈w′1, w′2〉π(v),

for v ∈ T 1S.

Remark: The ? metric on T 1S is comparable (i.e. bi-Lipschitz equivalent) to the
induced Sasaki metric for the so-called Ricci metric on S. (The Ricci metric on S is
obtained by scaling the original metric by −K.) We briefly explain.

Define a metric 〈·, ·〉† on S by conformally rescaling the original metric, as follows:

〈·, ·〉† = δ
−2〈·, ·〉.

This is comparable to the Ricci metric, since −K is comparable to δ
−2

.
We claim that the metric on T 1S induced by the Sasaki metric for 〈·, ·〉† is comparable

to 〈·, ·〉?. Here is a crude sketch of the proof. The unit tangent bundle T 1S for the original
metric is clearly not the 〈·, ·〉† unit tangent bundle, but angles remain the same, and so
〈·, ·〉 angular distance in the vertical fibers of T 1S coincides with 〈·, ·〉† angular distance.
On the other hand, †-distance in the horizontal fibers of TS (with respect to the original

connection) is the original distance scaled by δ
−1

. Thus the formulas are comparable.
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As it is more convenient to work with the ? metric, we will not pursue here further
the properties of the † metric on S, but one can prove that (for δ0 sufficiently small) it
is complete, negatively curved with pinched curvature, and of finite volume. In the case
where the original metric is the WP metric, the †metric is comparable to the Teichmüller
metric, which is the hyperbolic metric. We will not be using the Riemannian properties
of the ? metric beyond completeness and finite volume.

Let ρ? be the Riemannian distance on T 1S induced by 〈 , 〉?.
Lemma 4.5. ρ? is complete.

Proof. By the Hopf-Rinow theorem, it suffices to show that any ?-geodesic is defined
for all time. The only way in which a geodesic in T 1S can stop being defined is for its
projection to S to hit the cusp. But the projection to S of a ?-geodesic is a curve that
has speed δ when it is at distance δ from the cusp in the geometry of our Riemannian
metric 〈·, ·〉 on S. It is clear that such a curve cannot reach the cusp in finite time. �

4.3. Lie brackets and ?-covariant differentiation on T 1S. If X is a vector field on
S, then X has two well-defined lifts Xh and Xv to vector fields on TS, the horizontal
and vertical lifts, respectively. They are defined by

Xh(u) = (X(π(u)), 0), and Xv(u) = (0, X(π(u))),

for u ∈ T 1S. The following formulas for Lie brackets of such lifts are standard; see [17].

Lemma 4.6. Let X and Y be arbitrary vector fields on S. Then

• [Xv, Y v]u = 0
• [Xh, Y v]u = (0,∇XY )
• [Xh, Y h]u = ([X,Y ],−R(X,Y )u)

Recall the definitions of V = ∇δ and JV . To simplify notation, and since the calcu-
lations that follow are only interesting in the thin part N (δ1/2) where δ = δ, we will
write V, JV , and δ for their barred counterparts in what follows.

Lemma 4.7. Denote by V h, JV h, V v, JV v the horizontal and vertical lifts, respectively,
of V and JV . Then for u ∈ N (δ1/2), we have:

(1) [V v, JV v]u = [V h, JV v]u = [V h, V v]u = 0,
(2) [JV h, V v]u = (0, cJV )
(3) [JV h, V h]u = (cJV,−R(JV, V )u)
(4) [JV h, JV v]u = (0,−cV )

Proof. This is a direct application of the previous lemma and the fact that ∇JV V =
[JV, V ] = cJV from Proposition 2.1. �

Observe that ‖V h‖? = ‖JV h‖? = δ−1, and ‖V v‖? = ‖JV v‖? = 1. We have:

Lemma 4.8. Let X and Y be arbitrary vector fields on S with ‖X‖ = ‖Y ‖ = 1, and
denote by Xh, Xv, Y h, Y v their horizontal and vertical lifts. Then

‖∇?XhY
h‖? = O(δ−2), ‖∇?XhY

v‖? = O(δ−1), ‖∇?XvY h‖? = O(δ−1),

and
∇?XvY v = 0.

In particular, the ? connection is summarized in Table 1.
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V h JV h V v JV v

V h −δ−1JV h

−δ−1V h +1
2〈R(JV, V )u), V 〉V v − δ2

2 〈R(JV, V )u), V 〉JV h − δ2

2 〈R(JV, V )u, JV 〉JV h

+1
2〈R(JV, V )u, JV 〉JV v

JV h (−δ−1 + c)JV h

−1
2〈R(JV, V )u, V 〉V v (δ−1 − c)V h δ2

2 〈R(JV, V )u), V 〉V h δ2

2 〈R(JV, V )u), JV 〉V h

−1
2〈R(JV, V )u, JV 〉JV v +cJV v −cV v

V v − δ2

2 〈R(JV, V )u, V 〉JV h δ2

2 〈R(JV, V )u), V 〉V h 0 0

JV v − δ2

2 〈R(JV, V )u), JV 〉JV h δ2

2 〈R(JV, V )u), JV 〉V h 0 0

Table 1: ∇?XY (u), for u ∈ T 1N (δ1/2), where X is the row vector field,
and Y is the column vector field.

Proof. The proof is a calculation using Lemma 4.7 and Koszul’s formula:

2〈∇?XY,Z〉? = X(〈Y, Z〉?) + Y (〈X,Z〉?)− Z(〈X,Y 〉?)
+ 〈[X,Y ], Z〉? − 〈[X,Z], Y 〉? − 〈[Y, Z], X〉?.

The details can be found in [8]. �

Lemma 4.9. Let a(w) = 〈w, V (π(w))〉, b(w) = 〈w, JV (π(w))〉 be defined as above. Then

(1) V h(a) = V h(b) = 0,
(2) JV h(a) = bc, and JV h(b) = −ac,
(3) V v(a) = 1, and V v(b) = 0
(4) JV v(a) = 0, and JV v(b) = 1

Proof. 1. To differentiate a function φ on T 1S with respect to V h at w ∈ T 1S,
we parallel translate w along the geodesic γ(t) through π(w) tangent to V to obtain
ΠV
t (w), and then differentiate the function φ(ΠV

t (w)) with respect to t at t = 0. Since
γ is a geodesic tangent to V , the angle between ΠV

t (w) and V remains constant, and so
a(ΠV

t (w)) and b(ΠV
t (w)) are both constant. Thus their derivatives are both zero.

2. Let ΠJV
t (w) be the parallel translate of w along the integral curve of the vector

field JV through π(w). Then

JV h(a)(w) =
d

dt
〈ΠJV

t (w), V 〉|t=0 = 〈w,∇JV V 〉 = 〈w, cJV 〉 = bc,

and

JV h(b)(w) =
d

dt
〈ΠJV

t (w), JV 〉|t=0 = 〈w,∇JV JV 〉 = 〈w,−cV 〉 = −ac.
3. To compute the derivative V vφ at w, we differentiate φ(w + tV ) at t = 0 in the

fiber over π(w). Thus

V v(a)(w) =
d

dt
〈w + tV, V 〉|t=0 =

d

dt
t〈V, V 〉|t=0 = 1,

and

V v(b)(w) =
d

dt
〈w + tV, JV 〉|t=0 =

d

dt
t〈V, JV 〉|t=0 = 0.
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4. To compute the derivative JV vφ at w, we differentiate φ(w + tJV ) at t = 0 in the
fiber over π(w). The calculations are similar to those in 3. �

Proposition 4.10. Let X be any vector field on T 1S with ‖X‖? = 1. Then

‖∇?X ϕ̇‖? = O(δ−1).

