Irrationality of the general smooth quartic 3-fold using intermediate Jacobians

Benson Farb[∗]

July 22, 2024

Abstract

We prove that the intermediate Jacobian of the Klein quartic 3-fold X is not isomorphic, as a principally polarized abelian variety, to a product of Jacobians of curves. As corollaries we deduce (using a criterion of Clemens-Griffiths) that X , as well as the general smooth quartic 3-fold, is irrational. These corollaries were known: Iskovskih-Manin [\[IM\]](#page-4-0) proved that every smooth quartic 3-fold is irrational. However, the method of proof here is different than that of [\[IM\]](#page-4-0) and is significantly simpler.

1 Introduction

A smooth quartic 3-fold is a smooth, degree 4 hypersurface Y in complex projective space \mathbb{P}^4 . For such a Y there is a Hodge decomposition

$$
H^3(Y; \mathbb{C}) = H^{2,1}(Y) \oplus H^{1,2}(Y)
$$

and an attached intermediate Jacobian

$$
J(Y) := \frac{H^{1,2}(Y)^*}{i(H_3(Y; \mathbb{Z}))}
$$

where the embedding $i: H_3(Y; \mathbb{Z}) \to H^{1,2}(Y)^*$ is defined by sending $\alpha \in H_3(Y; \mathbb{Z})$ to the linear functional $\omega \mapsto \int_{\alpha} \omega$. The complex torus $J(Y)$ is a 30-dimensional abelian variety. It has a principal polarization defined by the Hermitian form

$$
Q(\alpha, \beta) := 2i \int_Y \alpha \wedge \bar{\beta}.
$$

The Klein quartic 3-fold X is the smooth, degree 4 hypersurface

$$
X := \{ [x_0 : \dots : x_4] : x_0^3 x_1 + x_1^3 x_2 + x_2^3 x_3 + x_3^3 x_4 + x_4^3 x_0 = 0 \} \subset \mathbb{P}^4.
$$

X admits a non-obvious faithful action of $\mathbb{Z}/61\mathbb{Z} \rtimes \mathbb{Z}/5\mathbb{Z}$ by automorphisms; see §[2.](#page-2-0) We will use these symmetries to prove the following.

[∗]Supported in part by National Science Foundation Grant No. DMS-181772 and the Eckhardt Faculty Fund.

Theorem 1.1 (Intermediate Jacobian). The intermediate Jacobian $J(X)$ of the Klein quartic 3-fold X is not isomorphic, as a principally polarized abelian variety, to a product of Jacobians of smooth curves.

A short argument using resolution of singularities (Corollary 3.26 of [\[CG\]](#page-4-1)) gives the *Clemens-Griffiths criterion*: if Y is rational then $J(Y)$ is isomorphic as a principally polarized abelian variety (henceforth p.p.a.v.) to a product of Jacobians of smooth curves. Theorem [1.1](#page-1-0) thus implies:

Corollary 1.2 (Irrationality of Klein). The Klein quartic 3-fold is irrational: it is not birational to \mathbb{P}^3 .

The intermediate Jacobian determines a *period mapping* $J : \mathcal{M}_{4,3} \to \mathcal{A}_{30}$ from the moduli space of smooth quartic 3-folds to the moduli space of 30-dimensional principally polarized abelian varieties. J is a holomorphic map between quasiprojective varieties. Since the target A_{30} is the quotient of a bounded symmetric domain by an arithmetic lattice, Theorem 3.10 of Borel [\[Bo\]](#page-4-2) gives that J is in fact a morphism. Let $\mathcal{P} \subset \mathcal{A}_{30}$ denote the subvariety consisting of products of Jacobians of smooth curves. Then $J^{-1}(\mathcal{P})$ is a subvariety of $\mathcal{M}_{4,3}$. Theorem [1.1](#page-1-0) implies that the inclusion $J^{-1}(\mathcal{P}) \subset \mathcal{M}_{4,3}$ is strict. The irreducibility of $\mathcal{M}_{4,3}$ then gives:

