
ABSTRACT DERIVATION AND LIE ALGEBRAS*
BY

NATHAN JACOBSONf

The purpose of this paper is the investigation of the algebraic properties
of the set of operations mapping an algebra on itself and having the formal
character of derivation in the field of analytic functions. Some of the results
obtained are analogous to well-known theorems on automorphisms of alge-
bras, t The considerations in I are general and quite elementary. In II and III
we restrict ourselves to the derivations of an associative algebra having a
finite basis and in the main to semi-simple algebras. A number of results of
the theory of algebras are presupposed. These may be found in Deuring's
Algebren, Springer, 1935.

I. Derivations in an arbitrary algebra

1. Let 9i be an arbitrary algebra (hypercomplex system not necessarily
commutative or associative, or of finite order) over a commutative field
Then 9? is a vector space (with elements x, y, ■ • ■ ) over % (with elements
a, ß, ■ ■ ■ ) in which a composition xyedt is defined such that

(1) (x 4- y)z = xz + yz,  z(x 4- y) = zx 4- zy,   (xy)a = (xa)y = x(ya).

A derivation D of Üi is a single valued mapping of 9t on itself such that

(2) (a) (x + y)D = xD+ yD, (b) {xa)D = (xD)a, (c) (xy)D = (xD)y 4- x(yD).

Thus D is a linear transformation in the vector space dt satisfying the special
condition (2c). It is well known that the sum Di+D2, difference Di — D2,
scalar product Da and product D\D2 (defined respectively by x(Di + D2)
= xD!±xD2, x(Da) = (xD)a, x{DiD2) = ((xD^)Di) of linear transformations
are linear transformations. If D, Dx, D2 are derivations we have besides

(xy)(D1 ± D2) = (xy)D1 ± (xy)D2 = (xDl)y + x(yDi) + (xD2)y ± x(yD2)

-°(x(Di±Dt))y + xiy(D1±Ih)),
(4) (xy)Da = ((xy)D)a = {{xD)y 4- x{yD))a = {xDctjy 4- x(yDoi),

* Presented to the Society, December 31, 1936; received by the editors November 6, 1936.
f National Research Fellow.
I A direct connection between derivations and automorphisms may sometimes be established.

For example if SR is the ring of polynomials % [x] where 5 is a field of characiterstic 0, and D is defined
by f(x)D=f'(x) the usual derivative then exp D=l+D+D2/2l+ ■ ■ ■ is an automorphism since
/(x)exp £=/(*+!).
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(xy)D1D2 = {{xy)Dl)D2 = ((xD1)y + x{yDA)D2

= (xDMy + x(yD1D2) + (xDA(yD2) + {xD2)(yD1).

Thus Di±D2, Da are derivations, but not in general DXD2. However (5) shows
that the commutator [Dh D2]=DiD2 — D2Di does satisfy (2c) and so is a
derivation. We recall the relations

(6) [DltD2] = - [D2,DA, [[DuDtlD,] + [\D2, D3], DA + [[D3, DA, D2] = 0.

As a consequence of (2) we have Leibniz's formula:

(7) (xy)Dk = {xDk)y + Ck,1(xD"-l)(yD) + Ck,2{xDk-*){yD2) A-+ x{yD").

Hence if g has characteristic ^Owe have

(8) (xy)Dp = {xDv)y + x(yD");

i.e., D" is a derivation.
By a restricted Lie algebra of linear transformations we shall mean a sys-

tem of linear transformations closed relative to the operations of addition,
subtraction, scalar multiplication, commutation, and taking pth powers, if p
(=0 or a prime) is the characteristic of the field over which the vector space
is defined.* With this definition we have

Theorem 1. The derivations of an algebra 9? over % constitute a restricted
Lie algebra 3) of linear transformations in 9J.