In particular:

(1) ∇?
V h
ϕ̇ = −aδ−1V h − bδ−1JV h − b2K

2 V v + abK
2 JV v

(2) ∇?
JV h

ϕ̇ = bδ−1V h − aδ−1JV h + 1
2KabV

v − 1
2Ka

2JV v

(3) ∇?V v ϕ̇ = Kabδ2

2 JV h +
(
−Kb2δ2

2 + 1
)
V h

(4) ∇?JV v ϕ̇ =
(

1− Ka2δ2

2

)
JV h + Kabδ2

2 V h

Proof. The proof is just a calculation. To see 1, for example, observe that

∇?V hϕ̇ = ∇?V h(aV h + bJV h) = a∇?V hVh + b∇?V hJVh

= −aδ−1V h − bδ−1JV h +
b

2
〈R(JV, V )u, V 〉V v +

b

2
〈R(JV, V )u, JV 〉JV v,

where u = aV + bJV . Thus

∇?V hϕ̇ = −aδ−1V h − bδ−1JV h − b2K

2
V v +

abK

2
JV v.

The other formulas are proved similarly; see [8] for the details. �

4.4. Time change to an Anosov flow. As above, let ϕ̇ be the geodesic spray; i.e. the
generator of the geodesic flow on T 1S. Define a new flow ψt on T 1S with generator

ψ̇(v) = δ(v)ϕ̇(v).

One might ask first whether this flow is complete; that is, is it defined for all time t ∈ R,
for each v ∈ T 1S? Note that the original flow ϕt is not complete, since it is the geodesic
flow of an incomplete manifold. The completeness of ψt follows from the completeness
of T 1S in the ?-metric defined above, and the following lemma.

Lemma 4.11. The vector field ψ̇ is C3, and there exists a constant C > 0 such that for
every v ∈ T 1S,

‖ψ̇‖? = 1, and ‖∇?iψ̇‖? ≤ C, for i = 1, 2, 3.

The flow ψ̇t preserves a finite measure µ on T 1Σ that is equivalent to Liouville volume

for the original metric: dµ = δ
−1
d vol.

Proof. By definition of the ? metric, we have ‖ψ̇‖? = ‖δϕ̇‖? = 1.
Since δ(v) = δ(π(v)), the derivatives of δ have no vertical component, and Corol-

lary 2.2 gives that ‖∇iδ‖ = O(δ
1−i

). A unit horizonal vector in the ? norm is of the
form (ξH , 0), where ‖ξH‖ = δ. Thus

(35) ‖∇?iδ‖? = δ
i‖∇iδ‖ = O(δ),

for i = 1, 2, 3.
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Proposition 4.10 implies ‖∇?ϕ̇‖? has magnitude δ(v)−1 in the ? metric. A similar
calculation taking higher covariant derivatives of the formulas in Proposition 4.10 and

using the facts that ‖∇K‖ = O(δ
−3

), ‖∇2K‖ = O(δ
−4

), ‖∇ic‖ = δ−1−i, and (35) gives
that

(36) ‖∇?iϕ̇‖? = O(δ
−1

),

for i = 1, 2, 3.
Combining (36) and (35), we obtain that

‖∇?(δϕ̇)‖? = ‖∇?(δ)ϕ̇‖? + ‖δ∇?ϕ̇‖? ≤ ‖∇?(δ)‖?‖ϕ̇‖? + δ‖∇?ϕ̇‖? = O(1).

Similarly, we obtain that ‖∇?i(δϕ̇)‖? = O(1), for i = 2, 3.
Let ω be the canonical one form on the tangent bundle TS with respect to the original

metric. Then ϕ∗tω = ω, for all t, and d vol = ω ∧ dω on T 1S. We have that:

Lψ̇
(
δ
−1
ω ∧ dω

)
= d

(
ιψ̇

(
δ
−1
ω ∧ dω

))
= d(dω) = 0,

since δ
−1
ω(ψ̇) = ω(ϕ̇) ≡ 1. Thus ψt preserves the smooth measure µ defined by dµ =

δ
−1
ω ∧ dω = δ

−1
d vol.

To see that µ(T 1S) <∞, we use the expression for d vol from (28) and integrate:

µ(T 1S) =

∫

T 1S
δ
−1
d vol = O

(∫ δ0

0
xr−1 dx

)
<∞.

�

The flow ψt is a time change of ϕt; that is, it has the same orbits, but they are
traversed at a different speed, depending on the distance to the singular locus. Indeed,
defining the cocycle τ : T 1S × R→ R by the implicit formula

(37)

∫ τ(v,t)

0

dx

δ(ϕx(v))
= t,

we have that ψt(v) = ϕτ(v,t)(v), for all v ∈ T 1S, t ∈ R. This gives an alternate way to

see the completeness of the flow ψ: the function δ clearly remains positive along orbits
of ψ for all time.

Theorem 4.12. The flow ψt is an Anosov flow in the ?-metric. That is, there exists a
Dψt-invariant, continuous splitting of the tangent bundle:

T
(
T 1S

)
= Euψ ⊕ Rψ̇ ⊕ Esψ

and constants C > 0, λ > 1 such that for every v ∈ T 1S, and every t > 0:

• ξ ∈ Euψ(v) =⇒ ‖Dψ−t(ξ)‖? ≤ Cλ−t‖ξ‖?, and

• ξ ∈ Esψ(v) =⇒ ‖Dψt(ξ)‖? ≤ Cλ−t‖ξ‖?.
From Theorem 4.12 we obtain several important properties of both ψt and ϕt. The

first is ergodicity. Since volume preserving Anosov flows are ergodic, the flows ϕt and
ψt have the same orbits, and the ? volume is equivalent to (i.e. has the same zero sets
as) the original volume on T 1S, we obtain:

Corollary 4.13. The flow ψt is ergodic with respect to the invariant volume µ. Conse-
quently, ϕt is ergodic with respect to volume.
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In the next corollary we obtain a splitting of TT 1S, invariant under Dϕt .

Corollary 4.14. Dϕt has an invariant singular hyperbolic splitting

T
(
T 1S

)
= Euϕ ⊕ Rϕ̇⊕ Esϕ,

with Euϕ and Esϕ given by intersecting Euψ ⊕ Rψ̇ and Esψ ⊕ Rψ̇ with the smooth, Dϕt-

invariant bundle ϕ̇⊥.

Since the weak stable and unstable distributions of a C3 Anosov flow in dimension 3
are C1+α, for some α > 0, we also obtain:

Corollary 4.15. The distributions Euψ ⊕ Rψ̇ and Esψ ⊕ Rψ̇ are C1+α, for some α > 0.

The distributions Euϕ and Esϕ are also C1+α, when measured in the ? metric. Thus in

the compact part δ ≥ δ0, the distributions Euϕ and Esϕ are uniformly C1+α.

Remark: If δ(p) ≤ δ1/2, then the vector V (p) = ∇δ(p) points directly away from
the cusp. It is not difficult to see that the unstable manifold Wu

ψ(V (p)) consists of the

restriction of the vector field V to the circle δ = δ(v). For these vectors, the unstable
bundles Euψ and Euϕ coincide.

