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Abstract

Unique continuation results for Partial Differential Equations answers the question of what

conditions two solutions of a PDE must satisfy in order to be the same. In this monograph

we are going to present some results from the work of L. Escauriaza, C.E. Kenig, G. Ponce

and L. Vega, about the Schrödinger Equation. Based on an Uncertainty Principle due to

G.H. Hardy, the starting point will be the study of unique continuation properties for free

waves.

Keywords: Unique continuation, dispersive equation, Schrödinger equation, Carleman

estimate.
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Chapter 1

Motivation

Unique continuation results for Partial Differential Equations answers the question of

what conditions two solutions of a PDE must satisfy in order to be the same. Commonly,

solutions are required to agree on a certain subset of their domain of definition.

In this work we are going to present a different type of unique continuation result. We

are going to ask for the solutions of an evolution equation, not to agree on a certain subset

but to have comparable decays at certain times. The main theorem we are going to study

is the following :

Theorem 1.0.1. Let u P Cpr0, 1s, L2pRnqq be a strong solution of

Btu � ip∆u� V px, tquq in Rn � r0, 1s

where V is a time-dependent real bounded potential that decays at infinity, i.e.

lim
RÑ8

}V }L1pr0,1s:L2pRnzB0pRqqq � 0.

If there exist positive constants A and B satisfying AB ¡ 1{4 and such that

}eA|x|2up0q}L2pRnq and }eB|x|2up1q}L2pRnq

are both finite, then u � 0.

This result is motivated from the study of solutions to Free Schrödinger equation (FSE)

Btu� i∆u � 0.
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In this case solutions can be constructed using the free Schrödinger group tet∆ : t P Ru

eit∆u0pxq � pe�i|ξ|2txu0q_ � ei|�|2{4t

p4πitqn{2 � u0pxq.

One has the identity

upx, tq � eit∆u0pxq �
»
Rn

ei|x�y|2{4t

p4πitqn{2 u0pyqdy

� ei|x|2{4t

p4πitqn{2
»
Rn
e�2ix�y{4tei|y|

2{4tu0pyqdy

� ei|x|2{4t

p2itqn{2 pei|�|2{4tu0pyqqp px{2tq.
So, roughly speaking, the solution of the Free Schrödinger equation at time t is a

rescaled multiple of the Fourier transform of the initial condition u0. More precisely,

p2itqn{2e�i|x|2{4tupx, tq � pei|�|2{4tu0qppx{2tq.
By means of this observation we can relate Uncertainty Principles for the Fourier

Transform to solutions of the Free Schrödinger equation.

In [6] G. H. Hardy’s proved an uncertainty principle in terms of the asymptotic decay

of the function and its transform. An L2 version of the same result [7] is the following:

Theorem 1.0.2 (Hardy Uncertainty Principle). If eA|x|2fpxq and e4B|ξ|2 pfpξq with

1{AB ¡ 1{4, then f � 0.

Applying this result to solutions of the FSE we obtain

Theorem 1.0.3. If eA|x|2upx, 0q and eB|x|2upx, T q are in L2pRnq and TAB ¥ 1{4, then

u � 0.

Before the work of L. Escauriaza, C.E. Kenig, G. Ponce and L. Vega, known proofs

of this fact were based on adapted versions of the Phragmen-Lindelof Principle applied

to the function and its Fourier transform. But since we are interested in generalizations

of Theorem 1.0.3 to the nonlinear setting it is necessary to find a proof independent of

analiticity. In this work we are going to present this generalization in detail following the

work of Escauriaza, Kenig, Ponce and Vega, but before that we present a formal argument

for the case of free waves. This formal atgument will sketch the path we will follow later.
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Chapter 2

Unique Continuation for the Free

Schrödinger Equation

Before proceeding to the formal argument, let us notice that it is enough to prove the

theorem in the particular case in which the gaussian weights at time 0 and 1 have the

same parameter.

2.1 Conformal Appell Transformation

Let u be a solution of Btu � ip∆u� V u� F q and define a new function

ru � � ?
αβ

αp1 � tq � βt


n{2
u

� ?
αβ

αp1 � tq � βt
x,

β

αp1 � tq � βt
t



e

pα�β|x|2q
4ipαp1�tq�βtq .

Then ru satisfies Btru � ip∆ru� rV ru� rF q where

rV � αβ

pαp1 � tq � βtq2V
� ?

αβ

αp1 � tq � βt
x



and

rF �
� ?

αβ

αp1 � tq � βt


n{2�2

F

� ?
αβ

αp1 � tq � βt
x,

β

αp1 � tq � βt
t



e

pα�β|x|2q
4ipαp1�tq�βtq .

Observe that
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rup0q � �c
β

α


n{2
u

�c
β

α
x, 0



e
pα�βq|x|2

4iα

rup1q � �c
α

β


n{2
u

�c
α

β
x, 1



e
pα�βq|x|2

4iβ

then the weighted L2 norms of rup0q and rup1q are

}eγ|x|2rup0q}2L2pRnq �
�c

β

α


n »
Rn
|eγ|x|2u

�c
β

α
x, 0



|2dx

�
»
Rn
|eγpα{βq|x|2upx, 0q|2dx

� }eγ αβ up0q}2L2pRnq

So we conclude that

}eγ|x|2rup0q}2L2pRnq � }eγpα{βq|x|2up0q}2L2pRnq

and

}eγ|x|2rup1q}2L2pRnq � }eγpβ{αq|x|2up1q}2L2pRnq

Let A and B be two positive numbers and choose α � ?
A, β � ?

