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Abstract. Allen-Cahn minimal hypersurfaces are limits of nodal sets of so-
lutions to the Allen-Cahn equation. The energy of the solutions concentrates
on each connected component of the hypersurface as an integer multiple of
its area. Multiplicity greater than one (interface foliation) is known to occur
for certain hypersurfaces with unstable double cover.

We show that generically these are the only possible examples of interface
foliation. More precisely, we prove that Allen-Cahn minimal hypersurfaces
with strictly stable double cover only occur with multiplicity one. In addi-
tion, based on recent curvature estimates, we establish the uniqueness of
multiplicity one solutions converging to, possibly unstable, non-degenerate
hypersurfaces. All results hold in arbitrary dimensions.

1. Introduction

Since Modica-Mortola ([33, 32]) and De Giorgi ([9]), mathematicians expect
to find strong connections between minimal hypersurfaces and functions u ∈
C∞(M) satisfying the semilinear elliptic equation

ε2∆u−W ′(u) = 0.(1)

Here ε > 0, (Mn, g) is a closed Riemannian manifold, ∆ is the Laplace-Beltrami
operator of M , u ∈ C2(M) and W (t) = (1− t2)2/4.

Equation (1) is kwon as the (stationary) Allen-Cahn equation ([6]) and its
solutions are critical points of the energy

Eε(u) =

∫
M
ε
|∇u|2

2
+
W (u)

ε
.(2)

A special feature of its solutions is that, in a broad sense, their nodal set {u = 0}
becomes a minimal hypersurface as ε→ 0. This feature goes both ways, being
also possible to construct solutions with nodal set converging to suitable minimal
hypersurfaces.

In this work, we study the phenomenon of interface foliation for solutions
of (1) in arbitrary dimensions. The main result is that no interface foliation
occurs around hypersurfaces with strictly stable double cover (Theorem 2.1).
The hypothesis of having stable double cover is necessary, as shown in Example
2 below. In addition, we obtain the uniqueness of generic multiplicity one
solutions (Theorem 2.2).

Our interest in the subject comes from its connection with the multiplicity
problem for min-max constructions of minimal hypersurfaces, which we briefly
describe in the next subsection.
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1.1. Multiplicity and min-max minimal hypersurfaces. The min-max
approach for variational problems was first devised by Birkhoff ([4]) in the
context of the construction of a closed geodesic. Later, Almgren ([2]) developed
the theory of varifolds in order to generalize Birkhoff’s ideas to higher dimen-
sions. These efforts culminated in the work of J. Pitts ([38]), who exploited
the regularity theory developed by Schoen-Simon-Yau ([41]) to show that a
varifold obtained through a one parameter min-max is indeed an embedded
hypersurface, when 3 ≤ n ≤ 6. The problem of multiplicity already appears in
this construction. The hypersurface obtained by Pitt’s might be the limit of
hypersurfaces that folded into themselves.

Shortly after Pitt’s work, Schoen-Simon [40] developed a regularity theory
for dimensions n ≥ 7 that also applied to the min-max construction of Pitts.
Summarizing their results, the Almgren-Pitts-Schoen-Simon Theorem guaran-
tees, on an arbitrary closed manifold, the existence of a minimal hypersurface
embedded outside of a set of dimension at most n− 8. This result let Yau ([47])
to conjecture the existence of infinitely many immersed minimal hypersurfaces
on an arbitrary closed manifold.

A few years ago, the last two authors proposed a program towards the
solution of Yau’s conjecture. In ([29]), they developed a technical framework
allowing them to extend Almgren-Pitt’s ideas to higher parameter min-max
families. As a result, they concluded existence of infinitely many minimal
hypersurfaces in manifolds with positive Ricci curvature, ([29]). This led to the
definition of a non-linear spectrum for the area functional which, together with
Liokumovich ([24]), they showed it satisfies a Weyl law. In joint work with Irie
([23]), they obtained the density of minimal hypersurfaces for generic metrics as
a consequence of the Weyl Law. Which also led, in joint work with Song ([31]),
to the proof of the existence of a equidistributed family of minimal hypersurfaces
for generic metrics, solving Yau’s conjecture for generic metrics. The general
case of Yau’s conjecture was later solved by Song ([42]). In this elegant work,
Song localized the methods from [29] to prove the existence of infinitely many
minimal hypersurfaces on a domain bounded by stable hypersurfaces. As in
Pitt’s work, it is not known (even for bumpy metrics) if it is possible to rule
out high multiplicity directly in any of these constructions.

In a series of papers ([26, 27, 28, 34]), the last two authors also presented a pro-
gram to obtain a Morse-theoretic description of the set of minimal hypersurfaces
for generic metrics. More precisely, they conjectured:

Morse Index Conjecture. For a generic metric g on Mn, 3 ≤ n ≤ 7,
there exists a sequence {Σk} of smooth, embedded, two-sided, closed minimal

hypersurfaces such that: index(Σk) = k and C−1k1/n ≤ area(Σ) ≤ Ck1/n for
some C > 0.

The proposed program to prove this conjecture was based on three main
components: the use of min-max constructions over multiparameter sweepouts
to obtain existence results, the characterization of the Morse index of min-max
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minimal hypersurfaces under the multiplicity one assumption, and a proof of
the Multiplicity One Conjecture:

Multiplicity One Conjecture. For generic metrics on Mn, 3 ≤ n ≤ 7, any
component of a closed, minimal hypersurface obtained by min-max methods is
two-sided and has multiplicity one.

In a novel work, X. Zhou [48] used a regularization of the area functional
(developed by him and Zhu in [49]) to prove the Multiplicity One Conjecture.
Finally, the characterization of the Morse index of min-max minimal hyper-
surfaces under the multiplicity one assumption was obtained by the last two
authors in [30], completing the Morse-theoretic program they proposed for the
area functional.

1.2. Min-max Allen-Cahn minimal hypersurfaces. In his PhD thesis
([19]), the first author proposed a different technical framework for the min-max
construction of minimal hypersurfaces. The basic idea is to first use min-max
methods to construct solutions of the Allen-Cahn equation having good Morse
theoretical properties. Once one constructs solutions, the problem of the conver-
gence of the nodal set towards a minimal hypersurface can be studied separately.
In [19], the regularity of the limit set is derived from the assumption of bounded
Morse index of the solutions, building on the stable case previously handled
by Tonegawa-Wickramasekera in [44]. In this way, the first author was able to
obtain a new proof of Almgren-Pitts-Schoen-Simon’s Theorem. Later, these
ideas were developed further by the first author together with Gaspar [16]. In
[16], an Allen-Cahn spectrum is defined which is analogous to the volume spec-
trum from [29] and [24]. It also known that the index of the limit hypersurface
is bounded by the index of the solutions. This was shown by Hiesmayr [21]
for two-sided limits, and by Gaspar [15] in the general case. Later, together
with Gaspar [17], the first author showed that after suitable modifications, the
Allen-Cahn spectrum can replace the volume spectrum in the density [23] and
equidistribution [31] arguments.

A stronger regularity theory for stable solutions was subsequently developed
for dimension n = 3 by Chodosh-Mantoulidis [8]. Their work is based on
Ambrosio-Cabré’s characterization of entire stable solutions in R3 [3], as well as
on improvements of recent regularity estimates for the nodal set of solutions,
obtained by Wang-Wei [46]. Using these estimates they showed that, if multi-
plicity higher than one occurs, then the limit hypersurface admits a positive
Jacobi vector field. In addition, in [8] they showed the Morse index is lower
semicontinuous for multiplicity one solutions. This is the Allen-Cahn analogue
of the Morse Index Conjecture for n = 3. When this regularity theory is applied
to the min-max constructions of the first author and Gaspar [16], one obtains
an Allen-Cahn analogue to the Multiplicity One Conjecture for n = 3.

Finally, we note that parallel ideas to [19] and [16], have been developed for
dimension two by Mantoulidis [25], and in the codimension two setting by Stern
[43] and Pigati-Stern [37]. In [37] they prove the existence of codimension two
integer rectifiable varifolds obtained as the limit interface of min-max critical
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points of a complex valued functional. As a result, they obtain a new proof
of the existence of stationary integral (n− 2)-varifolds in an arbitrary closed
Riemannian manifold. Although this result was already known to Almgren [1],
the proof presented in [37] is considerably less technically involved, opening
possibilities for new developments in the field.

1.3. Interface foliation on Allen-Cahn minimal hypersurfaces. Exis-
tence of solutions with nodal set near certain minimal hypersurfaces, has been
proven for the multiplicity one case by [36, 35] and more recently [7]. Interface
foliation was studied in [12] for non-degenerate separating hypersurfaces Σ
satisfying the second order condition |A|2+ Ric(ν, ν) > 0, where A and ν are
the second fundamental form and normal vector of the hypersurface. This
inequality implies that the Jacobi operator of Σ is unstable. As mentioned in
[11], this construction works also when Σ is non-separating. In this case, the
multiplicity of the interface must be even.

In [12], it is shown that for any hypersurface satisfying the condition above
and any k ∈ N, there exists a sequence of ε→ 0 and solutions of the Allen-Cahn,
whose nodal set is k small graphs accumulating on Σ.

For convenience of the reader, we include a sketch of a different construction
which works for some minimal hypersurfaces of Sn, RPn and a torus. In
these geometries, solutions exist for ε sufficiently small, rather than for just a
subsequence going to zero. Example 1 is a rotationally symmetric antipodal
solution on Sn converging with multiplicity two towards an equator. Passing
to the quotient on RPn, we obtain in Example 2 a multiplicity two solution
converging towards RPn−1 ⊂ RPn, which is a strictly stable minimal surface.
This example shows the hypothesis of having a stable double cover is necessary
in our main theorem. Finally, in Example 3 we discuss the case of a rotationally
symmetric torus with having only two minimal slices.

Example 1. Let Sn = {‖x‖= 1 : x ∈ Rn+1}. Given τ ∈ (0, 1), we partition
Sn into the sets D+

τ = Sn ∩ {xn+1 ≥ τ}, Aτ = Sn ∩ {|xn+1|≤ τ} and D−τ =
Sn ∩{xn+1 ≤ −τ}. Let Ω be any of these domains. We can minimize the energy

Eε on W 1,2
0 (Ω). This produces a solution with zero Dirichlet contidion at ∂Ω.

