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Abstract

Unique continuation results for Partial Differential Equations answers the question of what
conditions two solutions of a PDE must satisfy in order to be the same. In this monograph
we are going to present some results from the work of L. Escauriaza, C.E. Kenig, G. Ponce
and L. Vega, about the Schrédinger Equation. Based on an Uncertainty Principle due to
G.H. Hardy, the starting point will be the study of unique continuation properties for free

waves.

Keywords: Unique continuation, dispersive equation, Schrédinger equation, Carleman

estimate.
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Chapter 1

Motivation

Unique continuation results for Partial Differential Equations answers the question of
what conditions two solutions of a PDE must satisfy in order to be the same. Commonly,
solutions are required to agree on a certain subset of their domain of definition.

In this work we are going to present a different type of unique continuation result. We
are going to ask for the solutions of an evolution equation, not to agree on a certain subset
but to have comparable decays at certain times. The main theorem we are going to study

is the following :
Theorem 1.0.1. Let u € C([0, 1], L2(R™)) be a strong solution of
ou = i(Au+ V(z,t)u) in R"™ x[0,1]
where V' is a time-dependent real bounded potential that decays at infinity, i.e.
A (VLo 1geL2 @ so(ry)) = 0-
If there exist positive constants A and B satisfying AB > 1/4 and such that

Alaf?,,

leMFu(0) | L2mny and € u(1)] L2 @ny

are both finite, then u = 0.
This result is motivated from the study of solutions to Free Schrédinger equation (FSE)

oru + 1Au = 0.



In this case solutions can be constructed using the free Schrédinger group {etA :te R}
il 2/t

itA _ (i€t
e"Cup(z) = (e uo) mit) % U

(z).

One has the identity

N2
ez|z y|=/4t

w(z,t) = etBug(z) = f )

pile|2/at i
Rn

eilz|?/4t

(2it)n/2

(P g () (/21).

So, roughly speaking, the solution of the Free Schrodinger equation at time t is a

rescaled multiple of the Fourier transform of the initial condition ug. More precisely,
(2it)"2e NP Ay (2 8) = (e /M ug) (2 /2¢).

By means of this observation we can relate Uncertainty Principles for the Fourier
Transform to solutions of the Free Schrodinger equation.
In [6] G. H. Hardy’s proved an uncertainty principle in terms of the asymptotic decay

of the function and its transform. An L? version of the same result [7] is the following:

Theorem 1.0.2 (Hardy Uncertainty Principle). If eA‘fo(x) and e4B\5|2f(§) with
1/AB > 1/4, then f = 0.

Applying this result to solutions of the FSE we obtain

Theorem 1.0.3. If e u(x,0) and eBl* u(z, T) are in L2(R") and TAB > 1/4, then

u=0.

Before the work of L. Escauriaza, C.E. Kenig, G. Ponce and L. Vega, known proofs
of this fact were based on adapted versions of the Phragmen-Lindelof Principle applied
to the function and its Fourier transform. But since we are interested in generalizations
of Theorem 1.0.3 to the nonlinear setting it is necessary to find a proof independent of
analiticity. In this work we are going to present this generalization in detail following the
work of Escauriaza, Kenig, Ponce and Vega, but before that we present a formal argument

for the case of free waves. This formal atgument will sketch the path we will follow later.



Chapter 2

Unique Continuation for the Free

Schrodinger Equation

Before proceeding to the formal argument, let us notice that it is enough to prove the
theorem in the particular case in which the gaussian weights at time 0 and 1 have the
same parameter.

2.1 Conformal Appell Transformation

Let u be a solution of dyu = i(Au + Vu + F) and define a new function

S L B R B
“\a=p+pt a(l—1)+ Bt a(l—1) + Bt '

Then ¥ satisfies 0l = i(AT + Vi + F) where

V= of ( Vap x)
(a(l=1t)+pt)?" \a(l—t)+ 5t
and
~ m n/2+2 m B %
F= (04(1—@"‘&) F(a(l—t +ﬂt$’ Oé(l—t)—i-ﬁtt)e (a(i=t)+p1) |

Observe that



u(0) = (\/5) u( gac,())e( T
n/2 (o= B2
- () o)
then the weighted L? norms of %(0) and (1) are

Oz = (V) [ 17y gm0

_ J DN (. 02 dee

So we conclude that
x 2"‘ « X 2
[0 72 gny = 17D 0 (0)[72m

and

:1:2~ « ZBQ
[ @) G2 gy = 17 u(1)]F 2y

Let A and B be two positive numbers and choose o = v/A, 8 = VB and v = vAB.