Corollary [1](#page-1-1).3 (Irrationality is general). The general smooth quartic 3-fold is irrational.¹

Context. Corollaries [1.2](#page-1-2) and [1.3](#page-1-3) are not new. Iskovskih-Manin [\[IM\]](#page-4-0) proved in 1971 that any smooth quartic 3-fold X is irrational. In contrast, Segre had constructed in [Se] [Se] [Se] (see also §9 of [\[IM\]](#page-4-0)) examples of such X that are *unirational*: there is a dominant rational map $\mathbb{P}^3 \dashrightarrow X$. Iskovskih-Manin prove their theorem by developing the "method of maximal singularities" to prove that any birational map $X \rightarrow X$ has finite order, and noting that this is of course not true for \mathbb{P}^3 . This initiated the modern theory of birational superrigidity; see, e.g. Cheltsov [\[Ch\]](#page-4-4) for a survey and details. More recently, Colliot-Thélène-Pirutka [\[CP\]](#page-4-5), building on a method of Voisin using the Chow group of 0-cycles, proved that the very general smooth quartic 3-fold is not stably rational.

Around the same time as Iskovskih-Manin, Clemens-Griffiths [\[CG\]](#page-4-1) used their criterion mentioned above to prove that any smooth *cubic* 3-fold Y is irrational, even though any such Y is unirational. The bulk of their proof is showing that $J(Y)$ is not a product of Jacobians of curves.

Intermediate Jacobians have been used (via the Clemens-Griffiths criterion) to prove irrationality for many 3-folds, but not (as far as we can tell) for smooth quartic 3-folds; see Beauville's survey [\[B1\]](#page-4-6), in particular the table on page 6. The proof of Theorem [1.1](#page-1-0) uses the symmetry of X in a crucial way, and follows an idea of Beauville (see $[B1, B2]$ $[B1, B2]$, and also Zarhin [\[Z\]](#page-4-8)) to whom we owe an intellectual debt. It may be worth noting that the proofs of all of the results in this paper use technology available already in 1972.

Acknowledgements. I thank Nick Addington and Jeff Achter for useful discussions, and Ronno Das and János Kollár for corrections on an earlier version of this paper. I am also extremely grateful to Curt McMullen, whose many useful comments on an earlier version of this paper greatly improved its exposition.

¹In other words, there is a subvariety $V \subsetneq M_{4,3}$ such that each $X \in M_{4,3} \setminus V$ is irrational.

2 Proof of Theorem [1.1](#page-1-0)

In this note we always work in the category of principally polarized abelian varieties. The polarization is crucial for the proofs that follow. For any p.p.a.v A, denote by $\text{Aut}(A)$ the group of automorphisms of A respecting the polarization; in particular $Aut(A)$ is finite (see, e.g. [\[BL\]](#page-4-9), Corollary 5.1.9). Without the polarization this is no longer true: consider the automorphism of $A := \mathbb{C}^2/\mathbb{Z}[i]^2$ induced by $(z, w) \mapsto (2z + w, z + w)$, which is an infinite order algebraic automorphism of A.

Recall that the Jacobian $Jac(C)$ of a smooth, projective curve C is a p.p.a.v., with polarization induced by the intersection pairing on $H_1(C; \mathbb{Z})$. We will need the following.

Lemma 2.1. Let C be any smooth, projective curve of genus $g \geq 2$ and let $Jac(C)$ denote its Jacobian. Assume that the biholomorphic automorphism group $Aut(C)$ has odd order. Then for any $G \subset \text{Aut}(\text{Jac}(C))$ the following hold.

- 1. Any cyclic subgroup of G has order at most $4g + 2$.
- 2. If $g \geq 4$ and if G is metacyclic (meaning that G has a cyclic normal subgroup $N \triangleleft G$ such that G/N is cyclic) then $|G| \leq 9(q-1)$.