A simple application of the results from [5] (see also [16]), show that there is
ε0 > 0, such that for any ε ∈ (0, ε0), a minimizer solution will have a sign in Aτ
iff τ is far enough from zero, and it will have a sign in D±τ iff τ is close enough to
one. Moreover, the minimizer is unique [5] and therefore rotationally symmetric.
By continuity, one can show that for each ε ∈ (0, ε0), there is a τ0 such that the
outer derivative of these solutions coincide on ∂D−τ ∪D+

τ = ∂Aτ . If we choose
the positive minimizer for Aτ0 and the negative for D±τ0 we obtain a solution
with nodal set equal to two parallels equidistant from the equator. This implies
a lower bound on the energy (see [16]). For some subsequence of ε → 0, we
can assume the parallels either converge to the equator, or accumulate on two
parallels. In the latter, a simple argument by competitors show the convergence
happens with multiplicity one. Since the energy is bounded along the sequence,
we can apply the results of Hutchinson-Tonegawa [22] to reach a contradiction.
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By their result, the energy must accumulate both near the zero level set and
near a stationary varifold. Since two parallels are not stationary, we reach a
contradiction, meaning the nodal set must converge to the equator.

Example 2. The solutions constructed above are also even with respect to
the antipodal map x → −x. In particular, they project well to RPn giving
solutions accumulating with multiplicity one on a copy of RPn−1. We notice
that Example 1 can be reproduced on a bumpy, rotationally and antipodally
symmetric ellipsoid. In this case, projecting into the quotient gives a non-
orientable strictly stable Allen-Cahn minimal hypersurface with unstable double
cover.

Example 3. Let Tn be a rotationally symmetric torus having only two minimal
vertical slices: T1, which is unstable, and T0, which is stable. The results of this
paper (Theorem 2.1) show that T0 is not an Allen-Cahn minimal hypersurface.
Using this fact, the construction from Example 1 can be adapted to this case in
order to show that, for every ε small enough, there is a solution with nodal set
two normal graphs over T1. Therefore, T1 is an Allen-Cahn minimal hypersurface
with multiplicity two. In the non-degenerate case this last statement follows
from [12]. In addition, if the union T0 ∪ T1 is non-degenerate then it is an
Allen-Cahn minimal hypersurface by [36], since it is separating.

2. Main results and organization

In this paper, we study the accumulation of the nodal set of solutions to (1)
around strictly stable minimal hypersurfaces in arbitrary dimensions.

Theorem 2.1. Let uk be a sequence of solutions to (1) with ε = εk → 0, whose
nodal set {uk = 0} converges in the Hausdorff distance to a separating embedded
minimal hypersurface Γ. If Γ is strictly stable, then the convergence is as a
smooth graph with multiplicity one.

By the Morse index estimates of multiplicity one solutions from [8] (see
Theorem, [8]), it follows that uε is also strictly stable as a critical point of Eε,
for ε small enough. This implies that its energy cannot realize the supremum of
any multidimensional minimizing family of sweepouts, e.g. the ones constructed
in [16]. In other words, uε is not produced by min-max methods.

The multiplicity one from Theorem 2.1 is proven in Theorem 10.1. We do so
by a sliding argument after constructing suitable barriers. Then, smoothness of
the convergence follows directly from recent curvature estimates as in [45, 46, 8].
In fact, we obtain the following uniqueness result under the multiplicity one
assumption.

Theorem 2.2. Let uk be a sequence of solutions to (1) with ε = εk → 0, whose
nodal set {uk = 0} converges in the Hausdorff distance to an embedded minimal
hypersurface Γ. If Γ is non-degenerate and the convergence is with multiplicity
one, then for k large enough, u is the one-sheet solution adapted to Γ constructed
by Pacard in [35].
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Theorem 2.2 is proven in Section 12, Corollary 12.10. We notice that our
computations are done in Fermi coordinates over the limit interface Γ, rather
than with respect of the nodal set {u = 0} as in [46, 8]. We notice that this
choice of coordinates seems to be possible only because we are working on
top of the estimates from [46] together with a non-degeneracy assumption. In
addition, these of set coordinates have the advantage of being the ones used in
the construction of solutions from [35]. This allow us to conclude uniqueness
of solutions with multiplicity one from the improved estimates (see Corollary
12.10).

Organization. Section 3, summarizes most of the notation used along the
paper. Section 4, presents the fundamental estimates for the canonical solutions
as well as its cutoffs. Section 5, discusses Fermi coordinates. Section 6, collects
the fundamental injectivity results for the linearized equation. Section 7,
describes elementary properties of subsolutions to the Allen-Cahn equation.
Section 8, collects standard elliptic estimates suited to our notation. Section 9,
describes known characterizations of entire solutions. Section 10, contains the
proof of the multiplicity one in Theorem 2.1. Section 11, summarizes curvatures
estimates for the multiplicity one case following [45] and [46]. Finally, Section
12, finishes the proof of Theorem 2.1 and 2.2.

3. Notation

We use the big O and little o notation with respect to the variable ε. Let
Ω be an open region of a Riemannian manifold M and εk → 0, k ∈ N. From
now on, we omit the reference to the index of the sequence and write ε = εk.
In addition, when working with a sequence of functions fεk , we also omit the
reference to ε, setting f = fεk .

Definition 3.1. Given a sequence of functions f : Ω→ R, we say that

• f = O(1), if lim supε→0‖f‖L∞(Ω)<∞,
• f = o(1), if limε→0‖f‖L∞(Ω)= 0,
• f = O(g), if |f |= O(1)× |g|, and
• f = o(g), if |f |= o(1)× |g|.

Additionally, we make the following convention: a function f ∈ C∞(Ω) is said
to be of class o(εN) in Ω, if all of its derivatives and integrals on the set Ω, decay
faster than polynomials on ε, i.e.

• f = o(εN), if ‖∇kf‖Lp(Ω)= o(εm), for any fixed values of k,m ∈
{0, 1, 2, . . . } and p ∈ [1,∞].

Definition 3.2. Given an open region on Riemannian manifold (Ω, g), k ∈ N,

α ∈ [0, 1) and ε > 0, we denote by Ck,αε (Ω) the Hölder space Ck,α(Ω) endowed
with the (rescaled) norm of Ck,α(Ω, ε−2g). In other words, given f ∈ Ck,α(Ω),
we define

‖f‖
Ck,αε (Ω)

= |f |C0(Ω)+ε|∇f |C0(Ω)+ · · ·+ εk|∇kf |C0(Ω)+ε
k+α[|∇kf |]α,

where [f ]α := supx,y∈Ω
|f(x)−f(y)|
distΩ(x,y)α .
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3.1. Index of notations.

o(εN) (see Definition 3.1).

Ck,αε (see Definition 3.2).

W denotes the canonical potential W (x) = (1−x2)2

4 .
Q(u) is the Allen-Cahn operator ε2∆(u)−W ′(u).
ψ denotes the one dimensional solution (see equation (3))

σ0 is the energy constant
∫ 1
−1

√
W (s)/2ds.

σ1 is the constant
∫
R ψ
′.

σ2 is the constant
∫
R(ψ′)2.

BR(p) denotes the ball of radius R centered at p ∈M .
sgn denotes the sign function sgn : R→ {−1, 0, 1}.
Γ(f) represents the normal graph of f over a two-sided hypersurface Γ.
N(h) denotes the tubular neighborhood of height h.
` denotes the 1-D linearized operator ε2∂2

t −W ′′(ψ(t/ε).
`0 denotes the 1-D approximate linearized operator ε2∂2

t −W ′′(ω).
L0 denotes ε2∆2 −W ′′(ψ(t/ε)).
L denotes the approximated linearized operator ε2∆2 −W ′′(ω).
ω denotes the cutoff of the canonical solution

4. Properties of the canonical solution and its cut-off

We denote by ψ : R → (−1, 1) the one dimensional canonical solution, i.e.
the unique entire solution to

ψ′′ −W ′(ψ) = 0

ψ(0) = 0

ψ′ > 0,

where W (u) = (1− u2)2/4. It is well known that ψ(t) = tanh(t/
√

2). By direct
differentiation one verifies that ψ− sgn decays exponentially at infinity together
with all of its derivatives. More precisely, there are constants σ > 0 and ck, for
k ∈ N, such that |(ψ − sgn)(t)|≤ c0e

−σ|t| and |(∂kψ)(t)|≤ cke−σ|t|.
Often, we will work with the rescaled functions ψ(t/ε) that satisfies

ε2(ψ(t/ε))′′ −W ′(ψ(t/ε)) = 0.(3)

and the estimates

|ψ(t/ε)− sgn(t)| ≤ c0e
−σ|t|/ε

|(∂kψ)(t/ε)| ≤ cke−σ|t|/ε.
(4)

4.1. A cutoff of the canonical solution. In later sections, we will use ψ as
a model to construct approximate solutions adapted to small tubular neighbor-
hoods of smooth hypersurfaces. For this purpose, we cutoff ψ(t/ε) on small
regions of order greater than O(ε).

For every ε > 0, we define the cutoff ω : R→ R as

ω(t) = ψ(t/ε)χ+ (1− χ(t)) sgn(t)

= ψ(t/ε) + (ψ(t/ε)− sgn(t))(χ(t)− 1).
(5)
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where χ(t) = ρ(2ε−δ|t|−1) and ρ : R→ R is a smooth bump function satisfying
ρ ≥ 0, ρ(t) = 1 for t ≤ 0 and ρ(t) = 0 for t ≥ 1.

It follows that

χ(t) =

{
1 for |t|≤ εδ/2
0 for |t|≥ εδ

and all the derivatives of χ are supported on εδ/2 ≤ |t|≤ εδ and bounded by
rational functions of ε. Namely, for all k ∈ N, we can assume that

|∂kχ|≤ ckε−kδ on [εδ/2, εδ],(6)

for some ck ∈ R, and ∂kχ = 0, otherwise.
The following are simple consequences of direct differentiation of (5), together

with the estimates from (4) and (6).

Lemma 4.1.

(1) (ψ(t/ε)− sgn(t))(χ(t)− 1) = o(εN).

(2) εk∂kω(t) = (∂kψ)(t/ε) + o(εN), for k ≥ 0.

(3) |ω(t)− sgn(t)|+|εk∂kω(t)|= O(e|t|/ε).

(4)

∣∣∣∣ ∫R f(ω − sgn)

∣∣∣∣+ εk
∣∣∣∣ ∫R f∂kω∣∣∣∣ = O(ε)‖f‖L∞(R).