Then the equalities above become
2. 2
[ @O0) |2y = le T u(0) 72 gny

and

2|2~ 22
[ M) 72 ny = €T u(1) 17 2n)-

Now let us assume that these norms are finite, then the theorem asserts that if AB > 1/4
then the solution u = 0, but given the calculations above this is equivalent to say that if

72 = AB > 1/4 then % = 0. So it suffices to prove the theorem for the case A = B.

2.2 Hardy Uncertainty Principle for the Free Schrodinger

Equation

Theorem 2.2.1. Let u be a solution of the FSE such that

ey and e u(1) = e By are both in L2(R™).



Then, if A = 1/4, u is the zero solution.

Proof. (Formal argument.)
Since we are interested in the weighted L?-norms of the u, let us define f to be f = e®u,
where ¢ is a function to be choosen.

Then f satisfies the IVP

of = oo f+i{Af —2VeV [+ (Vo> — Ap) f}
f(wo) [ = e¥up.

We can rewrite this equation as d,f = (S + A)f where

S =0ip —i(2VpV + Ap) is symmetric and

A=i(A+|Vel?) is skew-symmetric.

Having the operator decomposed in its symmetric and skew-symmetric parts we can
apply the method of Carleman estimates to obtain bounds for | f| z2(gn)-

Choose ¢(z,t) = plz + Rt(1 — t)e1]|?> where p and R are positive constants and
er = (1,0,...,0). Then, if we call H(t) = Hf“%%Rn)’ Carleman estimates will give us

the following bound for the second derivative of log(H (t)).

Claim 1.
[log(H (t))]"

_ R%t(1—t)
In particular the function e 6x H(t) is logarithmically convez.

\Y
|
|

Let us now finish the proof of the theorem assuming the claim.
R2

Call F(t) = e_lgiuH (t), this function is logarithmically convex, in particular
e~ H(1/2) = F(1/2) < F(O)V2F(1)V2 = H(0)/2H(1)Y/2.
By the definition of H and passing the exponential to the right hand side we obtain
jRn Ju, 1/2) e+ R o < e ug | oy e u(1) | p2rny-

Now observe that if |z| < eR/4 then |z + Z£e;| > £(1 — ¢), so that if we integrate on

the sphere B(0, eR/4) we obtain



(21t (1) j (e, 1/2) 2 < f (e, 1/2) Pe2iat R gy,
B(0,cR/4) R™

From this and the preeceding formula we finally got

2
J |u($’ 1/2)|2 < 6517(1_8#2(1_6))20
B(0,eR/4)
where C is a finite constant depending only on p and the solution, which are fixed quan-
tities.
Then if 4 > 1/4/8 the parameter on the exponential will be negative and taking
R — o in the above inequality we obtain ||u(1/2)|2 = 0 and therefore u = 0 by the theory

of existence and uniqueness. This concludes the proof of theorem. O
Now let us proceed to prove the Claim.

Proof of Claim 1. Remember that the function u satisfies the FSE d;u = iAu, and we
want to study the behavior of the weighted norms |le¥u||;2(gn), with ¢ being a real function

depending on time. The function we defined before f = e®u satisfies the equation
Onf = o fHI{Af —2VpVf + (IVel* — Ap) f}.

Let us diferenciate the function H = {(f, f) to see what we obtain. Rembember that
the equation for f can be written as d;f = Sf + Af where S = dp —i(2VpV + Ap) is a
symmetric operator and A = i(A + |V¢|?) is skew-symmetric.