B and γ � ?
AB.

Then the equalities above become

}eγ|x|2rup0q}2L2pRnq � }eA|x|2up0q}2L2pRnq

and

}eγ|x|2rup1q}2L2pRnq � }eB|x|2up1q}2L2pRnq.

Now let us assume that these norms are finite, then the theorem asserts that if AB ¥ 1{4
then the solution u � 0, but given the calculations above this is equivalent to say that if

γ2 � AB ¥ 1{4 then ru � 0. So it suffices to prove the theorem for the case A � B.

2.2 Hardy Uncertainty Principle for the Free Schrödinger

Equation

Theorem 2.2.1. Let u be a solution of the FSE such that

eA|x|
2
u0 and eA|x|

2
up1q � eA|x|

2
eit∆u0 are both in L2pRnq.
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Then, if A ¥ 1{4, u is the zero solution.

Proof. (Formal argument.)

Since we are interested in the weighted L2-norms of the u, let us define f to be f � eϕu,

where ϕ is a function to be choosen.

Then f satisfies the IVP$'&
'%
Btf � Btϕ � f � i

 
∆f � 2∇ϕ∇f � p|∇ϕ|2 � ∆ϕqf(

fpx0qf � eϕu0.

We can rewrite this equation as Btf � pS �Aqf where

S � Btϕ� ip2∇ϕ∇� ∆ϕq is symmetric and

A � ip∆ � |∇ϕ|2q is skew-symmetric.

Having the operator decomposed in its symmetric and skew-symmetric parts we can

apply the method of Carleman estimates to obtain bounds for }f}L2pRnq.

Choose ϕpx, tq � µ|x � Rtp1 � tqe1|2 where µ and R are positive constants and

e1 � p1, 0, . . . , 0q. Then, if we call Hptq � }f}2L2pRnq, Carleman estimates will give us

the following bound for the second derivative of logpHptqq.

Claim 1.

rlogpHptqqs2 ¥ �R
2

8µ
.

In particular the function e
�R2tp1�tq

16µ Hptq is logarithmically convex.

Let us now finish the proof of the theorem assuming the claim.

Call F ptq � e
�R2tp1�tq

16µ Hptq, this function is logarithmically convex, in particular

e
� R2

64µHp1{2q � F p1{2q ¤ F p0q1{2F p1q1{2 � Hp0q1{2Hp1q1{2.

By the definition of H and passing the exponential to the right hand side we obtain»
Rn
|upx, 1{2q|2e2µ|x�pR{4qe1|2dx ¤ }eµ|x|2u0}L2pRnq}eµ|x|

2
up1q}L2pRnq.

Now observe that if |x| ¤ εR{4 then |x � R
4 e1| ¥ R

4 p1 � εq, so that if we integrate on

the sphere Bp0, εR{4q we obtain
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e2µR
2

16
p1�εq2

»
Bp0,εR{4q

|upx, 1{2q|2dx ¤
»
Rn
|upx, 1{2q|2e2µ|x�pR{4qe1|2dx.

From this and the preeceding formula we finally got

»
Bp0,εR{4q

|upx, 1{2q|2 ¤ ε
R2

64µ
p1�8µ2p1�εqq2

C

where C is a finite constant depending only on µ and the solution, which are fixed quan-

tities.

Then if µ ¥ 1{?8 the parameter on the exponential will be negative and taking

RÑ8 in the above inequality we obtain }up1{2q}2 � 0 and therefore u � 0 by the theory

of existence and uniqueness. This concludes the proof of theorem.

Now let us proceed to prove the Claim.

Proof of Claim 1. Remember that the function u satisfies the FSE Btu � i∆u, and we

want to study the behavior of the weighted norms }eϕu}L2pRnq, with ϕ being a real function

depending on time. The function we defined before f � eϕu satisfies the equation

Btf � Btϕ � f � it∆f � 2∇ϕ∇f � p|∇ϕ|2 � ∆ϕqfu.

Let us diferenciate the function H � xf, fy to see what we obtain. Rembember that

the equation for f can be written as Btf � Sf �Af where S � Btϕ� ip2∇ϕ∇�∆ϕq is a

symmetric operator and A � ip∆ � |∇ϕ|2q is skew-symmetric.

Then

H 1 � xBtf, fy � xf, Btfy
� 2 RexBtf, fy
� 2 RexSf �Af, fy
� 2xSf, fy

Then we concluded that H 1 � 2D where D � xSf, fy. Then the second derivative of

logH will be �
logH

�2 � �
H 1

H


1
�

�
2D

H


1
� 2D1

H
� 4D2

H2
,

8



where

D1 � xSf, fy1

� xpBtSqf, fy � xSBtf, fy � xSf, Btfy
� xpBtSqf, fy � xSpSf �Afq, fy � xSf, pSf �Afqy
� xpBtS � rS;Asqf, fy � 2xSf, fy.