(5) If ‖f‖L∞([−R,R])= o(1), for all R = O(ε), then (4) improves to

∣∣∣∣ ∫R f(ω−

sgn)

∣∣∣∣+ εk
∣∣∣∣ ∫R f∂kω∣∣∣∣ = o(ε).

(6) If f = |t|p, then (4) improves to
∫
R|t|

p|ω−sgn|+εk
∫
R|t|

p|∂kω|= O(ε1+p),
for all p, k ∈ N.

(7)
∫
R ∂

kω∂mω =

{
ck,m · ε1−k−m + o(εN) if k and m have the same parity

0 otherwise

where ck,m ∈ R are universal constants and for k = m = 1, σ2 = c1,1 > 0.

4.2. The linearized equation. We denote by `0 the linearized Allen-Cahn
operator, i.e.

`0(ϕ) = ε2ϕ′′ −W ′′(ψ(t/ε))ϕ.

Direct differentiation of (3), shows that ψ′(t/ε) is a positive function on the
kernel of `0, i.e. `0(ψ′(t/ε)) = 0. It is a well known fact, that ker `0 is simple
and there is a spectral gap for functions in (ker `0)⊥. The following result is
proven in [35] (see equation (3.15) after Lemma 3.6 in [35]).

Lemma 4.2. The function ψ′(t/ε) generates ker `0. Moreover, there exists
γ > 0 such that

γ

∫
R
φ2 ≤ −

∫
R
φ`0(φ),
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∀φ ∈ (ker `0)⊥, i.e.
∫
R φ(t)ψ′(t/ε) = 0.

The linearized equation also approximates well by means of the cut-off.

Definition 4.3. We define the approximate one dimensional operator as `(ϕ) =
ε2φ′′ −W ′′(ω)φ.

Remark. Notice that ω(t)m = ψ(t/ε)m + o(εN). Since W ′′(t) = 3t2 − 1 is a
polynomial, we obtain |`(ϕ)− `0(ϕ)|= |W ′′(ψ(·/ε))−W ′′(ω)||ϕ|= o(εN)‖ϕ‖L∞ .

Lemma 4.4. Let ϕ ∈ C2(R). Then,

γ

2

∫
R
ϕ2 ≤ −

∫
R
ϕ`(ϕ) +O(ε)

[ ∫
R
ϕω′
]2

+ o(εN)‖ϕ‖L∞(R).

Proof. Define ϕ⊥ by the formula

ϕ(t) =

(∫
R ϕ(s)ψ′(s/ε)ds∫

R ψ
′(s/ε)2ds

)
ψ′(t/ε) + ϕ⊥(t)

and notice that ϕ⊥ ∈ (ker `0)⊥.
Since `0(ψ′(t/ε)) = 0 and `0 is self-adjoint,

γ

∫
R

(ϕ⊥)2 ≤ −
∫
R
ϕ⊥`0(ϕ⊥)

= −
∫
R
ϕ`0(ϕ)

= −
∫
R
ϕ`(ϕ) + o(εN)‖ϕ‖L∞(R)

Finally, since
∫
R ψ
′(t/ε)2 = O(ε) we have,∫

R
|ϕ− ϕ⊥|2 = O(ε−1)

(∫
R
ϕ(t)ψ′(t/ε)dt

)2

= O(ε)

(∫
R
ϕ[ω′ + o(εN)]dt

)2

.

The result follows from combining both estimates and the properties of o(εN)
functions. �

5. Fermi Coordinates

Let Γ ⊂ M be a separating embedded hypersurface. We will often work
using Fermi coordinates over Γ, i.e. given a choice of normal frame ∂ on Γ, the
coordinates are given by the diffeomorphism F : Γ× (−τ, τ)→M ,

F(x, t) = Exp(x, t∂(x)),

for some small τ > 0 fixed.

For the convenience of the reader, we summarize our notation and several
well known facts about Fermi coordinates, in the list below.
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• N(s) = F(Γ × (−s, s)) denotes the tubular neighborhood of height
s ∈ (0, τ).

• From now on, given a function G : N(s) → R we will abuse notation
and also denote G ◦ F as G.

• G′(x, t) = (∂tG)(x, t) denotes the normal derivate of G ∈ C∞(N(τ)) at
the point F(x, t).

• Γ(f) = {F(x, f(x)) : x ∈ Γ} denotes the normal graph of f : Γ →
(−τ, τ).

• ∇t is the gradient operator of Γ(t) with respect to the metric inherited
from M .

• ∆t is the Laplace-Beltrami operator of Γ(t) with respect to the metric
inherited from M .

• Ht(x) = H(x, t) is the mean curvature of Γ(t) at the point F(x, t) (in
the direction of ∂t). We abbreviate H = H(·, 0), H ′0 = H ′(·, 0) and
H ′′0 = H ′′(·, 0).

• J = ∆0 + H ′0 is the Jacobi operator of the hypersurface Γ, i.e. the
second derivative of the area element in the direction of ∂t.

• The ambient Laplace-Beltrami operator decomposes through the well-
known formula

∆g = ∆t + ∂2
t −Ht∂t.

• Given a coordinate system ∂i on Γ we have (∆tv)(x) = aij(x, t)(∂ijv)(x, t)+
bi(x, t)(∂iv)(x, t) and (∇tv)(x) = ci(x, t)(∂iv)(x, t), for aij , bi and ci,
smooth functions on Γ(−τ, τ).

We record now the following estimates

Lemma 5.1. Let G ∈ C0,α(N(τ))

(1) ‖G(·, t)‖
C0,α
ε (Γ)

= O(‖G‖
C0,α
ε (N(τ))

), for all |t|≤ τ .

(2) ‖G(x, t+ξ(x))‖
C0,α
ε (N(τ/2))

= O(‖G‖
C0,α
ε (N(τ))

), for any ‖ξ‖C1
ε (Γ)= O(ε).

(3) ‖
∫
RG(·, t)g(t)dt‖

C0,α
ε (Γ)

= O(
∫
R‖G(·, t)‖

C0,α
ε (Γ)

|g(t)|dt), for any g with

supp g ⊂ [−τ, τ ].

(4) ‖1
t (ε

2∆tv − ε2∆0v)‖
C0,α
ε (Ω)

= O(‖v‖
C2,α
ε (Ω)

), for any v ∈ C2,α(N(τ))

and Ω ⊂ N(τ).
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(5) ‖1
t (ε

2|∇tv|2−ε2|∇0v|2)‖
C0,α
ε (Ω)

= O(‖v‖2
C1,α
ε (Ω)

), for any v ∈ C2,α(N(τ))

and Ω ⊂ N(τ).

Proof. (1), (3) and the formula [G(x, t+ ξ(x))]0,α = O([G]0,α(1 + |∇ξ|α)) (from
which (2) follows) can be derived directly from the definitions of the Holder
norms. For (4), notice that in coordinates we have expressions of the form

ε2(∆t −∆0)v(x, t) = ε2[Aij(x, t)(∂ijv)(x, t) +Bi(x, t)(∂iv)(x, t)]× t.

and

ε2(|∇tv(·, t)|2−|∇0v(·, t)|2) = ε2Cij(x, t)× ∂iv(x, t)× ∂jv(x, t)× t,

where Aij(x, t) =
∫ 1

0 a
′
ij(x, ts)ds, Bij(x, t) =

∫ 1
0 b
′
i(x, ts)ds and Cij(x, t) =∫ 1

0 c
′
i(x, ts)ds are depending only on the metric and Γ. �

5.1. CMC near non-degenerate minimal hypersurfaces. When the Ja-
cobi operator of Γ is invertible, a standard application of the Inverse Func-
tion Theorem gives the existence of positive constants τ = τ(M,Γ) and
C = C(M,Γ, τ), such that for all H ∈ (−τ, τ):

• There is a unique hypersurface ΓH , which is a normal graph over Γ and
has constant mean curvature equal to H.

• The graph ΓH varies smoothly with respect to H.

• The distance function dist(·,ΓH) is smooth on N(τ).

• The map F0 giving Fermi coordinates with respect to ΓH is a diffeomor-
phism to NH(τ) = F0(ΓH × (−τ, τ)).

• C−1‖G ◦F0‖Ck(ΓH×(−τ,τ))≤ ‖G‖Ck(N0(τ))≤ C‖G ◦F0‖Ck(ΓH×(−τ,τ)), for
k = 1, 2, 3.

6. Injectivity results

6.1. The case of a cylinder. Let (Γ, h) be a closed (n − 1)-dimensional
Riemannian manifold. The Laplace-Beltrami operator of the cylinder Γ× R =
{(x, t) : x ∈ Γ, t ∈ R}, endowed with the product metric, decomposes as
∆Γ×R = ∆0 + ∂2

t .
In this context, the function ψ(t/ε), satisfies

ε2∆Γ×R(ψ(t/ε))−W ′(ψ(t/ε)) = 0

and its linearized operator at ψ(t/ε) is given by

L0 = ε2∆Γ×R −W ′′(ψ(t/ε)).

By differentiating the equation for ψ(t/ε) with respect to the normal direction,
we see that L0(ψ′(t/ε)) = 0, i.e. ψ′(t/ε) ∈ Ker(L0). In fact, Lemma 3.7 from
[35], implies Ker(L0) = span〈ψ′(t/ε)〉.
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We say that a function f ∈ C2,α(Γ× R) on the cylinder is orthogonal to the
kernel of L0 (or orthogonal to ψ′(t/ε)), if∫

R
f(x, t)ψ′(t/ε)dt = 0, ∀x ∈ Γ.(7)

Direct computation shows that functions orthogonal to the kernel form an
invariant subspace of L0. The invertibility properties of L0 on this subspace
are summarized in the following statement, which combines Propositions 3.1
and 3.2 from [35].

Proposition 6.1. Let (Γ, h) be a closed (n− 1)-dimensional Riemannian man-
ifold. There are positive constants C and ε0, such that for all ε ∈ (0, ε0)

(1) If v ∈ C2,α
ε (Γ× R) satisfies (7) then,

‖v‖
C2,α
ε (Γ×R)

≤ C‖L0v‖C0,α
ε (Γ×R)

.

(2) If f ∈ C0,α
ε (Γ×R) satisfies (7), then there exists a unique v ∈ C2,α

ε (Γ×R)
satisfying (7) such that L0v = f and (7).