Then

H' = ouf, )+ {f, 0
= 2Re(o:f, )
— 2Re(Sf + Af, )

=281, 1)

Then we concluded that H' = 2D where D = {(Sf, f). Then the second derivative of

log H will be
HY' 2D\’ 2D’ 4D?
logHY = (=) = (=) =22 - =
(tog 1) (H) (H) H B

8



where

D' =<(Sf.f)
= (0S) [, ) +{S0uf, [) + (5[, 0:f)
= @S 1) +{S(SF+ Af), [) +(Sf,(Sf+Af))
= (@S +[S; ADS, ) + 2SS, )

Substituting this in the equation for (log H)” we obtain

 AOS +[SAVLT | MSLST)  ASE?
(log H)" = S R

We want a lower bound for this quantity, and observe that the last two terms together

are already greater than zero by the Cauchy-Schwarz inequality, i.e.

KSF,SF)  MSE P
A TN

Thus we can restrict ourselves to obtain lower bounds for {((3;S + [S; A])f, f) and for

0.

that we must write explicitly the operator ;S + [S; A]
The derivatives of ¢ = |z + Rt(1 —t)eq|? are

Orp = 2uR(1 — 2t)(z1 + Rt(1 — 1))
2p = 2uR*(1 — 2t)? — 4puR(xy + Rt(1 —t))
V(0rp) = 2uR(1 — 2t)e;
A(Gip) =0
Ouy 0 = 2p(x1 + RE(1 —t))
Oz, = 2, (for every j = 2)
Vo = 2u(z + Rt(1 — t)ey)

Vol = 4p?(|2]* + 2Rt(1 — t)ay + (Rt(1 - 1))?)

8326].4,0 =2u (for every j > 1)
Ay =2np
D% =2ul.



Replacing these expressions in the formula
(OS +[S; AN = (F0) f =20V (9p)V f —iDdsp- f + [00p = 20V oV —ilg;i(A + Ve |))] f
we obtain:

(@S +[S: AN = | P =i | V@pvr-f

+4| VfD*oVf + 4J VopD*oVol|f|?
Rn Rn

_2uR(1 2t>2f P - 4uRj nlfP
R™ Rn
— 4pR*(1 — t)J | = 8uRi(1 — 2t)J furf
Rn R”
iy j VI + 32,8 j 2|/
R” R"

04 R~ 1) [ ailfP 3t R - 0)* [ 1P

n

Recall that we want to find a lower bound for this expression. There are some “good”
terms which are already positive, you can use them, along with the inequality 2ab < a®+b?

to bound the “bad” ones. On this process you will end up adding a term of the form

L [1sp

which will complete the proof.

10



Chapter 3

Proof Of The Main Theorem

We want to prove
Theorem 3.0.2. Let u € C([0,1] : L?(R™ x [0,1])) be a (strong) solution of
oru = i(Au+ V(z, t)u)
where V is a real potential and
Ve L*(R" x [0,1]) and A [V Lo e gn - B (o)) = 0-
If e u(0) and eBl*u(1) are both in L2(R™) with AB > 1/4 then u = 0.

But before proving Theorem 3.0.2, in the following section we will present three tech-
nical lemmas that we are going to need in the demostration. We decided to present them
first since the proofs of these lemmas enclose some of the steps we did on the formal

argument in Chapter 2.

3.1 Technical Lemmas

The first Lemma we are going to present deals with the exponential decay of a solution
between two given times. Since in this work we are concerned with gaussian (and not
exponential) decays, after the proof of the lemma we are going to present a trick for

passing from exponential to gaussian estimates.

11



Lemma 3.1.1. There exists €g > 0 such that if V : R" x [0,1] — C satisfies
IVlizize < eo,

and u € C([0,1] : L2(R™)) is a (strong) solution of the IVP

i0u+ Au=Vu+H (x,t)eR"”x]0,1],

u(z,0) = uo(x),
with H € L}([0,1] : L2(R™)), and for some B € R,

up, up = u(-,1) € L*(e?*1dx), H e L ([0,1] : zL*(e**1 dx)),

then

Sup [ule, )| L2 (62851 4oy < luo] 2(e2601 a2y + U] p2e261 a2y + [H [ L1 12 (261 42))

with ¢ independent of 5.

Roughly speaking what this lemma is saying is that if at two times the quantity
le?u| 2(rny is finite, then it is bounded for every time in the middle. We repeat the proof

on [2].