Substituting this in the equation for plogHq2 we obtain

�
logH

�2 � 2xpBtS � rS;Asqf, fy
xf, fy � 4xSf,Sfy

xf, fy � 4xSf, fy2
xf, fy2 .

We want a lower bound for this quantity, and observe that the last two terms together

are already greater than zero by the Cauchy-Schwarz inequality, i.e.

4xSf, Sfy
xf, fy � 4xSf, fy2

xf, fy2 ¥ 0.

Thus we can restrict ourselves to obtain lower bounds for xpBtS � rS;Asqf, fy and for

that we must write explicitly the operator BtS � rS;As
The derivatives of ϕ � µ|x�Rtp1 � tqe1|2 are

Btϕ � 2µRp1 � 2tqpx1 �Rtp1 � tqq
B2
tϕ � 2µR2p1 � 2tq2 � 4µRpx1 �Rtp1 � tqq

∇pBtϕq � 2µRp1 � 2tqe1

∆pBtϕq � 0

Bx1ϕ � 2µpx1 �Rtp1 � tqq
Bxjϕ � 2µxj pfor every j ¥ 2q
∇ϕ � 2µpx�Rtp1 � tqe1q

|∇ϕ|2 � 4µ2p|x|2 � 2Rtp1 � tqx1 � pRtp1 � tqq2q
B2
xjϕ � 2µ pfor every j ¥ 1q
∆ϕ � 2nµ

D2ϕ � 2µI.
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Replacing these expressions in the formula

pBtS�rS;Asqf � pB2
tϕqf �2i∇pBtϕq∇f � i∆Btϕ �f �rBtϕ�2i∇ϕ∇� i∆ϕ; ip∆�|∇ϕ|2qsf

we obtain:

xpBtS � rS;Asqf, fy �
»
Rn
B2
tϕ|f |2 � 4i

»
Rn
∇pBtϕq∇f � f̄

� 4

»
Rn
∇f̄D2ϕ∇f � 4

»
Rn
∇ϕD2ϕ∇ϕ|f |2

�2µR2p1 � 2tq2
»
Rn
|f |2 � 4µR

»
Rn
x1|f |2

� 4µR2tp1 � tq
»
Rn
|f |2 � 8µRip1 � 2tq

»
Rn
fx1 f̄

� 8µ

»
Rn
|∇f |2 � 32µ3

»
Rn
|x|2|f |2

� 64µ3Rtp1 � tq
»
Rn
x1|f |2 � 32µ3pRtp1 � tqq2

»
Rn
|f |2

Recall that we want to find a lower bound for this expression. There are some “good”

terms which are already positive, you can use them, along with the inequality 2ab   a2�b2

to bound the “bad” ones. On this process you will end up adding a term of the form

c
R2

µ

»
|f |2

which will complete the proof.
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Chapter 3

Proof Of The Main Theorem

We want to prove

Theorem 3.0.2. Let u P Cpr0, 1s : L2pRn � r0, 1sqq be a (strong) solution of

Btu � ip∆u� V px, tquq

where V is a real potential and

V P L8pRn � r0, 1sq and lim
RÑ8

}V }L1pr0,1s:L8pRn�BRp0qqq � 0.

If eA|x|2up0q and eB|x|2up1q are both in L2pRnq with AB ¡ 1{4 then u � 0.

But before proving Theorem 3.0.2, in the following section we will present three tech-

nical lemmas that we are going to need in the demostration. We decided to present them

first since the proofs of these lemmas enclose some of the steps we did on the formal

argument in Chapter 2.

3.1 Technical Lemmas

The first Lemma we are going to present deals with the exponential decay of a solution

between two given times. Since in this work we are concerned with gaussian (and not

exponential) decays, after the proof of the lemma we are going to present a trick for

passing from exponential to gaussian estimates.
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Lemma 3.1.1. There exists ε0 ¡ 0 such that if V : Rn � r0, 1s ÝÑ C satisfies

}V }L1
tL

8
x
¤ ε0,

and u P Cpr0, 1s : L2
xpRnqq is a (strong) solution of the IVP$'&

'%
iBtu� ∆u � V u�H px, tq P Rn � r0, 1s,

upx, 0q � u0pxq,

with H P L1
t pr0, 1s : L2

xpRnqq, and for some β P R,

u0, u1 � up�, 1q P L2pe2βx1dxq, H P L1
t pr0, 1s : xL2pe2βx1dxqq,

then

sup
0¤t¤1

}up�, tq}L2pe2βx1dxq ¤ cp}u0}L2pe2βx1dxq � }u1}L2pe2βx1dxq � }H}L1
tL

2
xpe2βx1dxqq,

with c independent of β.

Roughly speaking what this lemma is saying is that if at two times the quantity

}eϕu}L2pRnq is finite, then it is bounded for every time in the middle. We repeat the proof

on [2].