Finally we obtain the key bounds on distortion for the flow ϕt that will be used to
prove exponential mixing.

Corollary 4.16 (Distortion control). For t ∈ R and v ∈ T 1S denote by ‖Ds
vψt‖? and

‖Du
vψt‖? the ?- norm of the restriction of Dvψt to Esψ and Euψ, respectively. Similarly

define ‖Ds
vϕt‖? and ‖Du

vϕt‖? using the bundles Esϕ and Euϕ. There exist θ > 0, C ≥ 1

and σ > 0 such that for every v ∈ T 1S:

(1) If w ∈ Ws
ψ(v, σ) and w′ ∈ Wu

ψ(v, σ), then for all t > 0:

|log ‖Ds
vψt‖? − log ‖Ds

wψt‖?| ≤ Cρ?(v, w)θ,

and
|log ‖Du

vψ−t‖? − log ‖Du
w′ψ−t‖?| ≤ Cρ?(v, w′)θ.

(2) If w ∈ Ws
ϕ(v, σ) and w′ ∈ Wu

ϕ(v, σ), then for all t > 0:

|log ‖Ds
vϕt‖? − log ‖Ds

wϕt‖?| ≤ Cρ?(v, w)θ,

and
|log ‖Du

vϕ−t‖? − log ‖Du
w′ϕ−t‖?| ≤ Cρ?(v, w′)θ.

Proof. The results for ψt are standard properties of Anosov flows. For ϕt, we need only
note that the map induced by ϕt between any two Ws

ϕ manifolds on the same orbit is
just the composition of the map induced by ψt between the correspondingWs

ψ manifolds
with projections along flow lines at both ends between theWs

ϕ andWs
ψ manifolds. These

latter projections are uniformly C2. �

Remark: It is not hard to see that the stable and unstable bundles Euψ and Esψ are
not jointly integrable. It follows that the Anosov flow ψt is mixing with respect to
the measure µ. Indeed, Theorem 3 of [13] (see the Appendix to [14] for a corrected
statement) implies that ψt is superpolynomially mixing. This leads to the question: is
ψt exponentially mixing (if, for example, δ0 is chosen small enough in the construction)?
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4.5. Proof of Theorem 4.12. By standard arguments in smooth dynamics, to prove
that ψt is an Anosov flow, it suffices to find nontrivial cone fields C+ and C− over T 1S
and constants C > 0, λ > 1 with the properties:

• C+(v) ∩ C−(v) = {0}, and C±(v) ∩ Rψ̇ = {0};
• Dvψ1(C+(v)) ⊂ C+(ψ1(v)), and Dvψ−1(C−(v)) ⊂ C−(ψ−1(v)); and
• For all t > 0, and all ξ+ ∈ C+(v) and ξ− ∈ C−(v), we have

‖Dvψt(ξ
+)‖? ≥ Cλt and ‖Dvψ−t(ξ

−)‖? ≥ Cλt.
The derivative of ψt restricted to ϕ̇⊥ has a component in the ϕ̇ direction of TT 1S

owing to the time change. We have:

(38) Dvψt(ξ) = Dvϕτ(v,t)(ξ) = Dvϕs|s=τ(v,t)(ξ) +Dvτ(v, t)(ξ) ϕ̇(v).

Our strategy to find the cone fields is summarized in two steps.

(1) Use the properties of Dvϕτt previously obtained in Lemma 4.2 to define the
perpendicular components (i.e. in ϕ̇⊥) of C±.

(2) Using a bound on the “shear term” Dvτt(ξ) in the ? norm, we then define the
components of C± in the Rϕ̇ direction.

We carry out these steps in the following sections.

4.5.1. Action of Dϕs. Here we fix t > 0 and study the action of Dvϕs : ϕ̇⊥(v) →
ϕ̇⊥(ϕs(v)) at s = τ(v, t). The derivatives of τ do not enter into these calculations;
we are essentially establishing properties of the original flow ϕs (as measured in the
?-metric).

Proposition 4.17. For any v ∈ T 1S, and any real numbers y0, z0 satisfying z0/y0 ∈
[χ(v), r + ε], the following holds. For s ≥ 0, define ys and zs by:

Dvϕs
(
y0δ(v)Jv, z0Jv

)
=
(
ysδ(γv(s))Jγ̇v(s), zsJγ̇v(s)

)
.

Then:

(1) zs/ys ∈ [χ(ϕs(v)), r + ε], for all s ≥ 0, and
(2) for every t > 0:

yτ(v,t)

y0
≥ eβt.

Proof. For s > 0, let j(s) = δ(γv(s))ys. Then, since (j(s)Jγ̇v(s), j
′(s)Jγ̇v(s)) is a per-

pendicular Jacobi field, the definition of ys, zs implies that j′(s) = zs. In particular,
j′(s)/j(s) = zs/δ(γv(s))ys.

Suppose that z0/y0 ∈ [χ(v), r + ε]. Then

(39) j′(s)/j(s) ∈
[
χ(γ(s))

δ(γv(s))
,
r + ε

δ(γv(s))

]

holds for s = 0, and Proposition 4.1 implies that (39) holds for all s > 0. We conclude
that zs/ys ∈ [χ(ϕs(v)), r + ε], for all s > 0.

Turning to the second item in the proposition, we have that

δ(γv(s))ys

δ(γv(0))y0

=
j(s)

j(0)
= exp

(∫ s

0

j′(u)

j(u)
du

)
,
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which gives that ys/y0 = δ(γv(0))/δ(γv(s)) exp(
∫ s

0 zu/(δ(γv(u))yu)ds), and so

ys = y0 exp

(∫ s

0

−Dδ(ϕ̇(ϕu(v)))

δ(ϕu(v))
+

zu

yuδ(ϕu(v))
du

)
.

Since zu/yu ≥ χ(ϕu(v)), for u ≤ s, and χ− ‖∇δ‖ > β, we have

ys
y0
≥ exp

(∫ s

0

β

δ(ϕu(v))
du

)
.

We make the substitution s = τ(v, t) and use the fact that
∫ τ(v,t)

0 δ(ϕu(v))−1 du = t to
obtain the conclusion. �

4.5.2. Invariant cone fields. We define invariant stable and unstable cones C− and C+.
The angle between C+ and C− will be uniformly bounded in the ?-metric, as will be the
angle between either of them and ψ̇. We establish the properties of C+ in detail; the
analogous properties for C− are obtained by the same proof, reversing the direction of
time.

Fix B > 0 to be specified later, and let

C+(v) := {
(
δ(v) (xv + yJv) , zJv

)
: z/y ∈ [χ(v), r + ε] & |x| ≤ B|y|} ∪ {0},

and

C−(v) := {
(
δ(v) (xv + yJv) , zJv

)
: z/y ∈ [−(r + ε),−χ(v)] & |x| ≤ B|y|} ∪ {0}.

Note that since χ is bounded below away from 0, if ξ =
(
δ(v) (xv + yJv) , zJv

)
∈ C±(v),

then ‖ξ‖? is uniformly comparable to both |y| and |z|.
Lemma 4.18. If B > 0 is sufficiently large, then Dvψ1(C+(v)) ⊂ C+(ψ1(v)), and there
exists C > 0 such that

ξ ∈ C+(v) =⇒ ‖Dψt(ξ)‖? ≥ Ceβt‖ξ‖?,
for all t ≥ 0.