The following result, which is proved in Proposition 3.3 of [35], regards the
coercive operator that approximates L0 = ε2∆−W ′′(ψ(t/ε)) at infinity. In fact,
notice that W ′′(ψ(t))→ 2 as t→∞.

Proposition 6.2. For any ε > 0, the operator L∞ = ε2∆g−2 is an isomorphism
L∞ : C2,α(M)→ C0,α(M) with inverse bounded respect to the rescaled norms,
i.e.

‖f‖
C2,α
ε (M)

= O(‖L∞f‖C0,α
ε (M)

).

7. Elementary properties of solutions and subsolutions

The existence of solutions for the problem with Dirichlet boundary data

(8)

{
−∆u+W ′(u) = 0 on Ω

u = 0 on ∂Ω,

depends on the region being large enough, in the sense that the first eigenvalue
for the Laplacian has to be small. The proof the following of proposition can
be found in Proposition 2.4 from [16].

Proposition 7.1. Let Ω ⊂M be a bounded open region with Lipschitz boundary
and first eigenvalue λ1 = λ1(Ω). There exists a unique positive solution of (8)
if and only if λ1 < W ′′(0). Moreover, u and −u are the unique global minima
of the energy E in H1

0 (Ω).

The following is just Serrin’s maximum principle (see [20]).

Proposition 7.2. Let u be a supersolution of (1) in Ω and v be a subsolution
of (1) in Ω, i.e. ∆u −W ′(u) ≤ 0, and ∆v −W ′(v) ≥ 0. If u ≥ v in Ω, then
either u = v or u > v in Ω.

In our context, this proposition can be applied together with the following
standard lemma.
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Lemma 7.3. Let u be a positive subsolution (resp. a negative supersolution)
of (1) on Ω. Then, for all θ ∈ (0, 1), the function θu is a subsolution (resp.
supersolution) and for all θ ≥ 1, the function θu is a supersolution (resp.
subsolution).

Proof. Take θ ∈ (0, 1) and x such that u(x) > 0. Then

∆(θu(x)) = θW ′(u(x)) = θu(x)
W ′(u(x))

u(x)
≥W ′(θu(x)),

where the inequality comes from the monotonicity of W ′(t)/t = t2 − 1. The
proofs for the other cases are analogous. �

Using this fact we obtain the following useful result.

Corollary 7.4. Let Ω ⊂ M be a bounded open region with smooth boundary.
Let u and v be solutions to (1) in Ω. If u is continuous and positive on Ω and
v has Dirichlet boundary data equal to 0, then u > v.

Proof. Since Ω is compact there is α > 0 such that u ≥ α everywhere. In
particular, for small values of θ > 0 one must have θv < u on Ω. This inequality
also holds for θ = 1. If not, by continuously making θ → 1 from below, one
would find a first point of contact of the graphs of θv and u. Since, by Lemma
7.3, θv is a subsolution for θ ∈ [0, 1], this would contradict the maximum
principle, i.e. Proposition 7.2.

�

8. Standard elliptic estimates

In this section, we summarize the elliptic estimates we will use in the proofs
contained in the next sections. In what follows, Ω ⊂ M denotes a Lipschitz
open region of a fixed closed Riemannian manifold and Lv, a linear elliptic
operator of the form

Lεv = ε2∆gv − c(x)v.(9)

Theorem 8.1 (Estimates for weak solutions). There exists ε0 = ε0(M) > 0,
such that for all ε ∈ (0, ε0) the following holds.

Assume f ∈ L∞(Ω) and ‖c‖L∞(Ω)≤ K, for some K > 0. If v ∈W 1,2(Ω) is a
weak solution of Lεv = f, we have for any Ω′ ⊂⊂ Ω the estimate

‖v‖
C0,α
ε (Ω′) ≤ C(ε−n/2‖v‖L2(Ω)+‖Lεv‖L∞(Ω))

≤ C(ε−n/2‖v‖L∞(Ω)+‖Lεv‖L∞(Ω)),

where C = C(M,K, ε−1d′,Vol(Ω)) > 0, α = α(M, ε−1d′) and d′ = dist(Ω′, ∂Ω).

Theorem 8.2 (Schauder estimates). Given v ∈ C2,α(Ω) and Ω′ ⊂⊂ Ω we have
the estimate

‖v‖
C2,α
ε (Ω′)≤ C(|v|C0(Ω)+‖Lv‖C0,α

ε (Ω)
),

where C = C(M, ‖c‖
C0,α
ε (Ω)

, α, ε−1d′) > 0 and d′ = dist(Ω′, ∂Ω).
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Lemma 8.3 (Exponential decay lemma). Let Ω ⊂M be a bounded region with
smooth boundary and such that dist(·, ∂Ω) is smooth on {p ∈ Ω : dist(p, ∂Ω) <
2ρ}. Let Lε and c be as in (9) with the additional assumption that minΩ c =
c0 > 0.

There are positive constants σ and ε0 (depending only on M,ρ and c0), such
that for ε ∈ (0, ε0) and v ∈ C2,α(Ω) satisfying Lεv ≥ −a, with a ≥ 0, we have
the estimate

v(p) ≤ C‖v‖L∞(∂Ω)max{e−σ dist∂Ω(p)/ε, e−σρ/ε}+
a

c0
,

for all p ∈ Ω and C = C(M) > 0.

Proof. The argument is standard and we just summarize it now. Let t(p) =
dist∂Ω(p) and u = v − a

c0
. By the maximum principle, any positive maximum

of u on an open domain U ⊂ Ω, must belong to ∂U . Therefore, it is enough to
prove the inequality for p in the region t < ρ/ε.

Let f(t) = e−σt/ε and g(t) = eσ(t−2ρ)/ε. From u = v − a
c0

,

‖u+‖∞= ‖(v − a/c0)+‖∞≤ ‖v‖∞,

and f +g ≤ 2f for t < ρ, it follows that it is enough to prove u ≤ ‖u+‖∞(f +g),
for t < ρ. It is a consequence of the maximum principle: let U be the larger
region 0 < t < 2ρ. The inequality holds on ∂U by construction. If it does not
hold everywhere, one concludes u− ‖u+‖∞(f + g) has a positive maximum in
the interior of U . By the maximum principle this cannot happen if we choose
σ2 < c0.

This gives us the estimate in the smaller region t < ρ by the observations
at the beginning of this paragraph. The constants C and ε0 depend on the
geometry of ∂Ω and Ω on t < 2ρ, and it appears in order to correct first order
terms. (Indeed, C → 2 as ε→ 0, but this fact is not necessary for our purposes).

�

Lemma 8.4. If u is a solution of (1) that does not vanish on B(p, r) ⊂ M ,
then 0 ≤ 1−|u(p)|≤ ν(ε/r), where ν : R≥0 → [0, 1) is continuous and increasing
with ν(0) = 0 and lims→∞ ν(s) = 1.

Proof. The argument is standard: after blowing up the solutions from a ball of
radius r to a ball of radius r/ε, every sequence with ε→ 0 admits a subsequence
which converges (in compacts) to an entire solution in Rn. On the other hand,
the only entire bounded positive solution is the constant +1. �

Corollary 8.5. Fix k ≥ 0. There is an integer mk, such that for every
0 < r+ ε < R < τ and u solution to (1) with nodal set {u = 0} ⊂ N(r) we have

‖sgn(u)− u‖
Ck,αε (M\N(R))

= O(ε−mke−(R−r)/ε).

Proof. On M \{u = 0} we can rewrite (1) as ε2∆v−cv = 0, where v = sgn(u)−u
and c = |u|2+|u|. From Lemma 8.4, it follows that |u|≥ 1−ν(1) on M \N(r + ε).
Therefore, c is uniformly bounded from below in this region. Applying Lemma
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8.3 and Lemma 8.4, we get the existence of a C > 0 such that

sup
∂N(R)

|v| ≤ C sup
∂N(r+ε)

|v|e−(R−r)/ε ≤ Ce−(R−r)/ε,

for all R ∈ (r + ε, τ). By the maximum principle, ‖v‖L∞(M\N(R))≤ sup
∂N(R)

|v|. It

follows from Theorem 8.1 that ‖v‖
C2,α
ε (M\N(R))

= O(ε−n/2e−(R−r)/ε).

Finally, the estimate for Ck,αε follows from iteratively applying Schauder
estimates to derivatives of v. �

9. Characterizations of entire one dimensional solutions

Definition 9.1. An entire solution u of (1) in Rn is said to be one dimensional
if there are p, v ∈ Rn, with |v|≤ 1, such that u(x) = ψ(ε−1(x− p) · v).

A one dimensional solution has parallel planar level sets, with its profile in the
orthogonal direction to these planes being a translation of ψ(t/ε). Characterizing
such solutions is the first step in order to obtain curvature estimates for the
level set of general solutions. In the late 70s, De Giorgi conjectured that entire
monotone bounded solutions in Rn of (1) should be one dimensional, at least for
n ≤ 8. This is now known to be true for n = 2, 3 (see [18] and [3], respectively)
and false for n ≥ 9, see [10]. In dimensions 4 ≤ n ≤ 8, it is known under the
additional hypothesis of Savin’s Theorem (see [39, 45]) which is an analogue
of Bernstein’s Theorem. At the present time, entire stable solutions of the
Allen-Cahn are known to be one-dimensional only when n = 3 and they have
finite multiplicity at infinity [3].

In this section, we summarize two characterizations of one dimensional
solutions. First, they are the only entire solutions with multiplicity one at
infinity (see [45], and Theorem 9.2). Second, they are the only entire solutions
having its nodal set enclosed in between two parallel planes (see [13] and
Theorem 9.3).

For solutions with multiplicity one at infinity, we have the following theorem
(see Theorem 11.2, for a local version).

Theorem 9.2 (K. Wang, [45]). There is τ0 ∈ R, such that if u is an entire
solution to (1), with ε = 1, in Rn+1, then

lim
R→∞

R−n
∫
BR

|∇u|2

2
+W (u) ≤ (1 + τ0)ωnσ0,

implies that u is one dimensional.

For solutions with nodal set contained between two parallel planes we use
the following version of the well-know Gibbons conjecture, taken from Theorem
1.1, [14].

Theorem 9.3. Let u : RN → R be a solution to ∆u −W ′(u) = 0. Assume
the nodal set {u = 0} is contained in a slab {x ∈ Rn : 〈x, v〉 ≤ K}, for
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some K ≥ 0 and some direction v ∈ SN−1. Then, u is one dimensional, i.e
u(x) = ±ψ((x− dv) · v), for some |d|≤ K.