Proof. Define ϕn P C8pRq such that 0 ¤ ϕn ¤ 1 and

ϕnpsq �

$'&
'%

1 if s ¤ n

0 if s ¥ 10n

with |ϕpjqn psq| ¤ cj{nj . Let

θnpsq � β

» s
0
ϕnplqdl

then θ is nondecreasing with

θnpsq �

$'&
'%
βs if s   n

cnβ if s ¡ 10

,

and

θ1npsq � βϕ2
npsq ¤ β, |θpnjqpsq| ¤

βcj
nj�1

.
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Finally let φnpsq � expp2θnpsqq, then φnpsq ¤ expp2βsq and φnpsq converges to

expp2βsq when tÑ8.

We define a truncation of upx, tq by

wnpx, tq � eµφnpx1qupx, tq

where µ � �4iβ2φ4
npx1qt.

This funtion satisfies the equation

iBtwn � ∆wn � V wn � H̃n � hwn � a2px1qBx1wn � itbpx1qBx1wn

where

H̃npx, tq �eµφnpx1qHpx, tq,
hpx, tq �pi16β2ϕ3

nϕ
1
ntq2 � i48β2ϕ2

npϕ1nq2t� i16β2ϕ3
nϕ

2
nt

� 4βϕnϕ
1
n � i64β2ϕ3

nϕ
1
nt,

a2pxq �4βϕ2
npx1q,

bpxq � � 32β2ϕ3
npx1qϕ1npx1q.

Note that a and b are real and

}Bjx1h}L8pR�r0,1sq ¤
cj
nj�1

, a2px1q ¥ 0,

}Bjx1a2px1q}L8pRq ¤
cj
nj
, }Bjx1bpx1q}L8pRq ¤

cj
nj
.

Now, to perform energy estimates for wn, take ε P p0, 1s and define the multiplier

operators

yPεfpξq � ηpεξq pfpξq and zP�fpξq � χ�pξ1q pfpξq
where η P C8

0 pRnq is such that 0 ¤ η ¤ 1, ηpxq � 1 for |x| ¤ 1{2, ηpxq � 0 for |x| ¥ 1 and

χ�pξ1q �

$'&
'%

1 if ξ1 ¡ 0 pξ   0q

0 if ξ1   0 pξ ¡ 0q.
Now we derive the equations for PεP�wn. For PεP�wn

iBtPεP� � ∆PεP�wn �PεP�pV wnq � PεP�pH̃nq � PεP�phwnq
� PεP�pa2px1qBx1wnq � PεP�pibpx1qBx1wnq

13



Now we multiply this equation by PεP�wn, its complex conjugate by �PεP�wn and

adding the results we obtain

iBt|PεP�wn|2 � ∆PεP�wn � PεP�wn � ∆PεP�wn � PεP�wn
� PεP�pV wnqPεP�wn � PεP�pV wnqPεP�wn
� PεP�pH̃nqPεP�wn � PεP�pH̃nqPεP�wn
� PεP�phwnqPεP�wn � PεP�phwnqPεP�wn
� PεP�pa2Bx1wnqPεP�wn � PεP�pa2Bx1wnqPεP�wn
� i

�
PεP�pbBx1wnqPεP�wn � PεP�pbBx1wnqPεP�wn

�
.

Taking the imaginary part of this equation

Bt|PεP�wn|2 � 2 Im
�
∆PεP�wn � PεP�wn

�
� 2 Im

�
PεP�pV wnqPεP�wn

�� 2 Im
�
PεP�pH̃nqPεP�wn

�
� 2 Im

�
PεP�phwnqPεP�wn

�� 2 Im
�
PεP�pa2Bx1wnqPεP�wn

�
� 2 Re

�
PεP�pbBx1wnqPεP�wn

�
.

(3.1)

By hypotesis we can integrate in x for almost every t, and simple calculations leads to the

following results

Im

»
Rn

∆PεP�wn � PεP�wndx � 0,���� Im
»
Rn
PεP�pV wnqPεP�wndx

���� ¤ c}V }L8}wn}2L2 ,���� Im
»
Rn
PεP�pH̃nqPεP�wndx

���� ¤ c}H̃n}L2}wn}2L2 ,

and ���� Im
»
Rn
PεP�phwnqPεP�wndx

���� ¤ c}h}L8}wn}2L2 ¤ c

n
}wn}2L2 ,

where the constant c is independent of ε and n.

It remains to bound the last two terms in 3.1. For that we recall Calderon’s commutator

estimates [8]:

}rP�; asBx1f}L2 ¤ c}Bx1a}L8}f}L2

and

}Bx1rP�; asf}L2 ¤ c}Bx1a}L8}f}L2

14



also we have [9]:

}rPε; asBx1f}L2 ¤ c

n
}f}L2

and

}Bx1rPε; asf}L2 ¤ c

n
}f}L2 .

Observe that these estimates also hold with b instead of a, and that the constat c is

independent ε.

Now we apply this estimates of the commutators to obtain

Claim 1. »
Rn
PεP�pbBx1wnqPεP�wndx �

� �
»
Rn
PεP�pbBx1wnqPεP�pwnqdx�O

�}wn}L2

n



and

Claim 2.

Im

»
Rn
PεP�pa2Bx1wnqPεP�wndx

� Im

»
Rn
Bx1PεP�papx1qwnqPεP�papx1qwnqdx�O

�}wn}L2

n




¤ O

�}wn}L2

n



.

We will present the proof of Claim 1. The proof of Claim 2 is analogue.