Proof. For any smooth projective curve C of genus $g \geq 2$ the natural map $\rho : \text{Aut}(C) \rightarrow$ $Aut(Jac(C))$ is injective; see, e.g. [\[FM\]](#page-4-10), Theorem 6.8. The classical Torelli theorem gives that ρ is surjective if C is hyperelliptic, and otherwise $[\text{Aut}(\text{Jac}(C)) : \rho(\text{Aut}(C))] = 2$, the remaining automorphism being the standard involution that every p.p.a.v has. Since $|G|$ is assumed to be odd, there is a subgroup $\tilde{G} \subset Aut(C)$ such that $\rho : \tilde{G} \to G$ is an isomorphism. Both parts of the lemma now follow from the corresponding statements for subgroups of Aut(C); see e.g. Theorem 7.5 of [\[FM\]](#page-4-10) (which is classical) and Proposition 4.2 of [\[Sch\]](#page-4-11), a result of Schweizer. \Box

Proof of Theorem [1.1.](#page-1-0) Let X be the Klein quartic 3-fold, and let $\zeta := e^{2\pi i/(3^5+1)} = e^{2\pi i/244}$. The group $G := \mathbb{Z}/61\mathbb{Z} \rtimes \mathbb{Z}/5\mathbb{Z}$ acts on X by automorphisms via the maps

$$
\phi([x_0:x_1:x_2:x_3:x_4]):=[\zeta x_0:\zeta^{-3}x_1:\zeta^9x_2:\zeta^{-27}x_3:\zeta^{81}x_4]
$$

$$
\psi([x_0:x_1:x_2:x_3:x_4]):=[x_1:x_2:x_3:x_4:x_0]
$$

of order 61 and 5, respectively ^{[2](#page-2-1)}; in fact $G \cong \text{Aut}(X)$ (see [\[GLMV\]](#page-4-12), Theorem B), but we will not need this. For any smooth, degree $d \geq 3$ hypersurface in $\mathbb{P}^n, n > 1$, the action of Aut (X) on $H^3(X;\mathbb{Z})$ is faithful (see, e.g., Chap.1, Cor. 3.18 of [\[H\]](#page-4-13)). Since in addition Aut(X) preserves the Hodge decomposition of $H^3(X;\mathbb{C})$, it follows that Aut(X), hence G, acts faithfully on $J(X)$ by p.p.a.v automorphisms.

Suppose that X is rational. The Clemens-Griffiths criterion gives an isomorphism of p.p.a.v.:

$$
A := \mathcal{J}(X) \cong A_1^{n_1} \times \cdots \times A_r^{n_r} \tag{2.1}
$$

²The somewhat surprisingly large order automorphism ϕ is based on Klein, and as far as we can tell was first written down by Z. Zheng in [\[Zh\]](#page-4-14), Lemma 3.2.

where each $A_i := \text{Jac}(C_i)$ is the Jacobian of a smooth, projective curve C_i and where $A_i \not\cong A_j$ if $i \neq j$. They also show (Corollary 3.23 of [\[CG\]](#page-4-1)) that each A_i is irreducible ^{[3](#page-3-0)}, and that the decomposition of any p.p.a.v into a product of p.p.a.v as in [\(2.1\)](#page-2-2) is unique.

Now, G acts on A as p.p.a.v. automorphisms. The uniqueness of the decomposition (2.1) implies that each $A_i^{n_i}$ is G-invariant. Note that

$$
30 = \dim(A) = \sum_{i=1}^{r} n_i \dim(A_i).
$$
 (2.2)

Since each A_i is irreducible, the action of G on $A_i^{n_i}$ gives a representation

$$
G \to \mathrm{Aut}(A_i^{n_i}) \cong \mathrm{Aut}(A_i)^{n_i} \rtimes S_{n_i}
$$

whose composition with the projection to S_{n_i} records the permutation of the direct factors of $A_i^{n_i}$.