Proof. Recall that ψ̇(v) = (δ(v)v, 0), and Dvψt(ψ̇(v)) = ψ̇(ψt(v)). Applying Dvψt to
ξ =

(
δ(v) (x0v + y0Jv) , z0Jv

)
and using (38), we get

Dvψt(ξ) = Dvψt(x0ψ̇(v)) +Dvψt(δ(v)y0Jv, z0Jv)

= Dvψt(x0ψ̇(v)) +Dvϕs|s=τ(v,t)

(
y0δ(v)Jv, z0Jv

)
+Dvτ(v, t)

(
y0δ(v)Jv, z0Jv

)
ϕ̇(ψt(v))

=
(
x0δ(ψt(v)) +Dvτ(v, t)

(
y0δ(v)Jv, z0Jv

))
(ψt(v), 0)

+Dvϕs |s=τ(v,t)

(
y0δ(v)Jψt(v), z0Jψt(v)

)
.

=: (xτδ(ϕτ (v))ϕτ (v), 0) + (yτδ(ϕτ (v))Jϕτ (v), zτJϕτ (v)),

where in the last expression we’ve used the abbreviation τ = τ(v, t).
Assume that ξ ∈ C+(v) and without loss of generality that y0 ≥ 0. This implies that

z0 ∈ [χ(v)y0, (r + ε)y0] and |x0| ≤ B|y0|. Proposition 4.17 implies that for any t > 0:

|xτ | = |x0+
1

δ(ϕτ (v))
Dvτ(v, t)

(
y0δ(v)Jv, z0Jv

)
| ≤ |x0|+‖Dvτ(t, ·)‖?‖(y0δ(v)Jv, z0Jv)‖?

≤ |x0|+ (1 + 1/β)‖Dvτ(t, ·)‖?|z0|,
yτ ≥ eβty0, and zτ ∈ [χ(ϕτ (v))yτ , (r + ε)yτ ].
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Now fix t = 1, and let τ1 = τ(v, 1). We want to show that Dvψ1(ξ) ∈ C+(ψ1(v)) =
C+(ϕτ1(v)); i.e. that zτ1/yτ1 ∈ [χ(ψ1(v)), r + ε] and |xτ1 | ≤ B|yτ1 |.

From the previous discussion, we have zτ1 ∈ [χ(ϕτ1(v))yτ1 , (r + ε)yτ1 ], and setting
C1 = (1 + 1/β)‖Dvτ(1, ·)‖?, we also have:

|xτ1 | ≤ |x0|+ C1|z0| ≤ By0 + C1|z0| ≤ (B + C1(r + ε))y0 ≤ (B + C1e(r + ε))e−βyτ1 .

Thus we want choose B such that (B + C1(r + ε))e−β ≤ B, which holds if

B ≥ C1(r + ε)e−β

1− e−β .

A similar argument works for y0 < 0.
Finally if ξ ∈ C+(v), then ‖Dψt(ξ)‖? is uniformly comparable to |yτ |; since |yτ | grows

exponentially on the order eβt, so does ‖Dvψtξ‖?. �

5. Exponential Mixing

As mentioned in the introduction, to prove exponential mixing of ϕt, we will construct
a Young tower – a special section to the flow – whose return times have exponential
tails (see [21] for a definition of these towers and a discussion of their applications).
Since orbits of ϕt spend only a bounded amount of time in the cuspidal region, ensuring
exponential tails for the return time is not difficult. Chernov [12] has developed a general
method for constructing such towers in similar contexts, but rather than applying these
methods (which require verifying a long list of hypotheses), we have chosen to construct
the towers directly.

Let δ1 > 0 sufficiently small be given by Proposition 4.1. Fix δ2 ≤ δ1/2 sufficiently
small, and denote by Z = Z(δ2) the circle {p : δ(p) = δ2}. Then Z lifts to two distin-
guished circles Zu, Zs ⊂ T 1

ZS in the unit tangent bundle:

Zu := {∇δ(p) : p ∈ Z}, and Zs := {−∇δ(p) : p ∈ Z}.
Then Zu is a closed leaf of the unstable foliationWu for ϕt, and Zs is a closed leaf of the
stable foliation. In a neighborhood U of Zu in T 1S, there is a well-defined projection
πcs : U → Zu along local leaves of the weak-stable foliationWcs for ϕt. Since the foliation
Wcs is C1+α, the map πcs is a C1+α fibration.

We will prove:

Theorem 5.1. For any v0 ∈ Zu, there are constants C ≥ 1, λ, α ∈ (0, 1), a collection
of disjoint, open subintervals I = {∆j : j ≥ 1}, with ∆j ⊂ ∆0 := Zu \ {v0}, for j ≥ 1,
and a function R :

⋃ I → [C−1,∞) such that:

(1) |∆0 \
⋃ I| = 0, where | · | denotes Lebesgue measure on unstable leaves.

(2) For each v ∈ ⋃ I, there exists v′ ∈ ∆0 such that ϕR(v)(v) ∈ Ws
loc(v

′).
(3) Define F : I → ∆0 by F (v) = πcsϕR(v)(v). For each j ≥ 1 there is a diffeomor-

phism hj : ∆0 → ∆j such that for all v ∈ ∆0:

F ◦ hj(v) = v.

(4) hj is a uniform contraction: d(hj(v1), hj(v2)) ≤ λ.
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(5) log h′j is uniformly C1+α:

| log h′j(v1)− log h′j(v2)| ≤ Cd(v1, v2)α,

for all v1, v2 ∈ ∆0.
(6) ‖(R ◦ hj)′‖∞ ≤ C for all j.

(7) For each k > 0, we have |{v ∈ ⋃ I : R(v) ≥ k}| ≤ Cλk; moreover, there exists
ε > 0 such that ∑

j

exp(ε|R ◦ hj |∞)|h′j |∞ <∞.

(8) (UNI Condition) For n ≥ 1, let Rn =
∑n−1

i=0 R ◦ F i (where defined) and let

Hn = {hj := hjn ◦ hjn−1 ◦ · · · ◦ hj1 : j = (j1, . . . , jn), jk ≥ 1}
be the set of inverse branches of Fn, which satisfy Fn◦hj = id∆0, for all hj ∈ Hn.
Then there exists D > 0 such that, for all N ≥ 1, there exist n ≥ N and
hj1 , hj2 ∈ Hn such that

inf
v∈∆0

∣∣(Rn ◦ hj1 −Rn ◦ hj2)′ (v)
∣∣ ≥ D.

A recent result of Araújo-Melbourne [4] shows that conditions (1)–(8) imply expo-
nential mixing of ϕt. For θ ∈ (0, 1], define Cθ(T 1S) to be the set of of L∞ functions
u : T 1S → R such that ‖u‖θ := |u|∞ + |u|θ <∞, where

|u|θ := sup
v 6=v′

|u(v)− u(v′)|
ρ(v, v′)θ

.