Proof of Claim 1. By the commutator estimates we have that

P�pbBx1wnq � bP�pBx1wnq �O

�}wn}L2

n



,

and

PεP�pbBx1wnq � bPεP�pBx1wnq �O

�}wn}L2

n



.

Then »
Rn
PεP�pbBx1wnqPεP�wndx �

»
Rn
bPεP�pBx1wnqPεP�wndx�O

�}wn}L2

n




� �
»
Rn
PεP�wnBx1pbPεP�wnqdx�O

�}wn}L2

n




� �
»
Rn
PεP�wnPεP�bBx1wndx�O

�}wn}L2

n



.

15



In particular

2 Re

»
Rn
PεP�pbBx1wnqPεP�wndx � O

�}wn}L2

n



.

Thus, substituting the quantities on the claims, and integrating the equation for Bt|PεP�wn|2

we obtain

Bt
»
|PεP�wn|2dx ¤ 2c}V }L8}wn}2L2 � 2c}H̃}L2}wn}L2 � c

n
}wn}2L2

with c independent of ε and n.

Similarly, for P� we have

Bt
»
|PεP�wn|2dx ¥ �2c}V }L8}wn}2L2 � 2c}H̃}L2}wn}L2 � c

n
}wn}2L2 .

Now note that since for each fixed n we have

sup
0¤t¤1

}wn}L2   8,

so there is a tn such that

}wnp�, tnq}2L2 ¥ 1

2
sup

0¤t¤1
}wn}2L2 .

Therefore

1

2
sup

0¤t¤1
}wn}2L2

¤}wnp�, tnq}2L2

�}P�wnp�, tnq}2L2 � }P�wnp�, tnq}2L2

� lim
εÑ0

�}PεP�wnp�, tnq}2L2 � }PεP�wnp�, tnq}2L2

�
� lim
εÑ0

�» tn
0

Bs}PεP�wnp�, sq}2L2ds� }PεP�wnp�, 0q}2L2

�
» 1

tn

Bs}PεP�wnp�, sq}2L2ds� }PεP�wnp�, 1q}2L2




¤2c

» 1

0
}V }L8ds � sup

0¤t¤1
}wnp�, tq}2L2

� 2c

» 1

0
}H}L2pe2βx1 qds � sup

0¤t¤1
}wn}2L2

� c

n
sup

0¤t¤1
}wn}2L2 � }up0q}2

L2pe2βx1 q � }up1q}2
L2pe2βx1 q.

16



Now taking n large enough such that c{n   1{4 and choosing ε0 such that

2c

» 1

0
}V p�, sq}L8pRnqds  

1

8
,

we obtain from the last inequality

1

16
sup

0¤t¤1
}wnp�, tq}2L2 ¤32c2

�» 1

0
}H}L2pe2βx1 qds


2

� }up0q}2
L2pe2βx1 q � }up1q}2

L2pe2βx1 q.

Letting nÑ8 we obtain the result.

Now that we have proved the lemma, let us see how we can use it to obtain estimates

for the gaussian weights.

We proved that there is C ¡ 0 such that»
Rn
e2βx1 |upx, tq|2 ¤ C

�»
Rn
e2βx1 |upx, 0q|2dx�

»
Rn
e2βx1 |upx, 1q|2dx



.

Since it doesn’t makes any difference to put x1 or any of the xi, with i � 1, . . . , n, we can

put »
Rn
e2λ�x|upx, tq|2 ¤ C

�»
Rn
e2λ�x|upx, 0q|2dx�

»
Rn
e2λ�x|upx, 1q|2dx



,

where λ P Rn. Then multiplying the left hand side of the inequality by e�|λ|2 , integrating

in λ and applying Fubini, we obtain:

»
Rn
e�|λ|

2

»
Rn
e2λ�x|upx, tq|2dxdλ �

»
Rn
|upx, tq|2

»
Rn
e�|λ|

2�2λ�xdλdx �
»
Rn
|upx, tq|2e|x|2 .

Where we used the formula
³
Rn e

�|λ|2�2λ�x � Cne
|x|2 , where Cn is a positive constant.

Doing the same on the right hand side we obtain

}upx, tqe|x|2}2L2pRnq ¤ C

�
}upx, 0qe|x|2}2L2pRnq � }upx, 1qe|x|2}2L2pRnq



.

Actually you can put any positive constant multiplying the |x|2 inside the exponential.

The second lemma we will use is the following:

17



Lemma 3.1.2. For every positive constants ε, µ,R and a function g P C0pRn�1q we have

the estimate

R

c
ε

8µ

��eµ|x�Rtp1�tqe1|2� p1�εqR2tp1�tq
16µ g

��
L2pRn�1q

¤ ��eµ|x�Rtp1�tqe1|2� p1�εqR2tp1�tq
16µ pBt � i∆qg��

L2pRn�1q.

Proof. Set ϕpx, tq � µ|x�Rtp1 � tqe1|2 � p1�εqR2tp1�tq
16µ .

We will obtain the result by means of a typical Carleman estimate for the operator

eϕpBt � i∆qe�ϕ applied to the function f � eϕg. For this we need to split the operator in

its symmetric and skew-symmetric parts.