Proof. Define ¢, € C*(R) such that 0 < ¢, < 1 and

if s <
it s > 10n
with |(,0(J)( ) < ¢j/nd. Let
o[t
0

then 6 is nondecreasing with

Bs ifs<mn
0”1(8) = ’

cpB if s> 10

and
Be;

ni—1

0.(s) = Ben(s) < B, 1055)(s)] <

12



Finally let ¢,(s) = exp(20,(s)), then ¢,(s) < exp(28s) and ¢,(s) converges to
exp(26s) when t — 0.

We define a truncation of u(z,t) by
wp(z,t) = et dn(x1)u(z, t)
where p = —4if32¢2 (1)t
This funtion satisfies the equation
i0pwy + Awy, = Vw, + Hy, + hw, + a2(x1)6mlwn + itb(x1) gy Wy,
where
Hy(2,t) =e"¢p (x1)H(x, 1),
h(z, t) =(i165° 0,0, t)* +id86% 07 (9),)t +i165% op ot
+4B¢nipy, + i645° 00t
a’(x) =487 (1),
b(x) = — 326%0p (1), (a1)-

Note that a and b are real and

. o
102, 2l o (r x[0,1]) < nTiI, a*(z1) = 0,
. Ci i Ci
162, (@1)]| Lo () < nfjja 162, b(z )| e ry < n%

Now, to perform energy estimates for w,, take € € (0,1] and define the multiplier

operators

~ ~

Ff(€) = n(e)f(§) and PLf(¢) = x+(€)F(©)
where n € C°(R") is such that 0 <n <1, n(z) = 1 for |z| < 1/2, n(z) = 0 for |z| > 1 and
1 if & >0(£<0)
xx(&) =
0 if & <0(£>0).
Now we derive the equations for P,Pywy. For P.Pywy,

id;P.Py + AP.Pyw, =P.Py(Vwy,) + P.Py(H,) + P.Py(hwy,)

+ P.P. (a*(21) 0, wy) + PPy (ib(21)0x,wy)

13



Now we multiply this equation by P.P,w,, its complex conjugate by —P.Prw, and

adding the results we obtain

i0¢|P.Pywy|* + AP.Pyw, - P.Pyw, — AP.Pyw,, - P.Piw,

= P5P+(an)PEP+'UJn - P5P+(an)PEP+wn

+ P.P,(H,)P.Pyw, — P.P,(H,)P.P,w,
(

+ P6P+ hwn)P€P+wn - P€P+(hwn)P6P+wn

+ P.Py(a*0p, wp) P.Pywy, — PPy (a20,,w,) P.Pywy,

+ i(Pe Py (b0y, wn) PePrwy, + PePy (b0, wy) PePrwy).

Taking the imaginary part of this equation
01| P.Pywy|® + 21Im (AP Prw, - P.Pyw,)
= 2Im (P.P; (Vwy)PePrwy) + 2Im (PPy (H,) PPy w,) 1)
+2Im (PP (hw,) PePrwy) + 2Im (PPy (a?0,, wy) P Prwy,) '
+ 2Re (Pe Py (b0, wy) PP wy,).
By hypotesis we can integrate in x for almost every ¢, and simple calculations leads to the

following results

Im AP.P,w, - P.PLw,dx = 0,
]Rn

\Im j PP (V) PPrwndz| < | V] 1o |wa]2a.

‘Im J PP, (Hy) P Prwnde| < ¢|Hyl g2 s |2,

and

< c|bllp|wals < —wnlZe,

‘ ImJ P.P, (hw,) PPy wndz °
n n

where the constant c¢ is independent of € and n.
It remains to bound the last two terms in 3.1. For that we recall Calderon’s commutator
estimates [8]:

I[P+; a0z, flir2 < |0 al o] fr2

and

|0 [P al fll 2 < ¢ Oz all L= £ 2

14



also we have [9]:
c
I[Pe; aldw, fllze < [ flz2
and

&
102, [Pes al fllzz < [ flz=-

Observe that these estimates also hold with b instead of a, and that the constat c is
independent e.
Now we apply this estimates of the commutators to obtain

Claim 1.

J PP, (b0y, wy)P.Pywypdx =
RT’I,

— | PP ) PP ) + 0 ('“’JL)
and

Claim 2.