We call 35 the derivation algebra or, more briefly, the d-algebra of 9? over
It should be noted that we are regarding 35 as an algebra over

2. Suppose D, E, D1} D2, ■ ■ ■ are elements of any associative algebra §1.
As a generalization of the multinomial theorem in a commutative algebra we
have

where the summation is extended over j%, ■ ■ ■ , jr such that ja^0 and
ji+ ■ • • +jr = k and where {Dx ■ ■ ■ Dr/ji ■ ■ • jr) denotes the sum of the

■ ■ ■ +ir)!/(ji! • • -jM) terms obtained by multiplying ji of the A's,
jt of the D2s, ■ ■ ■ ,jr of the Dr's together in every possible order. Let
■£>,-,+£>i2+ ' ' " +L>i, =Dili2.. .is where ih i2, ■ ■ ■ , i3 are distinct and have val-
ues in the range I, 2, ■ ■ • , k. Consider

(9)
(D! D2 ■ • • DA

\jl    h    ■  • ■ jr )

Dk-1i2Dkn = Q,
c

* We use the convention D"=0.
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where HcA\...<* denotes the sum of the C*,, terms obtained by letting
*i, ■ ■ ■ , is run through all the combinations of 1, 2, • ■ • , k taken 5 at a time.
By (9), Q is a sum of terms of the form {A, ■ ■ ■ A,/ii ■ ■ jt\ where ja>0
and^+72+ • ■ • +jt = k. Since

(Dmi ■ ■ ■ DmA  =  (Dmi ■ ■ ■ D„lt Dni ■ ■ ■ Dn\

\ji   ■   ■ j,  ) ~ \ji   -    ft    0    •   ■ 0  / '

where «i, th, ■ ■ ,n, are distinct indices different from nti, m2, • • • , mr, the
term {A, ■ ■ Dm,/ji ■ ■ ■ jt] has the coefficient C*_t,r in ]Cc-D*,---<i+r and
hence the coefficient of this term in Q is

Ck-t,k-t — Ck-t,k-t-i + • ■ ■ + (— l)k~'Ck-t.o = 8kt,

i.e., = 0 or 1 according as k ̂  t or k = t. Hence

(10)

Since

„k ,4 . ~k (Di ■ ■ ■ Die)
Ar..it - ZA,.-•.,-, + •• • + (- i) Za,= t      t \

c c vl   ■ • ■ 1 ;

f A + ■ • • + Dr D\ /Z?l •      Dr D\
\    k    i/       .j, if-

where ja — 0 and^'i-f • • ■ -\-j, = k, we may derive the following formula simi-
lar to (10):

(11)

If in (10) and (11) we set^'i of the D's equal to A, is equal to A, ■ ■ ■ ,ji equal
to Di then {A • • • A/1 • ■ • 1} and {A • ■ • Ö,Z)/1   •11} become re-
spectively    0'i! ■ • -^!){A ■ ■ • Di/ji ■ ■ ji]    and    (jti ■ ■ jt^{Di ■ ■ ■
DiD/ji ■ ■ ■ ji\ \ and we obtain expressions for these as sums of kth. powers
and as sums of terms of the type {ED/kl}.

An analogue of (7) is
(12) DEk = EkD + CkAEk-lD' + ■ ■ ■ +

where A= [A E], • ■ ■ , A>> = [A'-», E}. Hence
EiDEk-i = EkD + ck_ltlEk-lD' +-h Cu***-©"1 H-+ E'D<k-<\

and summing on / = 0, 1, • • • , k we have

* If we set D\ = Z)2 = • • ■ =Z>t=l in (10) we obtain the identity
^-Ct,,(*-l)*+C*,2(*-2)*-+(-l)*-iC*,*_,l* = *!.
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(13) |4 ^1 = Ck+l,xE"D + ■ ■ ■ + Ck+1,i+1E"-'D^ + • • • + A*>,

since

Ck,j 4- Ck—u 4- • ■ • -f" C/,j = Ci+i.j+i.