Observe that

eϕpBt � i∆qe�ϕf �f
�
� 2µx1Rp1 � 2tq � 2µR2tp1 � tqp1 � 2tq � p1 � εqR2

16µ
p1 � 2tq

�

� Btf � if

�
� 2nµ� 4µ2|x�Rtp1 � tqe1|2

�

� 4iµpx�Rtp1 � tqe1q �∇f � i∆f.

Then if we call

A � i∆ � 4iµ2|x�Rtp1 � tqe1|2

and

S � �p4iµpx�Rtp1� tqe1q �∇� 2µniq � 2µRp1� 2tqpx1 �Rtp1� tqq � p1 � εqR2

16µ
p1� 2tq

, the operator will just be Bt � A � S, where Bt � A and S are the skew-symmetric and

symmetric parts, respectively.

In a general setting, in a situation like this we can do the following computation:

}Btf �Af � Sf}2L2pRn�1q � }Btf �Af}2L2pRn�1q � }Sf}2L2pRn�1q � 2 Re

»
SfpBtf �Afq

¥ �
»
SfpBtf �Afq �

»
SfpBtf �Afq

�
»
pBt �AqSff �

»
SpBt �Aqff

�
»
BtSff �

»
p�AS � SAqff

�
»
pBtS � rS,Asqff.
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In our case

BtS � �4µiRp1 � 2tqB1 � 4µRpx1 �Rtp1 � tqq � 2µR2p1 � 2tq2 � p1 � εqR2

8µ

and

rS,Asf � �8µ∆f � 32µ3|x�Rtp1 � tqe1|2f � 4µRip1 � 2tqB1f.

So we end up with

pBtS � rS,Asqf �� 8µ∆f � 32µ3|x�Rtp1 � tqe1|2f
� 8µRip1 � 2tqB1f � 4µRpx1 �Rtp1 � tqq

� 2µR2p1 � 2tq2 � p1 � εqR2

8µ
.

We assert that this last formula is equal to

8µ
ņ

k�2

»
|Bkf |2 � 8µ

»
|iB1f � Rp1 � 2tq

2
f |2

�32µ3

»
|x�Rtp1 � tqe1 � Re1

16µ2
|2|f |2 � ε

8µ
R2

»
|f |2

which is in turn greater than ε
8µR

2
³ |f |2 � ε

8µR
2}eϕg}2L2pRn�1q, and this gives us the result.

To prove the claim we just need to add up the following formulas

• 32µ3|x�Rtp1� tqe1|2�4µRpx1�Rtp1� tqq|f |2 � 32µ3|x�Rtp1� tqe1� Re1
16µ2

|2� R2

8µ

•
³p�8µ∆fqf̄ � 8µ

°n
k�1

³ |Bkf |2
• �8iµRp1 � 2tqB1ff̄ � 2µR2p1 � 2tqff̄ � 8µ|iB1f �R 1�2t

2 f |2 � 8µ|B1f |2.

Finally we present the proof of the third lemma:

Lemma 3.1.3. Let u P Cpr0, 1s : L2pRnqq be a solution of the Schrödinger equation with

potential, such that }eγ|x|2up0q}L2pRnq � }eγ|x|2up1q}L2pRnq   8 then there exists N ¡ 0

such that

}
a
tp1 � tqeγ|x|2 |x|u}L2pRn�r0,1sq � }

a
tp1 � tqeγ|x|2}x}2∇u}L2pRn�r0,1sq

¤ NeN}V }L2pRn�r0,1sq � sup
r0,1s

}eγ}x}2uptq}L2pRn�r0,1sq.
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Proof. As in the formal proof in Chapter 2 define f � eϕu, where u is a solution of

Btu � ip∆u� V uq. Now f satisfies

Btf � Sf �Af � iV f

where

S � �iγp4x∇ � �2n�q
A � ip4γ2|x|2 � �∆�q.

As before we compute the second derivative of Hptq � xf, fy

H 1ptq � xBtf, fy � xf, Btfy
� 2 RexBtf, fy
� 2 RexBtf � Sf �Af, fy � 2xSf, fy
� 2 RexBtf � Sf �Af, fy � 2Dptq

where Dptq � xSf, fy.
Then

H2ptq � 2Bt RexpBtSqf � rS,Asf, fy � 2D1ptq

but

D1ptq � xpBtSqf, fy � xSBtf, fy � xSf, Btfy
� xpBtSqf, fy � xBtf,Sfy � xSf, Btfy
� xpBtSqf, fy � 2 RexBtf,Sfy
� xpBtSqf, fy � 2 RexBtf �Af,Sfy � 2 RexAf,Sfy.

And since 2 RexAf,Sfy � xrS;Asf, fy and by the polarization identity we have

2 RexBtf �Af,Sfy � 1

2
}Btf � Sf �Af}2L2 � 1

2
}Btf � Sf �Af}2L2

then

H2ptq � 2Bt RexBtf � Sf �Af, fy � 2xpBtSqf � rS;Asf, fy�

20



�1

2
}Btf � Sf �Af}2L2 � 1

2
}Btf � Sf �Af}2L2 .

In particular

2xpBtSqf � rS;Asf, fy ¤ H2ptq � 2Bt RexBtf � Sf �Af, fy � 1

2
}Btf � Sf �Af}2L2 .