Im P6P+(a2é’x1wn)PEP+wnda:
Rn

=1Im | 0y, PPy (a(xr)wn) PPy (a(z1)wn)dr + O(|wn|L2>

R n

<ol
n

We will present the proof of Claim 1. The proof of Claim 2 is analogue.

Proof of Claim 1. By the commutator estimates we have that

Py (b0, wn) = bPy (94w + O(lwzle)

and

PPy (bdsywy) = bP.Py (84, wy) + O (Iumnlm>

Then

J PoP. (b0, wp) PPy wyda = j bP. P, (3, wy) P Prwndz + o('“’nn|L2>

- PGPernmdl' + 0 <|wnn|L2>
R

_J P.Pywy PPy b0y, wydz + 0(”“’"|L2)_

n

15



In particular

2Ref PPy (b2, w,) PPy wpda = o('“’nh)

Thus, substituting the quantities on the claims, and integrating the equation for o;| P. Pywy, |?

we obtain
~ c
Ot f |P.Prwy [de < 20|V o [wn] 72 + 2¢| H] p2]wn| 2 + ;Hwnl\%z

with ¢ independent of € and n.

Similarly, for P_ we have
2 2 T c 2
Ot f |PeP-wn|*dz = =2¢|[V = w2 — 2¢|H| 2 |wnlz2 = —lwn|72.
Now note that since for each fixed n we have

sup w2 < o0,
0<t<1

so there is a t,, such that

1
Hwn('atn)H%? > 5 sup Hwn”%Q
o<t<1

YA

Therefore

1 2
5 sup 2
0<it<1

<Jwn (- tn) 72
ZHPern('atn)H%? + prwn("tn)H%?

= tim (|PPwa ) 3 + [PeP-wa (1) 22)

e—0

tn
ﬂm( 0o PPy (-, 8)|2adls + | PPy (-, 0)] 2
0

1
_ mahwm@@w+mﬂwmn@)
tn

1
<2cj‘|vaxds-sup -+ 8) |22
0 0<t«1
1
+20J |H | 2(c2801yds - sup w72
0 o<t<1

C
+ 2 sup s + [0(0) Zaganer) + (D) s(znn

U=

16



Now taking n large enough such that ¢/n < 1/4 and choosing ¢y such that

1

1

2Cf HV('as)HLCﬁ(Rn)dS < g,
0

we obtain from the last inequality

1 ! ?
620, o <326 ([ 1 ey
0<t<1 0

) By + 00D aeaser -

Letting n — o0 we obtain the result.

O]

Now that we have proved the lemma, let us see how we can use it to obtain estimates
for the gaussian weights.

We proved that there is C' > 0 such that

[ emneop<e(| euwopas | @ pa).
n Rn R

Since it doesn’t makes any difference to put x; or any of the x;, with ¢ = 1,...,n, we can

put
J ez, t)2 < C(J N |u(x, 0)|2de + J ANz, 1)|2daz>,
n n Rn

where A € R”. Then multiplying the left hand side of the inequality by e*P"Q, integrating
in A and applying Fubini, we obtain:

J e_|>‘2j e u(z, t)Pdzd) = J |u(w,t)|2f e~ NP TNy = f |u(x,t)|26‘$|2.

2 . 2 . ..
Where we used the formula SRn e MF2xe — ¢ eltl® where €, is a positive constant.

Doing the same on the right hand side we obtain

[uz, el |2 2gny < C(|u<x, 0)el 2 gny + [ulz, 1>e'“|%2<w>)-

Actually you can put any positive constant multiplying the |z|? inside the exponential.

The second lemma we will use is the following:

17



Lemma 3.1.2. For every positive constants €, u, R and a function g € Co(R"*) we have

€ 1— 2_ (1+e)R%i(1-t)
R 7“6#\174-}%( Herl 1o gHLz n+1
Su (Rnt1)

Rt(1—t)e; [2— LraORt(=t) .
s He“'“ R o (at—ZA)gHL2(IR{n+1).

the estimate

1+e)R%t(1-t
Proof. Set ¢(x,t) = plx + Rt(1 —t)e1|? — %}L().
We will obtain the result by means of a typical Carleman estimate for the operator
e¥ (0 — 1A)e # applied to the function f = e®g. For this we need to split the operator in

its symmetric and skew-symmetric parts.