10. Solutions converging to strictly stable minimal hypersurfaces

In this section, we prove the following bound on the Hausdorff norm of
solutions around strictly stable minimal hypersurfaces:

Theorem 10.1. Let Γ ⊂ M be a separating embedded minimal hypersurface
which is the limit interface of a sequence of solutions of (1). If Γ is strictly stable,
then the convergence happens with multiplicity one in the sense of measures.

Theorem 10.1 is derived in several steps. First, we show that the distance
from the nodal set {u = 0} to the limit interface Γ is of order O(ε). This
follows from a sliding argument once appropriate barriers have been constructed.
This implies that ε- blow-ups u near Γ, have nodal set bounded between two
horizontal planes. From the characterization in Theorem 9.3 they converge
to an entire one-dimensional solution. Finally, we obtain the desired energy
estimates combining the analysis near Γ with the exponential decay Lemma 8.3.

The following lemma summarizes the construction of the barriers necessary
for the sliding argument.

Lemma 10.2. There exists c, ε0 > 0 depending only on M and Γ, such that for
each ε ∈ (0, ε0), there is a continuous one parameter family of functions vH ∈
C2,α(M), for |H|∈ (cε, τ ] such that sign of sgn(ε2∆vH −W ′(vH)) = − sgnH.

Each vH decomposes as vH = ωH + φH , where ωH(x, t) = ω(t) is the approx-
imate solution in Fermi coordinates with respect to the CMC hypersurface ΓH
and ‖φH‖C2,α

ε (M)
= O(εH).

In particular, for the extremal values H = ±cε, the zero level set of vH is
located in a tubular neighborhood N(r) of Γ with height r = O(ε).

Assuming this lemma the rest of the argument is short. We present it first
and postpone the proof of Lemma 10.2 for later.

Proof of Theorem 10.1 . Let vH be the family constructed in Lemma 10.2.
Notice that for H ∈ (cε, τ ] the function vH is a subsolution to (1), while for
H ∈ [−τ,−cε) it is a supersolution.

The sliding argument goes as follows. By hypothesis, for ε > 0 small enough,
the level set {u = 0} is contained in nonzero regions of vτ . Therefore, we can
the apply Corollary 7.4, concluding u < vτ . By the maximum principle, u < vH ,
also holds as we slide H from τ to cε. Arguing analogously for H ∈ [−τ,−cε),
we conclude v−cε < u < vcε, which in turn implies that {u = 0} ⊂ N(r), where
r ∈ O(ε).

Blowing up u in Fermi coordinates over Γ, produces entire solutions with
nodal set between two parallel planes. Theorem 9.3 implies that it has to be a
one dimensional solution with horizontal level sets. Using as blow-up point a

xε ∈ Γ in which
∫ εR
−εR ε

|∇u(xε,t)|2
2 + W (u(xε,t))

ε dt attains its maximum, shows that

lim sup
ε→

∫ εR

−εR
ε
|∇u(xε, t)|2

2
+
W (u(xε, t))

ε
dt ≤ σ0.
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From Fubini, it follows that for any R > 0,

lim
ε→0

∫
N(εR)

ε
|∇u|2

2
+
W (u)

ε
≤ σ0|Γ|.

Moreover, from the local convergence in N(r) together with the exponential
decay Lemma 8.3, it follows that for R > 0 large enough we have |sgn(t) −
u(x, t)|≤ Ce−σt/ε on N(εδ) \N(εR) and u = o(εN) in M \N(εδ). This implies∫

N(εδ)\N(εR)
ε
|∇u|2

2
+
W (u)

ε
= O(|Γ|×e−2R)

and ∫
M\N(εδ)

ε
|∇u|2

2
+
W (u)

ε
= o(εN).

Combining all the estimates, and since R > 0 can be choosen arbitrarily
large, we conclude that

lim
ε→0

∫
M
ε
|∇u|2

2
+
W (u)

ε
≤ σ0|Γ|.

�

We now present the setting for the proof of Lemma 10.2.

Let Γ ⊂ M be a separating strictly stable minimal hypesurface (with a
choice of normal vector). As in Section 5.1, there is τ > 0, such that for any
H ∈ (−τ, τ) there is a unique hypersurface ΓH of constant mean curvature
equal to H, which is also a smooth graph over Γ.

In this section, we seek to construct a subsolution (res. supersolution) to (1)
for each H < 0 (resp. H > 0), whose nodal set is a small perturbation of ΓH .
For this purpose we work on Fermi coordinates (x, t) with respect to ΓH .

More precisely, denote the Allen-Cahn operator by Q(v) = ε2∆gv −W ′(v)
and (abusing notation) define ω(x, t) := ω(t) in Fermi coordinates. CMC
hypersurfaces like ΓH are usually modeled by solutions to Q(u) + ελ = 0.
Because of this, we expect to find small φ and λ such that Q(ω+φ) + ελ = o(ε),
i.e. so that the sign of Q(ω + φ) is controlled by the sign of λ, for small ε.

A short computation shows that the linearization of Q at ω, is given by

Q(ω + φ) = Q(ω) + Lφ− φ2(3ω − φ),

where L(φ) = ε2∆gφ−W ′′(ω)φ, depends continuously on H.
The error term φ will be constructed separately on regions close to ΓH and

regions far from ΓH , we decompose it as φ = φ1 + φ2, where suppφ2 ⊂ N(εδ).
Substituting into the expression in Fermi coordinates from above, we have the
formula

Q(ω + φ) + ελ = (f + Lφ1) + L0φ2 + E1,

where

• f(t) = Q(ω) + ελ and
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• E1 = −φ2(3ω − φ) + ε2(∆t −∆0)φ2 − ε2Htφ
′
2, with

• R(x, t) =
∫ 1

0 H
′(x, ts)ds, is the reminder of the Taylor expansion of

H(x, t) with respect to t

Construction of the barriers amounts to select appropriate λ, φ1 and φ2 and
estimate the error terms.

Remark 1. In what follows, we will consider two different projection operators,
one for η ∈ Ck,α(M) and the other for η ∈ Ck,α(N × R). In the first case, we
define

η⊥ := η −
( ∫

R ηω
′∫

R(ω′)2

)
ω′.

In the second case

[η]⊥0 := η −
( ∫

R ηψ
′(t/ε)∫

R(ψ′(t/ε))2

)
ψ′(t/ε).

Notice that ‖εω′‖
C0,α
ε (M)

+‖ψ′(t/ε)‖
C0,α
ε (N×R)

= O(1), so in both cases

• ‖η⊥‖
C0,α
ε (M)

= O(‖η‖
C0,α
ε (M)

)

• ‖[η]⊥0 ‖C0,α
ε (N×R)

= O(‖η‖
C0,α
ε (N×R)

).

These represente, respectively, the projection operators onto the approximate
kernel of L and the kernel of L0.

Proof of Lemma 10.2.

Choice of λ: orthogonality. First, we choose λ = λ(ε,H) so that f is
orthogonal to ω′. From Q(ω) = −ε2Hω′ − ε2Rtω′,

∫
R fω

′ = 0 and Lemma

4.1, this amounts to λ := σ2
σ1
H + ε

∫
RRt(ω

′)2 = σ2
σ1
H +O(ε). This choice of λ

depends continuously on H. Additionally, we have ‖f‖
C0,α
ε (M)

= O(εH + ε2).

Choice of φ1: inverting the operator at infinity. By Proposition 6.2
there is v1 ∈ C2,α

ε (M) with L∞v1 = −f and ‖v1‖C2,α
ε (M)

= O(‖f‖
C0,α
ε (M)

). Since

suppω′ ⊂ N(εδ), on the complement of N(εδ) we have the equalities v1 = v⊥1
and L = L∞. Therefore, choosing φ1 := v⊥1 , we obtain supp(f + Lφ1) ⊂ N(εδ)
and ‖φ1‖C2,α

ε (M)
= O(εH + ε2). Notice that v1 and φ1 depend continuously on

H.
Summarizing, our equation now reads

Q(ω + φ) + ελ = g + L0φ2 + E1,

where g = f + Lφ1, satisfies ‖g‖
C0,α
ε (M)

= O(εH + ε2) and supp g ⊂ N(εδ).

Choice of φ2: inverting the operator in Fermi coordinates
In this step, we use the invertibility properties of the operator L0 in order

to control g + Lφ2. First, notice that supp g ∪ supp g⊥ ∪ supp gT ⊂ N(εδ).
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This allow us to consider them as functions of C0,α
ε (N × R) by means of Fermi

coordinates.
Using the projection operator in C0,α

ε (N × R) we can write

g + L0φ2 = gT + [g⊥]T0 + [g⊥]⊥0 + L0φ2.

By construction we expect g = f + Lφ1 to have a small tangent projection
which should control the norm of gT + [g⊥]T0 .

First, we estimate the order of the tangent component gT = g − g⊥. Since∫
R fω

′ = 0, suppω′ = N(r), with r = O(εδ) and `0(ω′) = o(εN) (the latter
follows from Lemma 4.1 and the remark before Lemma 4.4), we have∫
R
gω′ =

∫
R

(Lφ1)ω′

= ε2

∫
R

(∆tφ1)ω′ + ε2

∫
R

[φ′′1 −W ′(ω)φ1]ω′ − ε2

∫
R
H(x, t)φ′1ω

′

= ε2∆0

∫
R
φ1ω

′ +

∫
R
φ1`0ω

′ +

∫
R

[ε2(∆t −∆0)φ1]ω′ − ε2

∫
R
H(x, t)φ′1ω

′

= 0 +O(‖φ1‖C0,α
ε (M)

)× o(εN) +

∫
R

1

t
[ε2(∆t −∆0)φ1]× tω′ − ε2

∫
R
H(x, t)φ′1ω

′

From the computation above, Lemma 5.1, and (6) of Lemma 4.1 with p = 1, it

follows that the C0,α
ε -norm of this expression is O(ε‖φ1‖C2

ε (M)+ε‖φ1‖C1
ε (M)) =

O(ε2H + ε3). In particular,

‖gT ‖
C0,α
ε (M)

= O(ε2H + ε3).