Since the G-action on A is faithful and $\mathbb{Z}/61\mathbb{Z}$ has prime order, there exists some i (after re-labeling assume $i = 1$) so that $\mathbb{Z}/61\mathbb{Z}$ acts faithfully on $A_1^{n_1}$. By the orbit-stabilizer theorem, the orbit of any direct factor A_1 of $A_1^{n_1}$ under the prime order subgroup $\mathbb{Z}/61\mathbb{Z} \subset G$ has 1 or 61 elements; but the latter is impossible by (2.2) since $\dim(A_1) \geq 1$. Thus $\mathbb{Z}/61\mathbb{Z}$ leaves each individual direct factor A_1 invariant.

Fix such a direct factor $B \cong A_1$ on which $\mathbb{Z}/61\mathbb{Z}$ acts faithfully (such a factor must exist since $\mathbb{Z}/61\mathbb{Z}$ acts faithfully on $A_1^{n_1}$, as noted above). Recall that $B \cong A_1 \cong \text{Jac}(C_1)$ for some smooth projective curve C_1 of genus $g \geq 1$. Note that in fact $g \geq 2$ since otherwise $\dim(B)$ 1 and so A_1 does not admit a p.p.a.v. automorphism of order > 6 . Thus Lemma [2.1\(](#page-2-3)1) applies, giving

$$
61 \le 4 \cdot \text{genus}(C_1) + 2 = 4 \dim(B) + 2
$$

and so $\dim(A_1) = \dim(B) = \text{genus}(C_1) \geq 15$. Again by the orbit-stabilizer theorem, the orbit of B in the set of direct factors of $A_1^{n_1}$ under the prime order subgroup $\mathbb{Z}/5\mathbb{Z} \subset G$ has 1 or 5 elements. Since $\dim(B) = \text{genus}(C_1) \geq 15$ and $n_1 \cdot \text{genus}(C_1) \leq 30$, the latter is not possible; that is, B is $\mathbb{Z}/5\mathbb{Z}$ -invariant, and so G -invariant.

Now, the definition of ϕ and ψ above give that $G \cong \mathbb{Z}/61\mathbb{Z} \rtimes \mathbb{Z}/5\mathbb{Z}$ is a nontrivial semidirect product; that is, G is not a direct product. For any homomorphism $\mu : C \times D \to E$ of a nontrivial semidirect product of finite simple groups (e.g. cyclic groups of prime order) to any group, if μ is not faithful on D then it is not faithful on C (and indeed μ is trivial in this case). Since the $\mathbb{Z}/61\mathbb{Z}$ -action on B is faithful, it follows that the $\mathbb{Z}/5\mathbb{Z}$ action on B is faithful. From this it follows that the G-action on B is faithful (consider the kernel K of the G-action, and note that $K \cap \mathbb{Z}/61\mathbb{Z} = 0$ and so $K < \mathbb{Z}/5\mathbb{Z}$, so that K is trivial).

Note that

$$
|G| = 61 \cdot 5 = 305 > 261 = 9 \cdot (30 - 1) > 9(\text{genus}(C_1) - 1). \tag{2.3}
$$

 \Box

Since genus(C_1) \geq 15 \geq 4 and since G is metacyclic, Lemma [2.1\(](#page-2-3)2) applies. Its conclusion contradicts (2.3) . Thus X is not rational.

Remark 2.2. One might hope to replace the use of Lemma $2.1(2)$ by something simpler, such as the Hurwitz bound $|\text{Aut}(C)| \leq 84(g-1)$. However, a quick check of the numerology shows that this is not enough to obtain a contradiction.

³A p.p.a.v A is *irreducible* if any morphism $A' \to A$ of p.p.a.v is 0 or an isomorphism.

References

Dept. of Mathematics University of Chicago E-mail: bensonfarb@gmail.com