Observe that

2
e?(0r —iA)e P f zf[ —2ux1 R(1 — 2t) — 2uR*t(1 — t)(1 — 2t) + (1—;66)}2(1 —2t)
,u
+ o f — if[ —2np + 4p® |z + Rt(1 — t)el|2]
+ dip(z + Rt(1 — t)ey) - Vf — iAf.
Then if we call
A =i+ 4ip?|lz + Rt(1 —t)eq |
and
. . (1+ ¢)R?
S = —(4ip(z+ Rt(1 —t)er) -V +2uni) + 2uR(1 — 2t)(x1 + Rt(1 —t)) — T(l —2t)

, the operator will just be ¢ — A — S, where 0; — A and S are the skew-symmetric and
symmetric parts, respectively.

In a general setting, in a situation like this we can do the following computation:
100f = AF = STy = 101 = Aflaoeny + 1S3 qgory — 2Re [ SS@T = A7)
>~ | Sf@F=AD - | ST - Af)
- [(e-wss7 - [s@- a7
= JatSff + J(—AS +SAff
- f (@S +[S, ADfF.

18



In our case

(14 ¢)R?

0:S = —4piR(1 — 2t)0; — 4uR(w1 + Rt(1 — 1)) + 2uR?(1 — 2t)* + »

and
[S, Alf = —8uAf +32u° |z + Rt(1 — t)er|*f — 4uRi(1 — 2t)o1 f.

So we end up with

(0:S — [S, A f = — SuAf + 32u3|z + Rt(1 — t)ey |2 f

— 8uRi(1 —2t)01 f — 4pR(z1 + Rt(1 —t))

2

+2uR*(1 —2t)% + d+or
8

We assert that this last formula is equal to

< , R(1—2t) ,,
8p Ok f1? + 8u | iorf — ———2f]
;J \ J 1 .

R61 €
9,3 1— 2| £12 QJ 2
+32u J|x+Rt( t)61+16u2| | f] +8uR |f]

which is in turn greater than iRQ §1f1? = iRQHe“OgH%Q(RnH), and this gives us the result.

To prove the claim we just need to add up the following formulas

o 32u3|x + Rt(1 —t)er|> —4uR(z1 + Rt(1—1))| f|? = 32u3 |z + Rt(1 —t)e; — 112212 2 g;j

o {(—8uAf)f =8uXh_i SOl

o —8iuR(L— 2021/ [ + 2uR*(1 — 20) f | = 8pliorf — RIG2 f[2 — 8u|y fI2.

Finally we present the proof of the third lemma:

Lemma 3.1.3. Let u e C([0,1] : L?(R™)) be a solution of the Schridinger equation with

potential, such that \|67‘$|2u(0)||L2(Rn) + He""””Pu(l)HLz(Rn) < oo then there exists N > 0
such that

IV = e |z lul 2 gn oy + WVEL = e |22V L2 (gn o)

x 2
< NN |V p2(rnxpo) ?OUE | u ()] L2 xqo.1))-

19



Proof. As in the formal proof in Chapter 2 define f = e®u, where u is a solution of

oru = i(Au+ Vu). Now f satisfies
of =Sf+Af+iVf
where

S = —ivy(42V - +2n-)

A =i(4*z* - +AY).
As before we compute the second derivative of H(t) = {f, f)

H'(t) = (of, )+ {f,0f)
= 2Re(OLf, f)
=2Re(0,f — Sf — Af, )+ 2Sf. f)
= 2Re(0:f — Sf — Af, f) + 2D(t)

where D(t) = (Sf, f).
Then
H"(t) = 20, Re{(0:S) f + [S, Alf, f) +2D'(t)

but

DI(t) = {(@S)f, ) +{Souf, [) +(Sf.0f)

US)f, [ +C0uf, ST) +{Sf,0uf)

0:S)f, f) + 2Re(orf, Sf)

0:S)f. f) + 2Re(rf — Af,Sf) + 2Re(Af, S f).