Similarly,

[g⊥]T0 (x, t) :=

∫
g(x, s)⊥ψ′(s/ε)ds∫

(ψ′(s/ε))2ds
ψ′(t/ε)

= c

∫
g(x, s)⊥ε−1ψ′(s/ε)ds× ψ′(t/ε)

= c

∫
g(x, s)⊥[ε−1ψ′(s/ε)− ω′(s)]ds× ψ′(t/ε)

= c

∫
g(x, s)⊥[ε−1χψ′(s/ε)− ω′(s) + ε−1(1− χ)ψ′(s/ε)]ds× ψ′(t/ε)

= c

∫
g(x, s)⊥[χ′(ψ(s/ε)− sgn) + ε−1(1− χ)ψ′(s/ε)]ds× ψ′(t/ε).

From which it follows that ‖[g⊥]T0 ‖C0,α
ε (N×R)

= o(εN).

Finally, we find φ2 so that suppφ2 ∈ N(εδ) and [g⊥]⊥0 + L0φ2 is small. By

Proposition 6.1, there is v2 ∈ C2,α
ε (N × R) such that [g⊥]⊥0 = −L0v2 and

‖v2‖C2,α
ε (N×R)

= O(‖[g⊥]⊥0 ‖C2,α
ε (N×R)

) = O(‖g‖
C2,α
ε (N×R)

) = O(εH + ε2).

We define φ2 = ρv2, where ρ is a smooth cutoff function, yet to be determined,
and obtain [g⊥]⊥0 +L0φ2 = L0[(ρ− 1)v2]. We can choose ρ so that (ρ− 1)v2 has
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support far away from N × R. The C2,α
ε norm of v2 to decays exponentially

fast in the same region. This gives us

‖[g⊥]⊥0 + L0φ2‖C2,α
ε (N×R)

= o(εN)

and

‖φ2‖C2,α
ε (N×R)

= O(εH + ε2).

Estimating the error. From ‖φ1‖C2,α
ε (M)

+‖φ2‖C2,α
ε (M)

= O(εH + ε2), we

estimate the remaining terms by

‖φ2(3ω − φ)‖
C0,α
ε (M)

= O(ε2H2 + ε3H + ε4)

‖ε2Htφ
′
2‖C0,α

ε (M)
= O(ε‖φ2‖C1

ε (M)) = O(ε2H + ε3)

‖ε2(∆t −∆0)φ2‖C0,α
ε (M)

= ‖ε2taij(x, t)∂ijφ2 + ε2tbi(x, t)∂iφ2‖C0,α
ε (M)

= O(ε‖φ2‖C2,α
ε (M)

)

= O(ε2H + ε3).

Therefore, for |H|< 1, we have ‖E1‖C0,α
0 (M)

= O(ε2H + ε3).

Subsolution, supersolution and nodal set. Adding all the estimates to-
gether, we have

‖Q(ω + φ) + ελ‖
C0,α
ε (M)

= O(ε2H + ε3).

Remember λ = c0H +O(ε), for some universal constant c0 > 0. The previous
estimate implies that

sgnQ(ω + φ) = sgn(−ελ+O(ε2H + ε3))

= sgn(−c0εH +O(ε2H + ε2))

= sgn(−[c0 +O(ε)]H +O(ε))

This tell us, that there is a universal constant K > 0, such that if we restrict H
to the domain |H|≥ Kε, then

sgnQ(ω + φ) = − sgnH.

It follows that v = ω+φ is a subsolution for H ∈ [−τ,−Kε] and a supersolution
for H ∈ [Kε, τ ].

�

11. Curvature Estimates for multiplicity one solutions

In this section, we present the following curvature estimates

Lemma 11.1. Let Γ ⊂M be a non-degenerate minimal hypersurface, which is
also the limit interface for a sequence of solutions to (1) with multiplicity one.
Then, for ε = ε(Γ,M) small enough, the nodal set of the solutions is a normal
graph Γ(f), with

‖f‖C2(Γ)+ε
α‖f‖C2,α(Γ)= O(ε).
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As in [25, 8] these estimates are derived from the work of Wang and Wang-Wei,
combined with a standard point-picking and blow-up argument.

In the computations below, we rely on the following two theorems which were
proven for the case of Rn in [45] and [46], respectively. The proof for general
ambient manifolds with bounded curvature tensor, follows the same strategy
with minor modifications.

Theorem 11.2 (K. Wang, see [45]). Let M be a closed Riemannian manifold.
There are positive numbers ε0, τ0, α0 ∈ (0, 1) and r0 < R0,K0, such that the
following holds. Let u be a solution of (1) with ε < ε0 on BR0(p) ⊂ M for
p ∈M , if

R−n0

∫
BR0

ε
|∇u|2

2
+
W (u)

ε
≤ (1 + τ0)ωnσ0,

then {u = 0} ∩Br0(p) is a normal graph (in exponential coordinates) over some
hyperplane in TpM , with C1,α0 norm bounded by K0.

Theorem 11.3 (Wang-Wei, see Section 15 of [46]). Let M be a closed Rie-
mannian manifold. Let ui : BR(pi)→ R be a sequence of solutions to (1) with
ε = εi → 0. Assume that

i) {ui = 0} is, in exponential coordinates, a normal graph over a hyper-
plane πi ⊂ TpiBR, with Lipschitz constant uniformly bounded on i and
converging to a smooth hypersurface as i→ 0.

ii) For any qi ∈ {ui = 0} the blow-ups ũi(x) = ui ◦ expqi(εx) converge to a

one dimensional solution in Rn+1, and
iii) The second fundamental form of {ui = 0} is bounded uniformly on i.

Then, on a smaller ball Br ⊂ BR, the mean curvature of {ui = 0} satisfies

|H|C0(πi)+ε
α|H|C0,α(πi)= O(ε).

Moreover, the C2,α norm of the nodal set as a graph is bounded.

Proof of Lemma 11.1.

Claim 1. For ε small enough, the nodal set {u = 0} is an embedded hypersurface
and the generalized second fundamental form of u near {u = 0} is of order
o(ε−1).

By the monotonicity formula ε-rescalings of multiplicity one solutions cen-
tered at the nodal set, have multiplicity one at infinity and therefore are one
dimensional by Theorem 9.2. This implies ε|∇u|6= 0 on the nodal set. The
estimate on the second fundamental form follows from the smoothness of the
convergence of the rescalings to the 1-D solution, which has planar level sets.

Claim 2. For ε small enough, the nodal set is a normal graph Γ(f) = {u = 0}
for some f ∈ C∞(Γ). Moreover, the Lipschitz norm of f is uniform on ε.

Theorem 11.2 gives uniform C1,α bounds some plane π for each point of
the nodal set. If there is a sequence of π converging to a vertical plane in
Fermi coordinates with respect to Γ, then the C1,α bound would imply there is
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concentration of energy far from Γ, which we are assuming it does not happen.
It follows that, for ε small, {u = 0} is a normal graph over Γ with Lipschitz
norm uniform on ε.

Claim 3. The second fundamental form of Γ(f) is O(1).

Let p ∈ {u = 0} be the point where the norm of the second fundamental
form of the nodal set attains its maximum, which we denote by λ. From Claim
1, we have ελ→ 0. To proceed by contradiction, assume lim supλ =∞. Then,
after passing to a subsequence, for any R > 0 and ε small enough, the rescalings
v(x) := u ◦ expp(x/λ) are solutions to (ελ)2∆v −W ′(v) = 0 in BR(0) ⊂ TpM

with respect to the metric gλ = λ−2 exp∗p(g). Moreover, from the monotonicity
formula and the multiplicity one assumption, the limit varifold in Rn (by making
R → ∞) has to be a plane. It follows that for a fixed R, we obtain a list of
solutions, such that the nodal set is a uniformly bounded Lipschitz graph with
second fundamental form bounded from above by 1. Therefore, λ = O(1).

Finally, we obtain a contradiction from Theorem 11.3, which implies that the
C2,α norm of this graph is universally bounded and therefore it must converge
in C2 to a plane. This contradicts that the norm of the second fundamental
form at the origin is exactly 1.

Claim 4. ‖f‖C2,α(Γ)+ε
α‖f‖C2,α(Γ)= O(ε).

Finally, we can apply Theorem 11.3 to our original sequence of solutions and
conclude that its mean curvature satisfies |H|C0(πi)+ε

α|H|C0,α(πi)= O(ε). Since
the minimal hypersurface is invertible, the same bounds must hold for f , i.e.

|f |C2(πi)+ε
α|f |C2,α(πi)= O(ε).

�

12. Uniqueness of multiplicity one solutions around
non-degenerate interfaces

Let u be a solution of (1) converging to a non-degenerate minimal hypersurface
Γ with multiplicity one. From Section 11 we know that for ε sufficiently small,
Γ(f) = {u = 0} with ‖f‖C2(Γ)+ε

α‖f‖C2,0(Γ)= O(ε).

Definition 12.1. Given ξ ∈ C(Γ) with |ξ|= o(1), we denote ωξ(x, t) = ω(x, t−
ξ(x)). Similarly, ω′ξ(x, t) = ω′(t− ξ(x)), ω′′ξ (x, t) = ω′′(t− ξ(x)) and so on.

Remark 2. Together with Proposition 9.2, the estimates above imply that, for
any fixed R > 0, the C2

ε (N(εR)) norm of ‖u− ωf‖C2
ε (N(εR)= o(1).

We begin this section by looking for a perturbation of f of the form ξ = f +h,
and such that the error φ = u− ωξ is orthogonal to the approximate kernel ω′ξ
in the following sense:

Definition 12.2. A smooth function φ : M → R is said to be orthogonal to
the approximate kernel ω′ξ if for all x ∈ Γ,∫

R
φ(x, t)ω′ξ(t)dt = 0.(10)
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Remark 3. As in [46] and [8], equation (10) allows for the following procedure.
First, L2 estimates for φ are obtained from Lemma 4.4 and (10). Then, these

are improved to estimates of the C2,α
ε -norm, using Theorem 8.1, Theorem 8.2

and the C0,α
ε norm of ε2∆φ−W ′′(ωξ)φ.

In this section, we carry out an argument following the lines described in
Remark 3.

Proposition 12.3. There exists ξ ∈ C∞(Γ) such that the error φ = u− ωξ is
orthogonal to the approximate kernel ω′ξ. In addition,

‖φ‖
C2,α
ε (M)

= o(1) and ‖∇k0ξ‖C0,α
ε (Γ)

= O(ε+ ε1−k‖φ‖
Ck,αε (M)

),

for k = 0, 1, 2 and α as in Lemma 11.1.