Now we multiply this inequality by tp1� tq, integrate in
³1
0 dt and apply integration by

parts. Observe that» 1

0
tp1 � tqH2ptqdt � tp1 � tqH 1ptq|1t�0 �

» 1

0
p1 � 2tqH 1ptq

� �p1 � 2tqHptq|10 � 2

» 1

0
Hptqdt

� Hp0q �Hp1q � 2

» 1

0
Hptqdt

¤ Hp0q �Hp1q

and » 1

0
tp1 � tqBt RexBtf � Sf �Af, fydt � tp1 � tqRexBtf � Sf �Af, fy

��1
0

�
» 1

0
p1 � 2tqRexBtf � Sf �Af, fydt

��
» 1

0
p1 � 2tqRexBtf � Sf �Af, fydt.

Then by the previous calculation we get

2xpBtSqf � rS;Asf, fy ¤ Hp0q �Hp1q � 2

» 1

0
p1 � 2tqRexBtf � Sf �Af, fy

�
» 1

0
tp1 � tq}Btf � Sf �Af}2dt

¤ }fp0q}2 � }fp1q}2 � 2

» 1

0
}V }L8Rn}fptq}2dt

�
» 1

0
tp1 � tq}V ptq}2L8Rn}fptq}2dt

¤ }eγ|x|2uptq}2|1t�0 � 2

» 1

0
}V }L8pRnq}eγ|x|

2
uptq}2dt

�
» 1

0
tp1 � tq}V ptq}2L8pRnq}eγ|x|

2ptquptq}2dt
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and by the first technical lemma there is a constant N ¡ 0 (depending just on the

truncation) such that this quantity is bounded above by

N
�}eγ|x|2up0q}2 � }eγ|x|2ptqup1q}2q � }V }L8pRnq

�
.

Thus to complete the proof of the theorem it remains to see that

2xpBtSqf � rS;Asf, fy ¥

}
a
tp1 � tqeγ|x|2|x|u}L2pRn�r0,1sq � }

a
tp1 � tqeγ}x}2∇u}L2pRn�r0,1sq.

Let us first compute explicitly the operator BtS � rS;As. Since S does not depend on

t we already know BtS � 0. On the other hand an easy computation shows that

rS;Asf � γr4x∇� 2n; 4γ2|x|2 � ∆sf
� γr4x∇; 4γ2|x|2sf � γr4x∇; ∆sf
� 32γ3|x|2f � 8γ∆f.

Then

xBtSf � rS,Asf, fy ¥ 8γ

�»
Rn
|∇f |2 � 4γ2

»
Rn
|x|2|f |2



.

We assert the following

Claim 1. »
Rn

|∇f |2 � 4γ2|x|2|f |2dx �
»
Rn
e2γ|x|2p|∇u|2 � 2nγ|u|2qdx.

Claim 2. »
Rn

|∇f |2 � 4γ2|x|2|f |2dx ¥ 2nγ

»
Rn
e2γ|x|2 |u|2dx.
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We continue with the proof of the theorem assuming the claims.

xpBtS � rS,Asqf, fy ¥ 8γ

�»
Rn
|∇f |2 � 4γ2

»
Rn
|x|2|f |2




¥ 2γ �
�
2

�»
Rn
|∇f |2 � 4γ2

»
Rn
|x|2|f |2


�
� 16γ2

»
Rn
|x|2|f |2

¥ 2γ

�»
Rn
e2γ|x|2p|∇u|2 � 2nγ|u|2q � 2nγ

»
Rn
e2γ|x|2 |u|2




� 16γ2

»
Rn
e2γ|x|2 |x|2|u|2

¥ 2γ

»
Rn
e2γ|x|2 |∇u|2 � 16γ2

»
Rn
e2γ|x|2 |x|2|u|2

¥ 2γ}eγ|x|2∇u}2L2pRnq � 16γ2}eγ|x|2 |x|u}2L2pRnq

Then multiplying by tp1�tq and integrating in
³1
0 dt we obtain extactly what we wanted.

3.2 The Proof

In this section we prove the Theorem 3.0.2

Proof of Theorem 3.0.2. We can assume γ ¡ 1{2, and choose two positive constants µ and

ε such that
p1 � εq3{2
2p1 � εq ¤ µ ¤ γ

1 � ε
.

Let θM P C8
0 pRnq be a function such that

θM pxq �

$'&
'%

1 |x|  M

0 |x| ¡ 2M

where M ¡ R and |θ1M pxq| � 1{M .

Let ηR P C8
0 pr0, 1sq be a real function such that

ηRptq �

$'&
'%

1 t P r1{R, 1 � 1{Rs

0 t P r0, 1{2Rs Y r1 � 1{2R, 1s

whith |η1Rptq| � 1{M .
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Define gpx, tq � upx, tqθM pxqηRptq. This function has compact support but solves

another PDE. In fact

Btg � i∆g � �uθMη1R � 2i∇θM∇uηR � iu∆θMηR � iV uθMηR

Let

E1 � �uθMη1R

and

E2 � 2i∇θM∇uηR � iu∆θMηR

Then the equation for g is

Btg � i∆g � E1 � E2 � iV uθMηR.