Il
AN AN AN

(
(
(
(

And since 2Re(Af,Sf) = {[S; A]f, f) and by the polarization identity we have
1 1
2Re(0uf — AL, Sf) = Souf = Sf+ Aflfs = Sllaf = Sf = Aflz

then
H"(t) = 20; Re(orf — Sf — Af, ) +2{(0:S) f + [S; Alf, FH+
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s 00 = S + AT - 50 - S - AflR.
In particular
2(08)] + 5 A1, £ < H'(0) = 20, ReCauf — SF = Af. ) + 5] = S = Afl3a.

Now we multiply this inequality by ¢(1 —t), integrate in Sé dt and apply integration by
parts. Observe that

1

flt(l COH" ()t = (1 — O H' (1), —f (1—26)H'(1)
0 0
1
= —(1-20)H(@)|} - 2J H(t)dt
0
1
— H(0) + H(1) — 2f H(t)dt
0
< H(0) + H(1)
and
1
[ 0= DarReteus — sp ~ Af. e = 10— ) Recais - SF - AL D),
_ fu %) Re(duf — S — Af, ft
0
1
__ fo (1 20)Re(duf — Sf — Af, fdt.
Then by the previous calculation we get
1
2(0S)f + (SIS ) < HO)+ H(1)+2 | (1 =20 ReCarf = S = AL.S)
1
+ [t -olas - - AfPar
0
1
< O + A7 + QJU V| Lorn | £ ()]t
1
+ |t = OV O e 0) P
0

1
2 2
< e u®) Pl +2J0 [V oo ey T (1) Pt

1
N L HL = DIV )2y €1 (B)ut) |2l
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and by the first technical lemma there is a constant N > 0 (depending just on the

truncation) such that this quantity is bounded above by
N ([ u(O)? + | uP) + [V 2 @n)-
Thus to complete the proof of the theorem it remains to see that
20 S)f +[S; Al ) =
IV = D 2 o oy + VL = DT 2 o).

Let us first compute explicitly the operator ¢;S + [S;.A]. Since S does not depend on

t we already know 0;S = 0. On the other hand an easy computation shows that

[S; Alf = v[42V + 2n; 4")/2|1'|2 + Alf
= [42V; 49 |2*1f +~[42V; Al f

=329z’ f — 8YAS.

Then
(OSf+[S,Alf, f) = 8v(f VP + 472J |x|2|f|2).
Rn Rn

We assert the following

Claim 1.
f V1 4 472 ?) fPde = J 18 (Vul? — 2n7ul?)da.
Rn R
Claim 2.
JR IVF12 + 492|z|?|f)?dx = 2ny JR e27|x‘2|u|2daj.

22



We continue with the proof of the theorem assuming the claims.
(s +1s. ANz s [ wrk e [ lepise)
>y |2 [ wrPear? [ japise) |+ 10 1ol
R"L R"l RTL
= 27(J 62A7|9”|2(|Vu|2 — 2ny|ul?) + 2n’yj 627x|2|u|2>
n RTL
+ 1672J 62“"75‘2|ac|2|u|2
Rn
> 2'yf 627‘90‘2|Vu|2 + 1672J 627‘9”|2|a:|2|u|2
R R”
2 2
> 29| VUl o gy + 16977 |27 n

Then multiplying by ¢(1—t) and integrating in Sé dt we obtain extactly what we wanted.
[

3.2 The Proof

In this section we prove the Theorem 3.0.2

Proof of Theorem 3.0.2. We can assume v > 1/2, and choose two positive constants p and

e such that
3/2
2(1—¢) 1+e
Let 0y € C°(R™) be a function such that
1 |z|<M
On () =
0 |z|>2M

where M > R and |0},(x)| ~ 1/M.
Let ng € C3°(]0,1]) be a real function such that

1 te[l/R.1—1/R]
nr(t) =
0 te[0,1/2R] U [l - 1/2R,1]

whith |nj(¢)] ~ 1/M.
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Define g(z,t) = u(z,t)0p(x)nr(t). This function has compact support but solves
another PDE. In fact