Corollary 5.2. The flow ϕt is exponentially mixing: for every θ ∈ (0, 1], there exist
constants c, C > 0 such that for every u1, u2 ∈ Cθ(T 1S), we have

∣∣∣∣
∫

T 1S
u1 u2 ◦ ϕt d vol−

∫
u1 d vol

∫
u2 d vol

∣∣∣∣ ≤ Ce−ct‖u1‖θ‖u2‖θ,

for all t > 0.

Proof. In the language of [4], conditions (1)-(8) in Theorem 5.1 imply that we can express
the ergodic flow ϕt as the natural extension of a C1+α skew product flow satisfying the
UNI condition. See the discussion in [4] after Remark 4.1. Theorem 3.3 in [4] then applies
to give that ϕt is exponentially mixing for a suitable function space of observables, in
particular those that are C3. A standard mollification argument gives exponential mixing
for observables in Cθ (see Remark 3.4 in [4]). �

The construction is carried out in two parts. First, in Subsection 5.1, we isolate those
orbits that leave the thick part of T 1S and travel deeply into the cusp. These orbits
are easily described on a topological level using the Quasi-Clairaut relation developed
in Section 3.3. We give a precise description of the first return map to the thick part
for these orbits. Next, in Subsection 5.2, we analyze the orbits beginning in Zu and
decompose into pieces visiting the thin part in a controlled way. We combine these
analyses to obtain the desired decomposition of ∆0 in Theorem 5.1.
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5.1. Constructing sections to the flow in the cusp. We will work with δ2 ≤ δ1/2
so that for δ(p) ≤ δ2, we have δ(p) = δ(p) and χ(p) = r − 1− ε, where χ is the function
appearing in Proposition 4.1.

Let T (δ2) ⊂ T 1S be the torus consisting of all unit tangent vectors to S with footpoint
in Z(δ2):

T (δ2) = T 1
Z(δ2)S.

This torus is transverse to the vector field ϕ̇, except at the two circles

C+ := {J∇δ(p) : p ∈ Z}, and C− := {−J∇δ(p) : p ∈ Z}.

Let Ŵu and Ŵs be the laminations of T (δ2) obtained by intersecting leaves of the

weak foliationsWcu andWcs with T (δ2). On T (δ2)\(C+∪C−), the laminations Ŵu and

Ŵs are transverse foliations with 1-dimensional leaves. Each lamination Ŵu and Ŵs

has exactly one closed leaf, the curves Zu and Zs respectively, which are also unstable
and stable manifolds for ϕt.

r

✓

✓

r

cWs

cWu

Z

Zs

Zu

C+

C�

Figure 1. The laminations Ŵu and Ŵs. The singular loci C± are the

labeled circles where the leaves of Ŵu and Ŵs become tangent.

For η0 > 0 we define two open subsets Tin(δ2, η0) and Tout(δ2, η0) of T (δ2) as follows:

Tin(δ2, η0) := {v ∈ T (δ2) : a(v) < 0 & |b(v)| ≤ η0},



34 K. BURNS, H. MASUR, C. MATHEUS AND A. WILKINSON

and

Tout(δ2, η0) := {v ∈ T (δ2) : a(v) > 0 & |b(v)| ≤ η0},
where a and b are defined by (29). Note that Zu ⊂ Tout(δ2, η0), and Zs ⊂ Tin(δ2, η0), for
all η0 > 0.

If η0 < 1, then Tout(δ2, η0) and Tin(δ2, η0) are disjoint from C±, and so Ŵu and Ŵs

form uniformly transverse foliations in these cylinders.
Proposition 3.2 implies that if δ2 is sufficiently small, then for all η0 < 1/2, there is a

well-defined first return map

R : Tin(δ2, η0) \ Zs → Tout(δ2, 2η0)

for the flow ϕt, with a local inverse R−1 : Tout(δ2, η0) \ Zu → Tin(δ2, 2η0). These maps,

where defined, are C3 and preserve the foliations Ŵu and Ŵs.

Fix v0 ∈ Zu and recall that Wu(v0) = Ŵu(v0) = Zu. Fix η small, and let I0 =

Ŵs(v0, η). The image of I0 \ {v0} under R−1 is the union of two infinite rays spiraling
into the unique closed stable manifold Zs in T (δ2). Fix another point v′0 ∈ Zs (for

example, v′0 = −v0), and fix two points v′L, v
′
R ∈ Ŵu(v′0, η) ∩ R−1(I0), to the left and

right, respectively, of v′0 in Ŵu(v′0, η) with respect to some fixed orientation.

Let vL = R(v′L), and let vR = R(v′R). The unstable manifold Ŵu(vL) contains an
infinite ray from vL, spiraling into Zu from the left and cutting I0 infinitely many times.
Let wL be the first intersection point of this ray with I0; it lies to the right of vL, and
to the left of v0. The points vL, wL define a closed curve cL in T (δ2), consisting of the

piece of Ŵu(vL) connecting vL to wL and the subinterval of I0 = Ŵs(v0, η) from vL to
wL.

⌃out

cWs(v0)

vR

vL

v0

cWu(v0)

cWu(vR)

cWu(vL)

Figure 2. The section Σout of vectors pointing out of the cusp.

Similarly, let wR be the first intersection of the infinite ray Ŵu(vR) spiraling into Zu

from the right, and let cR be the curve constructed analogously. The two curves cL and
cR bound a cylindrical region Σout in T (δ2), which is depicted in Figure 2.

Let πs : Σout → Zu be the projection along leaves of Ŵs, which is simply the restriction
of the projection πcs previously defined to the domain Σout. Then πs is C1+α and maps
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the boundary curves cL and cR onto Zu. The map πs is a diffeomorphism when restricted

to the interior of any interval of Ŵs that begins and ends in I0 and makes one revolution
around Σout.

⌃in

cWu(v00)

v0R

v0L

v00

cWs(v00)

cWs(v0L)

cWs(v0R)

Figure 3. The section Σin of vectors pointing toward the cusp.

We define the section Σin ⊂ Tin(δ2, η0) similarly: it is bounded by two curves c′L
and c′R, where c′L is the union of two segments of Ŵu(v′L) and Ŵs(v′L), and c′R is the

union of segments of Ŵu(v′R) and Ŵs(v′R). See Figure 3. By construction, we have that
R(c′L) = cL, R(c′R) = cR, and:

R (Σin \ Zs) = Σout \ Zu.
If the radius η of I0 was initially chosen sufficiently small, then there exists η0 ∈

(0, 1/8) such that

(40) Tout(δ2, η0/2) ⊂ Σout ⊂ Tout(δ2, η0), and Tin(δ2, η0/2) ⊂ Σin ⊂ Tin(δ2, η0).

Fix this η0.

Let πu : Σin → Zs be the projection along leaves of Ŵu, which is the restriction of

the center-unstable πcu to Σin. The fibers of πu are pieces of Ŵu-unstable manifold.
Let us examine the return time function for the flow on the fibers of πu. Let N be

a small neighborhood of Σin \ Zs defined by flowing Σin \ Zs under ϕt in a small time
interval. For v ∈ N , let tR(v) be the smallest time t > 0 satisfying ϕt(v) ∈ Σout:

(41) tR(v) = inf {t > 0 : ϕt(v) ∈ Σout} ;

thus R(v) = ϕtR(v)(v), for all v ∈ Σin \ Zs.
Let v ∈ Zs and let I ⊂ (πu)−1(v) be a closed interval. We say that I is a fundamental

interval if the endpoints of I lie on the same leaf of the Ŵs foliation and the interior of
I contains no points on that leaf.