Proof of Proposition 12.3. Let U = {h ∈ C(Γ) : |h|< τ/2} and F be the map
F : U → C(Γ), given by

F (h)(x) : = ε

∫
R

[u(x, t)− ωf+h(x, t)]ω′f+h(x, t)dt.

From Remark 2 and Lemma 4.1-(6) we obtain

Claim 1. F (0) = o(ε).

Similarly, we can estimate |DF (h)| from below when ‖h‖C(Γ) is small. Denote
by B(f, r) ⊂ C(Γ), the ball of radius r > 0 centered at f ∈ C(Γ), with respect
to the supremum norm. Let r = o(ε) and h ∈ B(0, r).

Claim 2. For ε small enough, DF (h)(v) = cv,∀v ∈ C(Γ), where c = c(h) ≥
σ2/2. In particular, B(F (0), c2r) ⊂ F (B(0, r)).

Indeed, from Lemma 4.1 (6) and (7) we get

DF (h)(v) =
d

ds
F (h+ sv)|s=0

= v · ε
[ ∫

R
(ω′f+h)2 −

∫
R

[u− ωf+h]ω′′f+h

]
= v · [σ1 + o(εN) + o(1)],

which implies the claim for ε small enough.

Claim 3. There exists h ∈ C∞(Γ), satisfying ‖h‖C(Γ)= o(ε) and F (h) ≡ 0.

To see this, choose r = o(ε) such that F (0) = o(r), e.g. r =
√
εF (0). Since

F (0) = o(ε), the last claim implies 0 ∈ B(F (0), c2r), for ε sufficiently small.
Therefore, 0 ∈ F (B(0, r)).

Claim 4. Let ξ = f + h, where h is as in the previous claim. Then, |∇k0ξ|=
o(ε1−k), for k = 1, 2, 3. In particular, ‖φ‖Ckε (M)= o(1), for k = 1, 2, 3.

Now that we have guaranteed the existence of h with ‖h‖C(Γ)= o(ε), its
smoothness follows from applying the Implicit Function Theorem and the
nondegeneracy of DF (h) to the function F̃ : Γ × (−ε, ε) → R given by
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F̃ (x, h) := F (h)(x). Then, the estimate |∇k0ξ|= o(ε1−k), for k = 1, 2, 3, follows
by recursively differentiating F (h)(x) = 0 with respect to ∇k0 and estimating
the norm of the result, each time using Lemma 4.1.

Finally, we have to argue for ‖φ‖Ckε (M)= o(1). From Corollary 8.5, for every

ρ > 0 we can choose R = O(ε) such that ‖φ‖Ckε (M\N(R))< ρ, for ε small enough.

In exponential coordinates on points of N(R), the function ωξ rescales as

ψ(t− ξ̃(x)), where ξ̃(x) = ξ(εx)/ε. From the previous estimate it follows that

∇k0 ξ̃ = o(1), for k = 1, 2, 3. This implies ψ(t− ξ̃(x)) converges to the canonical
solution in all Ck norms. The same is true for u from Remark 2 and putting
both estimates together we conclude that for any ρ > 0, there is an ε0 > 0 such
that ‖φ‖Ckε (M)≤ ρ for k = 1, 2, 3 and ε ∈ (0, ε0).

Claim 5. ‖∇k0h‖C0,α
ε (Γ)

= O(ε1−k)‖φ‖
C2,α
ε (M)

, for k = 1, 2 and α ∈ [0, 1).

The estimates ‖∇k0h‖C0,α
ε (Γ)

= O(ε1−k)‖φ‖
C2,α
ε (M)

are obtained recursively by

differentiating 0 = u(x, f(x)) = ωf+h(−h(x)) + φ(x, f(x)).
�

Directly from the definition of φ and (1), using the notation for Fermi
coordinates from Section 5 we can write the following equation for φ and ξ

ε2∆0φ+ `0(φ) + E1 = ε2∆gφ−W ′′(ωξ)φ
= φ2(2ωξ + u) + ε2J [ξ]ω′ξ + E2

(11)

where

• `0(φ) = ε2φ′′ −W ′′(ωξ)φ,

• J [ξ] = ∆0ξ −H ′0ξ is the Jacobi operator of Γ,

• E1 = −ε2Htφ
′ + ε2(∆t −∆0)φ,

• E2 = ε2ω′′′ξ |∇tξ|2+ε2[(∆0 −∆t)ξ]ω
′
ξ + ε2H ′0(t− ξ)ω′ξ + ε2Rt2ω′ξ and

• R = R(x, t) =
∫ 1

0 H
′′(x, t · s)(s− 1)ds.

Remark. Although this equation involves both φ and ξ, it follows from Propo-
sition 12.3 that the right hand side of all the estimates can be presented in
terms of norms of φ. This is what we do in the rest of this section.

First, we compute the estimates for J [ξ].

Proposition 12.4. ‖εJ [ξ]‖
C0,α
ε (M)

= O(ε3 + ε‖φ‖
C2,α
ε (M)

+‖φ‖2
C2,α
ε (M)

)

Proof. We project onto Γ by integrating against ω′ξ along every vertical direction.
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For the first term, notice that from (7) we have the expression,∥∥∥∥∫
R
ε2(∆0φ)ω′ξ

∥∥∥∥
C0,α
ε (Γ)

=

∥∥∥∥− 2ε2∇0ξ

∫
R

(∇0φ)ω′′ξ − ε2|∇0ξ|2
∫
R
φω′′′ξ + ε2∆0ξ

∫
R
φω′′ξ

∥∥∥∥
C0,α
ε (Γ)

= O(‖∇0ξ‖C0,α
ε (M)

+ε‖∇2
0ξ‖C0,α

ε (M)
)‖φ‖

C2,α
ε (M)

.

For the second term, by the formula in the introduction, we have∥∥∥∥∫
R
`(φ)ω′ξ

∥∥∥∥
C0,α
ε (Γ)

=

∥∥∥∥∫
R

[`0(φ) + o(εN)]ω′ξ

∥∥∥∥
C0,α
ε (Γ)

= o(εN).

Next,∥∥∥∥∫
R
ε2Htφ

′ω′ξ

∥∥∥∥
C0,α
ε (Γ)

= O(ε2)‖Ht‖C1
ε (M)‖φ′‖C1

ε (M)= O(ε‖φ‖C2
ε (M))

Now, from the Fermi Coordinates section, we know that∥∥∥∥∫
R

[ε2(∆t −∆0)φ(·, t)]ω′ξ
∥∥∥∥
C0,α
ε (Γ)

= O(1)

∫
R
‖ε2(∆t+ξ −∆0)φ(·, t+ ξ)‖

C0,α
ε (Γ)

|ω′|

= O(1)‖φ‖
C2,α
ε (M)

∫
R

(|t|+ε)|ω′|

= O(ε)‖φ‖
C2,α
ε (M)

.

Since ‖u‖
C2,α
ε (M)

+‖ωξ‖C2,α
ε (M)

= O(1), we have∥∥∥∥∫
R
φ2(2ωξ + u)ω′ξ

∥∥∥∥
C0,α
ε (Γ)

= O(‖φ‖2C1
ε
)

Similarly, ∥∥∥∥∫
R
ε2J [ξ](ω′ξ)

2

∥∥∥∥
C0,α
ε (Γ)

= (εσ2 + o(εN))‖J [ξ]‖
C0,α
ε (Γ)

It remains to estimate the error E2,
First, since ω′′′ is an odd function∥∥∥∥∫

R
ε2|∇tξ|2ω′′′ξ

∥∥∥∥
C0,α
ε (Γ)

=

∥∥∥∥∫
R
ε2(|∇tξ|2−|∇0ξ|2)ω′′′ξ

∥∥∥∥
C0,α
ε (Γ)

=

∫
R
ε2‖|∇t+ξξ|2−|∇0ξ|2‖C0,α

ε (Γ)
|ω′′′|

= ε2‖∇0ξ‖2C0,α
ε (Γ)

∫
R

(|t|+ε)|ω′′′|

= O(ε)‖∇0ξ‖2C0,α
ε (Γ)
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Next, we have∥∥∥∥∫
R

(ε2(∆t −∆0)ξ)(ω′ξ)
2

∥∥∥∥
C0,α
ε (Γ)

= O(1)

∫
R
‖ε2(∆t+ξ −∆0)ξ‖

C0,α
ε (Γ)

(ω′ξ)
2

= O(‖∇0ξ‖C0,α
ε (Γ)

+‖∇2
0ξ‖C0,α

ε (Γ)
)

∫
R

(|t|+ε)× (εω′ξ)
2

= O(ε2)(‖∇0ξ‖C0,α
ε (Γ)

+‖∇2
0ξ‖C0,α

ε (Γ)
).

Since t(ω′)2 is an odd function,∥∥∥∥∫
R
ε2H ′0(t− ξ)(ω′ξ)2

∥∥∥∥
C0,α
ε (Γ)

=

∥∥∥∥ε2H ′0

∫
R
t(ω′)2

∥∥∥∥
C0,α
ε (Γ)

= 0.

Finally, since ‖t+ ξ‖
C0,α
ε (M)

= O(|t|+‖ξ‖
C0,α
ε (M)

) = O(|t|+ε), we have∥∥∥∥∫
R
ε2Rt2(ω′ξ)

2

∥∥∥∥
C0,α
ε (Γ)

= O(ε2)‖R‖
C0,α
ε (M)

∫
R

(|t|2+ε2)(ω′)2

= O(ε2)

∫
R

(|t/ε|2+1)(εω′)2

= O(ε3).

Combining all the estimates, we obtain

‖εJ [ξ]‖
C0,α
ε (Γ)

= O(‖∇0ξ‖C0,α
ε (M)

)(ε2 + ε‖∇0ξ‖C0,α
ε (M)

+‖φ‖
C2,α
ε (M)

)

+O(‖∇2
0ξ‖C0,α

ε (M)
)(ε2 + ε‖φ‖

C2,α
ε (M)

)

+O(ε3 + ε‖φ‖
C2,α
ε (M)

+‖φ‖2
C2,α
ε (M)

)

(12)

Finally, substituting ‖∇k0ξ‖C0,α
ε (Γ)

= O(ε+ ε1−k‖φ‖
C2,α
ε (M)

) into (12) we get

‖εJ [ξ]‖
C0,α
ε (Γ)

= O(ε3 + ε‖φ‖
C2,α
ε (M)

+‖φ‖2
C2,α
ε (M)

).