Because of the truncation we have

suppE1 � tpx, tq : |x|   2M and t P r1{2R, 1{Rs or t P r1 � 1{R, 1 � 1{2Rsu
suppE2 � tpx, tq : M ¤ |x| ¤ 2M and t P r1{2R, 1 � 1{2Rsu

And the following bounds for the function µ|x�Rtp1 � tqe1|2 on each of the supports

For every px, tq on the support of E1 we have

µ|x�Rtp1 � tqe1|2 ¤ µ
�|x|2 � 2Rtp1 � tq|x| �R2t2p1 � tq2�

¤ µ
�|x|2 � 2R|x| 1

R
�R2 1

R2

�
¤ µ

�|x|2 � 2|x| � 1
�

¤ µ|x|2 � µ
�
ε|x|2 � 1

ε

�� 1
�

¤ µ
�
1 � εq|x|2 � µp1 � 1

ε

�
¤ γ|x|2 � γ

ε
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and for every px, tq on the support of E2

µ|x�Rtp1 � tqe1|2 ¤ µ
�|x|2 � 2R|x| �R2q�

¤ µ

�
|x|2 �

�
ε|x|2 � R2

ε



�R2




¤ µp1 � εq|x|2 � µ

�
1 � 1

ε



R2

¤ γ|x|2 � R2

ε
.

Where we have used the inequality 2|x|?ε 1?
ε
¤ ε|x| � 1

ε .

Now, since our function g is compact supported, we can apply the technical lemmas.

Call ϕ � γ|x|2 � p1�εqR2tp1�tq
16µ . Then we obtain

R

c
ε

8µ
}eϕg}L2pRn�r0,1sq ¤ }eϕV g}L2pRn�r0,1sq � }eϕE1}L2pRn�r0,1sq � }eϕE2}L2pRn�r0,1sq.

Observe that the term }eϕV g}L2pRn�r0,1sq is bounded by }V }L8pRn�r0,1sq}eϕg}L2pRn�r0,1sq,

but we can take R ¤ 0 as large as we want, so we can pass this last term to the left hand

side paying by two, and simpliying the inequality to

R

c
ε

8µ
}eϕg}L2pRn�r0,1sq ¤ 2

�
}eϕE1}L2pRn�r0,1sq � }eϕE2}L2pRn�r0,1sq




We can also get rid of the term involing E2 because

}eϕE2}L2pRn�r0,1sq ¤ eγ
R2

ε }eγ|x|2�
p1�εqR2tp1�tq

16µ E2}L2pRn�r0,1sq

¤ Cγ,R,ε
M

}eγ|x|2�
p1�εqR2tp1�tq

16µ p|u| � |∇u|q}L2pRn�r0,1sq

Then, since everything is compact supported, we can use the technical lemma to know

that this last L2 norm is bounded, so the term involving E2 goes to zero when M goes to

infinity, so we end up with

R

c
ε

8µ
}eϕg}L2pRn�r0,1sq ¤ 2}eϕE1}L2pRn�r0,1sq.

Now since R is large enough we can assume g � u on Bp εp1�εq2R4 q � r1�ε
2 , 1�ε

2 s. Also
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on this domain

ϕ � γ|x|2 � p1 � εqR2tp1 � tq
16µ

¥ µ

�
Rp1 � εq2

4
� εp1 � εq2R

4


2

� p1 � εqR2p1 � εq2
4 � 16µ

¥ R2

64µ

�
16µ2p1 � εq6 � p1 � εq3�

and we know by [] that this quantity is strictly positive.

On the domain above we have

R

c
ε

8µ
e
R2

64µ

�
16µ2p1�εq6�p1�εq3

�
}u}

L2pBp εp1�εq2R
4

q�r 1�ε
2
, 1�ε

2
sq

¤ }eϕE1}L2pRn�p1{R,1�1{Rqq

¤ }eγ|x|2� γ
εRu}L2pRn�p1{R,1�1{Rqq

¤ Reγ{ε
"
}eγ|x|2 |x|u}L2pRn�p1{R,1�1{Rqq � eγ}u}L2pRn�p1{R,1�1{Rqq

*
.

Where we used

|eγ|x|2u| ¤

$'&
'%
|eγ|x|2u| if |x| ¥ 1

|eγu| if |x| ¤ 1

.

Also observe that on this domain both t and 1� t are greater than 1{2R. Then t ¡ 2R

and 1 � t ¡ 2R. We use this and the formula above to conclude

R

c
ε

8µ
e
R2

64µ

�
16µ2p1�εq6�p1�εq3

�
}u}

L2pBp εp1�εq2R
4

q�r 1�ε
2
, 1�ε

2
sq

¤ 2R2eγ{ε}
a
ptp1 � tqqeγ|x|2u}L2pRn�r0,1sq �Reγ�γ{ε}u}L2pRn�r0,1sq.

Now observe that the right hand side grows like and exponential in R while the left

hand side grows like R2. Since the formula is valid for every choice of the constants, we can

conclude that the nondecreasing (as a function on R) quantity }u}
L2pBp εp1�εq2R

4
q�r 1�ε

2
, 1�ε

2
sq

is identicaly zero, and then u � 0.
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