Lemma 5.3. There exists C1 ≥ 1 such that for any fundamental interval I, the following
holds:

(1) πs (R(I)) = Zu, and the restriction of πs ◦ R to the interior of I is a C1+α

diffeomorphism, whose inverse has uniformly bounded distortion.
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vR

vL

v0

v0R

v0L

v00

⌃in ⌃out

R

Figure 4. The action of R on fundamental intervals.

(2) For any w ∈ I, we have ‖R′(w)‖ � |I|−1, where R′(w) denotes the derivative of
the restriction of R to I.

Proof. Property (1) follows from the construction of fundamental intervals and the fact
that the foliation Wcs

ϕ is uniformly C1+α. Property (2) follows from Corollary 4.16. �

Lemma 5.4. There exist C2 ≥ 1 and α > 0 such that if I is a fundamental interval,
and b(I) = infv∈I |b(v)|, then

|I| ≤ C2|b(I)|1+α.

Proof. We begin with the remark that if ξ = (Jv, u0Jv) ∈ Eu(v), for some v ∈ TpS, then
‖Dpϕt(ξ)‖ can bounded below by solving the Riccati equation (31) along the geodesic
γv with initial condition u(0) = u0 and noting that

Dpϕt(ξ) =

(∫ t

0
u(s) ds Jγ̇(t), u(t)

∫ t

0
u(s) ds Jγ̇(t)

)
.

From this we obtain that

‖Dpϕt(ξ)‖ =
√

1 + u(t)2

∫ t

0
u(s) ds

If we assume that δ(γ(0)), δ(γ(1)) ≤ δ1, then Proposition 4.1 implies that u(s) ≥ r−1−
ε/δ, for all s ∈ [0, t]; thus:

‖Dpϕt(ξ)‖ =
√

1 + u(t)2

∫ t

0
u(s) ds ≥

√
1 + u(t)2

∫ t

0

r − 1− ε
δ

.
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Finally, if in addition we assume that γ(0) = γ(t) ∈ Z (equivalently that δ(γ(0)), δ(γ(1)) =
δ2), then Proposition 4.1 implies that u(0) and u(t) are O(1), and so

‖DpϕtE
u‖ ≥

√
1 + u(t)2

√
1 + u(0)2

∫ t

0

r − 1− ε
δ

�
∫ t

0

r − 1− ε
δ

.

We use this estimate in the calculation that follows.
For a point v ∈ I, let t1 be the return time of v for ϕt to Σout. Note that δ(ϕt1(v)) =

δ(v) = δ2 and b(ϕt1(v)) ≈ b(v) (by Proposition 3.2). Let t0 ∈ (0, t1) be the point where
a(ϕt0(v)) = 0.

We write a(t), b(t), c(t) for a(ϕt(v)), b(ϕt(v)), c(ϕt(v)), respectively. Lemma 3.1 im-

plies that c = 1
|a|

b′

b ≥ b′

b , and so

exp

(∫ t0

0
c

)
≥ exp

(∫ t0

0

b′

b

)
= exp(− ln(b(0))) = |b(0)|−1.

Thus, since c = r/δ +O(1) by Proposition 2.1, we have

exp

(∫ t1

0

r

δ

)
≥ C−1|b(0)|−2,

for some C ≥ 1, and

‖R′(w)‖ � ‖Dϕt1Eu‖ ≥ exp

(∫ t1

0

r − 1− ε
δ

)
≥ C−1|b(0)|−2(r−1−ε)/r.

Then, since distortion is bounded on small intervals by Part (2) of Lemma 5.3 , we have

|I| � ‖R′(w)‖−1 ≤ C2|b(0)|2(r−1−ε)/r ≤ C2|b(I)|1+α,

for some α > 0, since r > 2. �

As a corollary, we obtain:

Lemma 5.5. There exist C ≥ 1 and α ∈ (0, 1) such that the following holds. If B

is a Ŵ u-interval in Σin with Zs ∩ B 6= ∅, and I ⊂ B is a fundamental interval, then
|I| ≤ C|B|1+α. In particular, if |B| is sufficiently small then |I| ≤ |B|/4.

5.2. Building a Young tower.

Lemma 5.6. Fix a compact set K ⊂ T 1S, η > 0 and σ > 0. There exists U0 > 0 such
that for any v ∈ K, there exists w ∈ Wu(v, σ) and t ∈ (0, U0] such that ϕt(w) ∈ Tin(δ2, η).

Proof. This is a consequence of ergodicity (indeed transitivity) of ϕt, compactness of K,
and the Anosov condition on ψt.

Let η, σ and K be given. Let σ1 < η/8 be small enough such that for all v1, v2 ∈ K,
if d(v1, v2) < σ1, then Ws(v1, σ) ∩Wcu(v2, σ) 6= ∅ (because ψt is Anosov, this holds for
the restriction of the ? metric to K, which is then comparable to the original metric,
since K is compact).

Since ϕt is ergodic (by Corollary 4.13) there exists u ∈ T 1S whose backward orbit is
dense in T 1S and such that

ϕ[−σ1/2,σ1/2](u) ∩ Tin(δ2, η/2) 6= ∅.
Cover the compact set K with a finite collection of σ1/2-balls. Fix s0 > 0 such that
ϕ−s0 (Ws(u, σ1/4))) has length > σ. If s1 is sufficiently large, then ϕ[−s1,−s0](u) meets
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all of the σ1/2-balls, and thus meets every σ-center unstable manifold. This implies the
conclusion, with U0 = s1 + σ1. �

We now describe the procedure for partitioning ∆0 = Zu \ {v0} into a full measure
set of subintervals {∆j : j ≥ 1} mapping onto ∆0 under πcs ◦ϕR, where R :

⋃
j ∆j → R.

We assume δ2 and η0 are very small, so that by Corollary 4.16 distortion is at most
4/3 on unstable intervals of length ≤ 2η0:

w ∈ Wu(v, 2η0) =⇒ ‖Du
wϕ−t‖

‖Du
vϕ−t‖

∈
[

3

4
,
4

3

]
, ∀t > 0.

Denote by ` > 0 the circumference of Zu, which is less than 1 if δ2 is small enough, and
without loss of generality assume η0 < `/2. Let tR : Σin \Zs → R be the return function
defined by (41).

Fix Θ ⊂ T 1S the thick part defined by

Θ = {v ∈ T 1S : δ(v) ≥ δ2}.
Note that Σin ∪ Σout ⊂ Θ. Lemma 5.6 implies that there exists U0 > 0 such that for
any v ∈ Θ, there exists w ∈ Wu(v, η0) and t ∈ (0, U0] such that ϕt(w) ∈ Tin(δ2, η0).
Let s0 be the maximum time needed for a piece of unstable interval to double in length
under ϕt. Let U = U0 + s0 + 2δ2. Denote by Zcs the singular set consisting of all vectors
v ∈ T 1S with δ(v) ≤ δ2 and such that ϕt(v) hits the cusp in time t ≤ δ2; that is:

Zcs := ϕ[0,δ2](Z
s).

We begin by chopping Zu into a collection G0 of intervals of length in [η0, 2η0). We
say that an open interval G ⊂ Zu is active gap interval at time t ≥ 0 if ϕ[0,t](G)∩Zcs = ∅
and |ϕt(G)| ∈ [η0, 2η0). Thus G0 consists of active gap intervals at time 0.