�

Now we compute estimates for the value of the approximated linearized
operator at φ.

Proposition 12.5. ‖ε2∆gφ−W ′′(ωξ)φ‖C0,α
ε (M)

= O(ε2 + ‖φ‖2
C2,α
ε (M)

).

Proof. Remember

ε2∆gφ−W ′′(ω)φ = φ2(2ωξ + u) + εJ [ξ]ω̇ξ + E2(13)

where

• J [ξ] = ∆0ξ −H ′0ξ is the Jacobi operator of Γ

• E2 = W ′(ωξ)|∇tξ|2+ε2[(∆t −∆0)ξ +H ′0(t− ξ) + t2R]ω′ξ and

• R = R(x, t) =
∫ 1

0 H
′′(x, ts)(s− 1)ds.
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We estimate each term of ‖E2‖C0,α
ε (M)

separately

‖W ′(ωξ)|∇tξ|2‖C0,α
ε (M)

= O(‖∇0ξ‖2C0,α
ε (M)

)

= O(ε+ ‖φ‖C1
ε (M))

2

= O(ε2 + ‖φ‖2
C2,α
ε (M)

).

‖ε2(∆t −∆0)ξω′ξ‖C0,α
ε (M)

= O(ε2‖∇2
0ξ‖C0,α

ε (M)
+ε2‖∇0ξ‖C0,α

ε (M)
)‖tω′ξ(x, t)‖C0,α

ε (M)

= O(ε2‖∇2
0ξ‖C0,α

ε (M)
+ε2‖∇0ξ‖C0,α

ε (M)
)‖(t/ε)εω′ξ(x, t)‖C0,α

ε (M)

= O(ε2‖∇2
0ξ‖C0,α

ε (M)
+ε2‖∇0ξ‖C0,α

ε (M)
)

= O(ε2)(ε+ ε−1‖φ‖
C2,α
ε (M)

)

= O(ε3 + ε‖φ‖
C2,α
ε (M)

).

‖ε2H ′0(t− ξ)ω′ξ‖C0,α
ε (M)

= O(ε2)‖H ′0‖C0,α
ε (M)

‖(t− ξ)ω′ξ‖C0,α
ε (M)

= O(ε2).

‖ε2t2Rω′ξ‖C0,α
ε (M)

= O(ε2)‖R‖
C0,α
ε (M)

‖t2ω′ξ‖C0,α
ε (M)

= O(ε3).

Collecting all these estimates with the ones for J [ξ] from the last section, we
conclude

‖ε2∆gφ−W ′′(ω)φ‖
C0,α
ε (M)

= ‖φ2‖
C0,α
ε (M)

+‖εJ [ξ]‖
C0,α
ε (M)

+‖E1‖C0,α
ε (M)

= O(ε2 + ‖φ‖2
C2,α
ε (M)

)

�

The following three lemmas estimate the L∞ norm of φ.

Lemma 12.6 (L∞-norm estimate far from Γ). There exist positive constants
σ, R0 such that, for all R ≥ R0,

‖φ‖L∞(M\N(εR))= O(e−σR‖φ‖
C2,α
ε (M)

+ε2 + ‖φ‖2
C2,α
ε (M)

).

Proof. Since |ξ|= O(ε), there are positive constants R0 and ε0, such that
W ′′(ωξ) > 1 on M \ N(εR/2) for ε ∈ (0, ε0). In particular, we can apply
Lemma 8.3 with ‖ε2∆gφ−W ′′(ωξ)φ‖C2,α

ε (M)
= O(ε2 + ‖φ‖2

C2,α
ε (M)

), ρ = τ − εR,

Ω = M \ N(εR/2), c = W ′′(ωξ), c0 = 1 and a = O(ε2 + ‖φ‖2
C2,α
ε (M)

). In this
way

|φ(p)|= O(‖φ‖L∞(∂N(εR))×max{e−σ dist(p,∂N(εR/2))/ε, e−σ(τ/ε−R/2)}+ε2+‖φ‖2
C2,α
ε (M)

).

Finally, we obtain the desired estimate when p = (x, t) ∈M \N(εR). �

Lemma 12.7 (L2-norm estimate near Γ). For any fixed R > 0, we have

ε−n/2 sup
p∈MεR

‖φ‖L2(B(p,εL))= O

(
ε2 + ‖φ‖2

C2,α
ε (M)

+e−σR‖φ‖
C2,α
ε (M)

)
.
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Proof. We start by computing the equation satisfied by the L2-norm along
vertical directions of Γ, i.e. V (x) =

∫
J |φ(x, t)|2dt = ‖φ(x, ·)‖2L2(J), where

J = [−2Rε, 2Rε].
From the equation satisfied by φ, derived above, we get

ε2

2
∆0V =

∫
J
φ(ε2∆0φ) +

∫
J
ε2|∇0φ|2

≥ −
∫
J
φ`(φ) +

∫
J
φ(E2 − E1) +O(φ3) + ε2J [ξ]ω′ξφ

≥ −
∫
J
φ`(φ)− γ

4

∫
J
φ2 +

4

γ

∫
J
E2

1 + E2
2 + ε4(J [ξ]ω′ξ)

2.

Define φ̃ = φρ, where supp ρ ⊂ [−τ, τ ] and ρ ≡ 1 on [−τ/2, τ/2]. Notice we

have
∫
R φ̃ω

′ =
∫
R φω

′ = 0. Therefore, by the Lemma in the cutoff section we
have

−
∫
J
φ`(φ) = −

∫
J
φ̃`(φ̃)

= −
∫
R
φ̃`(φ̃) +

∫
|t|≥εR

φ̃`(φ̃)

≥ γ

2

∫
R
φ̃2 + o(εN)− ‖φ‖C2

ε (M)

∫
|t|≥ε2R

|φ|ρ

≥ γ

2
V0 + o(εN)− ‖φ‖2C2

ε (M)

∫
|t|≥ε2R

ce−σt/εdt

≥ γ

2
V0 +O(εe−σ2R‖φ‖2C2

ε (M)) + o(εN).

From the estimates we computed before we have

|E2|+|ε2J [ξ]ω′ξ|= |E2|+|εJ [ξ]|= O(ε2 + ‖φ‖2
C2,α
ε (M)

),

while, for |E1|, since H = 0, we have

|E1|= O(|ε2Htφ
′|+|ε2(∆t −∆0)φ|) = O(‖φ‖

C2,α
ε (M)

)× |t|,

Since |J |= 2εR, for any fixed R it follows∫ ε2R

−ε2R
|E1|2+|E2|2+|ε2J [ξ]ω′|2= O(ε5 + ε‖φ‖4

C2,α
ε (M)

+ε3‖φ‖2
C2,α
ε (M)

).

Combining all the estimates the inequality for V0 reads,

ε2

2
∆0V −

γ

4
V0 ≥ O(ε5 + ε‖φ‖4

C2,α
ε (M)

+ε3‖φ‖2
C2,α
ε (M)

+εe−σ2R‖φ‖2C2
ε (M)).

From the maximum principle we have

‖φ(x, ·)‖2L2(−ε2R,ε2R)= O(ε5 + ε‖φ‖4
C2,α
ε (M)

+ε3‖φ‖2
C2,α
ε (M)

+εe−σ2R‖φ‖2C2
ε (M)).
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Finally, notice that since R > 0 is fixed, for p = (x, t) with t = O(ε) we have

‖φ‖2L2(B(p,εR)) = O(εn−1)× ‖φ(x, ·)‖2L2(−ε2R,ε2R)

= O(ε4+n + εn‖φ‖4
C2,α
ε (M)

+ε2+n‖φ‖2
C2,α
ε (M)

+εne−σ2R‖φ‖2C2
ε (M)),

from which the estimate follows. �

Lemma 12.8 (L∞-estimate near Γ). For any fixed R > 0 and, we have

sup
p∈MεR

‖φ‖R∞(B(p,εR/2))= O

(
ε2 + ‖φ‖2

C2,α
ε (M)

+e−σR‖φ‖
C2,α
ε (M)

)
.

Proof. The proof is an immediate consequence of Lemma 8.1 and the estimates
for ‖φ‖R2(B(p,εR)) and ‖ε2∆gφ−W ′′(ωξ)φ‖L∞(M). �

Finally, we obtain the main technical result of this section.

Corollary 12.9. ‖ξ‖C2(Γ)+ε
α‖ξ‖C2,α(Γ)+‖φ‖C2,α

ε (M)
= O(ε2 + ‖φ‖2

C2,α
ε (M)

).

Proof. Combining both estimates we have the existence of R0, such that for
any fixed R > R0, we have

‖φ‖L∞(M)= O

(
ε2 + ‖φ‖2

C2,α
ε (M)

+e−σR‖φ‖
C2,α
ε (M)

)
.

Moreover, by the estimates from Proposition 12.5 and Lemma 8.2, we are able
to bound the C2,α

ε (M)-norm of φ. We conclude by choosing R big enough,
which allow us to absorb the term e−σR‖φ‖

C2,α
ε (M)

on the lefthand side. This

proves the bound for φ. From Proposition 12.4 and the invertibility of J it
follows that ‖ξ‖C2(Γ)+ε

α‖ξ‖C2,α(Γ)= O(ε2 + ‖φ‖2
C2,α
ε (M)

). �

Remark 4. Finally, we notice that the estimates obtained for the perturbation
ξ and the error φ are in Fermi coordinates with respect to Γ. They have
the same degree of homogeneity (with respect to ε) as in Pacard, [35]. Only
the error term is presented in a different format. We have found φ so that∫
R φ(x, t)ω′(t − ξ(x))dt = 0. Denote by Dξ a diffeomorphism which in Fermi

coordinates corresponds to Dξ(x, t) = (x, t+ ξ(x)) for (x, t) ∈ N(τ/2) and that
interpolates smoothly to the identity in M \N(τ) as |t|→ τ . Let v = φ ◦Dξ.

Then,
∫
R vω

′ = 0. If we define v] = [χ1v]⊥0 and v[ = v − χ4v
] we obtain the

desired functions. Pacard [35] obtained solutions by means of a contraction
mapping argument. This implies the uniqueness of solutions presenting these
asymptotics (see the paragraph after the proof of Lemma 3.9 from [35]). This
allow us to conclude:

Corollary 12.10. If a sequence of solutions to (1) converges with multiplicity
one to a non-degenerate minimal hypersurface then, for ε small enough, the
solutions must be the ones constructed by Pacard in [35].
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