Org — iAg = —UQMT]}% + 2iVOy Vung + iulAlyng — iVubyng
Let
Ey = —ufymp
and

Eo = 2iVO0yVung + iulAdyngr

Then the equation for g is
0rg —iAg = E1 + Es +iVulyng.
Because of the truncation we have

supp By = {(z,t) : |z| < 2M and t € [1/2R,1/R] or t € [1 —1/R,1 — 1/2R]}

supp By = {(z,t) : M < |z| < 2M and t € [1/2R,1 — 1/2R]}

And the following bounds for the function u|z + Rt(1 — t)e1|* on each of the supports

For every (z,t) on the support of E; we have

plr + Rt(1 —t)er | < p(|z]® + 2RE(1 — t)|z| + R**(1 — 1))

1 1
< p(lz)* + 2Rle| 5 + RZE)

< (el + 202 +1)

< plz* + plelz)® + %) +1)
<n(1+ el + (1 + )

y
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and for every (z,t) on the support of Es

plz + Rt(1 — t)er|* < p(|z[* + 2R|z| + R?))

R2
< ,u<|:/v|2 + <e|a:|2 + e) + Rz)

1
< (14 €)|z)? + u(l + 6>R2
R2
< Alz)? + —.
€
Where we have used the inequality 2|:1:|\/Eﬁ <elz| + L1
Now, since our function ¢ is compact supported, we can apply the technical lemmas.

Call p = v|z|? — %. Then we obtain

€
R« / @HWQHB(Rnx[O,l]) < ‘|€¢Vg‘|L2(R”><[O,1]) + HeSOEIHLQ(R"x[O,l]) + H€¢E2|\L2(Rnx[o,1])-

Observe that the term [|e¥V g||p2rn «[0,1]) is bounded by [V 1o rn x[0,17) €79l L2 (Rm x[0,1])5

but we can take R < 0 as large as we want, so we can pass this last term to the left hand

side paying by two, and simpliying the inequality to

€
R[S almentony < 2(|e@E1|L2(RnX[O,1D s |e¢E2|L2(RnX[O,1D)

We can also get rid of the term involing F» because

R2 2_ (149 R%*1(1-t)
le? Ea 2 (rrxo,1]) < €7 Heﬂx‘ o Bl 2 (me x[o,1))
Cynr 2_ (1+a) R%1(1-1)
< ”7 |71 B (ful + [Vul) [ L2@nxqo,1)

Then, since everything is compact supported, we can use the technical lemma to know
that this last L? norm is bounded, so the term involving Es goes to zero when M goes to

infinity, so we end up with

€
R\/;|8¢9|L2(Rn «[0,1]) < 2[€”E1]L2mnx[o,1))-

Now since R is large enough we can assume g = u on B(E(I_I)QR) X [%, %] Also
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on this domain

(1+e)R%*t(1 - 1)

o =)z -
164

. (Bl-¢® c1-¢°R 2 1+ eRX(1+¢)?
= H 4 4 4164

> R—2(16u2(1 —e)f —(1+ 6)3)

641
and we know by [] that this quantity is strictly positive.
On the domain above we have
€ R72(16,u,2(176)67(1+6)3)
R @e&m HUHLQ(B( E(I_I)QR)X[1;€7142»5])

< |e?Erll2mex(1/R,1-1/R))
z2+2
< |2 Rul| 2 1m0 1/my)
€ x2
< Re"/ {|€’Y Lol 2 x (1m0 1/R)) + €7|U|L2(Rnx(1/R,11/R))}-

Where we used

7l < =l if 2] 2 1

e u| <
le7u| if |z] <1

Also observe that on this domain both ¢ and 1 —¢ are greater than 1/2R. Then ¢ > 2R

and 1 — ¢ > 2R. We use this and the formula above to conclude

€ & (1642(1-05~(1+c)?)
R\/;€b4“ HUHLQ(B(e(l—:)QR)X[1;571;6])

< 2R2V|\/(t(1 - t))e’y‘xPuHL?(R”x[O,l]) + Re’YH/GHUHH(Rnx[0,1])-

Now observe that the right hand side grows like and exponential in R while the left
hand side grows like R%. Since the formula is valid for every choice of the constants, we can

conclude that the nondecreasing (as a function on R) quantity |u|

€ —62 —€ €
LB < [ 15, 1))

is identicaly zero, and then u = 0.

O
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