Recall from Corollary 3.4 that for all v ∈ Σin \ Zs, ϕ2δ2(v) ∈ Θ. This implies that if
G ⊂ Zu is any piece of unstable manifold of length less than η0 such that:

• ϕt0(G) ∩ Σin 6= ∅, and
• πcs(ϕt0(G)) contains a fundamental interval,

then there exists t1 ∈ (0, 2δ2) such that G is an active gap interval at time t0 + t1.
We now describe an algorithm for evolving an active gap interval to produce new

active gap intervals and other intervals called border intervals.
Let G ⊂ Zu be an active gap interval at some time t0 ≥ 0. We then flow G forward

until the first t > t0 when one of two things happens:

(a) |ϕt(G)| = 2η0, or
(b) ϕt(G) ∩ Zs 6= ∅.

Either (a) or (b) will occur within time s0.
If (a) happens first, we chop G into two new gap intervals, G1 and G2, so that

|ϕt(G1)| = |ϕt(G2)| = η0. We say that G1 and G2 are born and become active at time
t and write tb(G1) = ta(G1) = ta(G2) = tb(G2) = t. Note that G = G1 ∪ {v0} ∪ G2,
where v0 is the point where the interval G is cut. Since distortion is bounded by 4/3 on
intervals of length ≤ 2η0, we have:

(42)
|G1|
|G2|

∈
[

3

4
,
4

3

]
, and

|Gi|
|G| ∈

[
3

8
,
2

3

]
, i = 1, 2.
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We say that G is inactive in the time interval [t,∞), and that G1, G2 are inactive in the
time interval [0, t).

If (b) happens first, then G gives birth to two border intervals B1 and B2 and two gap
intervals G1, G2 as follows. Let v ∈ G be the unique point satisfying ϕt(v) ∈ Zs. Let
X1 and X2 be the components of G \ {v} that lie to the left and right of v, respectively.
For i = 1, 2, let Bi ⊂ Xi be the largest interval satisfying:

• {v} ∪Bi is a closed interval,
• πcsϕt(Bi) is a countable union of fundamental intervals, and
• πcsϕt(Gi) contains exactly one fundamental interval, where Gi = Xi \Bi.

For i = 1, 2, we define the times of birth of Bi and Gi to be tb(Bi) = tb(Gi) = t.
Let ta(Gi) to be the first time such that ϕta(Gi) is an active interval. Note that since
ϕt(Gi) meets Σin and πcs (ϕt(Gi)) contains a fundamental interval, we have that ta(Gi) ∈
(t, t+ 2δ2]. Similarly, any fundamental interval in πcsϕt(Bi) will return to Σout in time
at most 2δ2.

To summarize, in case b) we produce a decomposition of the original active gap interval
G into disjoint subintervals

G = G1 ∪B1 ∪B2 ∪G2,

(up to a finite set of points) with the following properties:

• G1 and G2 are gap intervals that are born at time tb(G1) = tb(G2) ∈ [t0, t0 + s0],
respectively. For i = 1, 2, there exists ta(Gi) ∈ [tb(Gi), tb(Gi) + 2δ2] such that Gi
is active at time ta(Gi). We say that Gi is inactive in the time period (0, tb(Gi))
and dormant during the period [tb(Gi), ta(Gi)).
• B1 and B2 are border intervals that are born at time tb(B1) = tb(B2) ∈ [t0, t0 +
s0], respectively. For i = 1, 2, the set ϕtb(Bi)(Bi) is a countable union of funda-
mental intervals, and for any v ∈ Bi, we have tR(ϕtb(Bi)(v)) ∈ (0, 2δ2].
• Since each πcsϕtb(Gi)(Gi) contains exactly one fundamental interval (and no

more), it has bounded length when it first returns to Θ: when this forward
image is projected onto Zu it covers at least once, but not more than twice.
Thus, assuming that δ1, η0 etc. are small enough, we have that if t1 > tb(Gi) is
the smallest time such that ϕt1(Gi) ∩ Σout 6= ∅, then

(43) |ϕt1(Gi)| ∈ [`/2, 3`).

• Since each πcsϕtb(Gi)(Gi) is contained in two fundamental intervals, Lemma 5.5

implies that |ϕtb(G1)(G1 ∪ G2)| ≤ 1
2 |ϕtb(G1)(G)|; since distortion is bounded by

4/3 on intervals of length ≤ 2η0, we have:

(44) |G1 ∪G2| ≤
2

3
|G|.

Starting with the intervals in G0 and applying the algorithm to all active gap intervals,
we obtain for any time t ≥ 0, three disjoint collections of disjoint intervals At, Bt and Dt,
the active, border and dormant intervals. The set At consists of the gap intervals that
are active at time t, the set Bt consists of border intervals B with birth time tb(B) ≤ t,
and Dt are the gap intervals that are dormant at time t. Let Gt = At ∪ Dt be the
collection of all gap intervals active or dormant at time t.
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Observe that for any t > 0, we have

Zu =
⋃
Bt ∪

⋃
Gt ∪

⋃
Vt,

where Vt is a finite collection of points. (Note that at t = 0, we have G0 = A0, B0 =
D0 = ∅, and V0 = {v0}).
Lemma 5.7. There exists λ0 ∈ (0, 1) such that for any k ≥ 0:

∣∣∣Zu \
⋃
BkU

∣∣∣ =
∣∣∣
⋃
GkU

∣∣∣ ≤ λk0.

Proof. Let G ∈ GkU . Then G is either active or dormant at time kU . Since an interval
cannot be active for more than time s0 ≤ U and cannot be dormant for more than time
2δ2 ≤ U , it follows that G is inactive at time (k − 1)U . It follows that G has a unique
ancestor in G(k−1)U ; that is, there exists G′ ∈ G(k−1)U such that G ⊂ G′ and G′ gives
birth in the time interval [(k − 1)U, kU ].

Now suppose G′ ∈ G(k−1)U . Then G′ will become active within time 2δ2 and some
point v ∈ G′ will intersect Zs within time 2δ2 + U0 ≤ U . Thus during the time period
[(k − 1)U, kU ], the interval G′ will divide finitely many times, and at least one active
piece will intersect Zs.

The number of times this division can occur is uniformly bounded. As the gap evolves
in the time interval [(k − 1)U, kU ], it gives birth to new gaps according to rule (a)
or (b) above. The number of times that case (a) can apply between two occurrences
of case (b) is bounded: if a gap G′′ is produced by rule (b), then by (43), we have
|ϕt1(G′′)| ∈ [`/2, 3`), where t1 ≥ tb(G

′′) is the first time G′′ returns to Σout. In Θ, the
derivative Dϕt is bounded above, and so any active interval meeting Θ can divide a
bounded number of times before some descendent meets Zs (which happens within time
U0). Thus the number of times (a) can apply within two occurrences of (b) is uniformly
bounded.

We conclude that G′ = G1 ∪ · · · ∪ Gn ∪ B1 · · · ∪ B2m, with n ≥ 2m ≥ 2, where
G1, . . . , Gn ∈ GkU , and B1, . . . , B2m ∈ BkU . Moreover, there exists N > 0, independent
of k,G′ such that n ≤ Nm. Combined with (42) and (44), this implies that there exists
λ0 ∈ (0, 1) such that

|G1 ∪ · · · ∪Gn| ≤ λ0|G′|.
Thus |GkU | ≤ λ0|G(k−1)U |; since |G0| < 1, we obtain the conclusion. �

Let B∞ =
⋃
t>0 Bt. Then B∞ is a collection of disjoint intervals with |Zu \⋃B∞| = 0.

Proof of Theorem 5.1. We create a countable collection I of intervals ∆j as follows: we
decompose each B ∈ B∞ into a countable union B =

⊔
j≥1 ∆B,j such that for each j,

πcsϕtb(B)(∆B,j) is a fundamental interval. Then we set

I = {∆B,j : B ∈ B∞, j ≥ 1}.
Note that |Zu \⋃ I| = |Zu \⋃B∞| = 0, and so conclusion (1) of Theorem 5.1 holds.

We extend the definition of tb to intervals in I in the natural way: if ∆j ⊂ B ∈ B∞,
we set tb(∆j) = tb(B). For v ∈ ∆j ⊂ I, let

R0(v) = tb(∆j) + tR(ϕtb(∆j)(v)).

Then R0(v) is the the minimal time > tb(∆j) such that ϕR0(v)(v) ∈ Σout.
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Lemma 5.8. There exist λ ∈ (0, 1) and C ≥ 1 such that the function R0 :
⋃ I → R>0

satisfies ∣∣∣
{
v ∈

⋃
I : R0(v) ≥ k

}∣∣∣ ≤ Cλk,
for each k ≥ 0.

Proof. Since tR is bounded it suffices to find λ1 ∈ (0, 1) such that∣∣∣
⋃
{B ∈ B∞ : tb(B) ≥ k}

∣∣∣ ≤ Cλk1.
But this follows immediately from the construction with λ1 = λ0 appearing in Lemma 5.7.
�

We now define the return time function R :
⋃
I → R>0. Recall the projection

πs : Σout → Zu along the leaves of Ŵs. The fibers of πs are local Ŵs manifolds.
Over each point v ∈ Σout there lies a unique point w(v) ∈ Ws

loc(π
s(v)) such that

w(v) = ϕr(v)(v), for some small value of r(v). Let Σout = w(Σout).

Lemma 5.9. The function r : Σout → R is uniformly C1+α, and Σout is a C1+α mani-
fold. The map w : Σout → Σout is a C1+α diffeomorphism. The manifold Σout is C1+α

foliated by local Ws-leaves:

Σout ⊂
⋃

v′∈∆0

Ws
loc(v

′),

and the projection πs : Σ0 → Zu along these local leaves is a C1+α submersion.

Proof. This follows from the fact that the foliation Ws is uniformly C1+α. �

We define R :
⋃ I → R by R(v) = R0(v) + r(ϕR0(v)(v)); it has the property that

ϕR(v)(v) ∈ Σout. Lemma 5.9 implies that for each v ∈ ⋃ I, there exists a unique v′ ∈ ∆0

– namely, v′ = πsϕR(v)(v) – such that ϕR(v)(v) ∈ Ws
loc(v

′), giving conclusion (2).
For ∆j ∈ I, we define hj : ∆0 → ∆j to be the inverse of the map Fj = πcs ◦ ϕR(·) =

πs ◦ ϕR(·) : ∆j → ∆0. This is well-defined, because

πs(ϕR(·)(∆j)) = πs(R(πcs ◦ ϕtb(∆j)(∆j))) = ∆0,

since πcsϕtb(∆j)(∆j) is a fundamental interval. Since πs is a submersion, and the map

v 7→ R(πcsϕtb(B))(v) is a diffeomorphism from ∆j onto its image, the composition is a
diffeomorphism from ∆j to ∆0. Thus its inverse hj : ∆0 → ∆j is a diffeomorphism. This
establishes conclusion (3).

Note that |h′j(v)| ∼ ‖Du
hj(v)ϕR0(hj(v))‖−1, and so conclusion (4) holds. Conclusion (5)

follows from the facts that ϕt has bounded distortion and the map πcs is uniformly C1+α.
Indeed note that the map Fj = h−1

j can also be expressed in the following way. We fix

some point v̂ ∈ ∆j and consider the image ϕR(v̂)(∆j) under the constant time flow ϕR(v̂).

This is a piece of unstable manifold that meets Σout. The map Fj = h−1
j is just the

composition Fj = πcs ◦ϕR(v̂) of this flow with the center-stable projection πcs : U → Zu,

defined in the beginning of the section. This latter projection is a uniformly C1+α

submersion and a local diffeomorphism when restricted to local unstable manifolds,
since the foliation Wcs is uniformly C1+α. Thus hj is uniformly C1+α.

Let’s examine the map R ◦ hj . Again fix a point v̂ ∈ ∆j , and consider the image
ϕR0(v̂) (∆j), which is a piece of unstable manifold meeting Σout at the point ϕR0(v̂)(v̂).
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It follows that there is a uniformly bounded C2 function r̂ : ϕR0(v̂) (∆j) → R such that

ϕr̂(·) sends the piece of unstable manifold ϕR0(v̂) (∆j) to Ŵu
loc(ϕR0(v̂)(v̂)) ⊂ Σout. Then

R0(v) = R0(v̂) + r̂(ϕR0(v̂)(v)), and so R(v) = R0(v̂) + r̂(ϕR0(v̂)(v)) + r(ϕR0(v)(v)). Thus

|R′(v)| ≤ |r̂′(ϕR0(v̂)(v))|‖Du
vϕR0(v̂)‖

+|r′(ϕR0(v)(v))|
(
‖Du

vϕR0(v)‖|+ ‖ϕ̇(ϕR0(v)(v)‖|r̂′(ϕR0(v̂)(v))|‖Du
vϕR0(v̂)‖

)

= |r̂′(ϕR0(v̂)(v))|‖Du
vϕR0(v̂)‖(1 + |r′(ϕR0(v)(v))|) + |r′(ϕR0(v)(v))|‖Du

vϕR0(v)‖|.
The derivatives r′ and r̂′ are uniformly bounded. Since |h′j(v)| � ‖Du

hj(v)ϕR0(hj(v))‖−1,

we obtain that there exists a uniform constant C ≥ 1 such that |(R ◦ hj)′| ≤ C, for all
j. This gives conclusion (6).

Since the function r is bounded, Lemma 5.8 implies that for each k > 0, we have
∣∣∣
{
v ∈

⋃
I : R(v) ≥ k

}∣∣∣ ≤ Cλk;

since |h′j | � |∆j |, this gives conclusion (7) of Theorem 5.1, where ε > 0 is chosen so that

λ exp(Cε) < 1.
Finally we verify that the UNI Condition in conclusion (8) holds. This is a direct

consequence of the fact that ϕt preserves a contact 1-form ω, which implies that the
foliations Ws and Wu are not jointly integrable. The details are carried out in Lemma
12 of [1] (in the Axiom A context) and Lemma 4.2 and Corollary 4.3 of [4] (close to the
current context). �
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[1] V. Araújo, O. Butterley and P. Varandas, Open sets of Axiom A flows with exponentially mixing
attractors, Proc. Amer. Math. Soc. 144 (2016), no. 7, 2971–2984.
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