If the characteristic of §1 is p?*0 special cases of (12) and (13) are

(  E A(14) (a)    [D,E*]=D<*\ (b)    | ^|=z?(P-D.

Equations (11) and (14b) show that {A • • • A/1 ■ • 1} is expressible as
a linear combination of (p — l)-fold commutators, i.e., of the type Ap_1>
where Z?=A and £ is a sum of the other A's. Hence we see also that
(jil ■ ■ • jil) {A ■ • • A/ii ■ • ■ ji\ where ji+ ■ ■ ■ +ji=p is a linear sum
of (p — l)-fold commutators. If no ji = p, ■ ■ -jil)^0 (mod p) and so
{AA • • ■ A//1/2 ■ ■ • ji} is a linear sum of fj> —l)-fold commutators and
(9) becomes

(15) (A + A + • • ■ + A)p = Ap + Ap + ' ' • + A" + S,
where 5 is a linear sum of (p — l)-fold commutators.

3. If 35 is any system of linear transformations we define the enveloping
algebra 31 of 3) to be the totality of linear combinations of products of a finite
number of elements of 35. We call k the degree of the monomial AA ■ ■ • A,
Ae35. Suppose 3) is a Lie algebra of linear transformations and consider
AA   -   A where k<p if p^O and arbitrary if p=0. We have

A • • A-»A+iAA+> • • A = AA   • A + A • • A-J^A+i -A,
where A = [A+i, A]*35. Since any arrangement *i4 ■ • * 4 of 1, 2, • • » , k
may be obtained from 1,2, ■ ■ ■ , k by a sequence of transpositions of adjacent
indices

A*A, • • • At = AA ■ ■ • A + R,
where R is a sum of terms of degree <k. Hence

(A A • ■ • A)     , „
ll   1        1 } = {kl)DlD2 ' • • A + 5,

where degree of S<k. Since the left-hand side of this equation is expressible
by (10) as a sum of kth powers of elements in 35 and kl^O (mod p), we have
by induction that AA • • • A is a linear combination of Ith. powers of ele-
ments of 35 where l= k.
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Theorem 2. If 3) is a Lie algebra of linear transformations the elements
in the enveloping algebra 21 of degree k<p if p^O and of arbitrary degree if
p = 0 are expressible as linear combinations of Ith powers l^k, of elements of 3).*

If 3D is restricted   (10)   shows   that   {AA ■ • ■ A//1/2 ■ • -/r}«® if
ji+72-r- ■ • • -\-jr = p and A«3). This transformation is also expressible as a sum
of (£-l)-fold commutators of elements of 3). Since (A+A + ■ • ■ +A)P*
= ((A+A+ • • • +AK"1)pforJ/1,;2, ■ ■ • ,jr such that ii+/Y+ • • ■ +jr = p",
we have

|A  A •    A WA A   • A 1
1*11     til • • •   *lrj    l*«    *M * * •   £2J ■ ,

fKl 7«2 • • • J

where the summation is extended over the non-negative integers such that
the ordered set (kn, kir)^(kmi, km2, • • • , &ror) for and

*I»'+V+":V- + llr = (« = 1, 2, ■ • • ),
nil + m2 + ■ ■ ■ = p,

htm 1 + kamt + ■ ■ ■ = j, d = I, 2, • • • , r).

Hence we see by induction on k that {AA ■ ■ ■ A//1/2 • ■ • jr} «35 /or a//
Ji, ,/t, • • • such that ji+j2+ ■ ■ ■ +jr = pk.

4. Because of (14a) we are led to the definition: A restricted Lie Algebra 9f
of characteristic p ( = 0 or not) is an algebra (i.e., satisfies (1)) in which the
composition [x, y] (in place of xy) satisfies

(16) [x, y] = - [y, x],

(17) [[», y),z] + [[y,z], x] + [[■, «], y] = 0,

for every y there exists an element denoted as yp such that

(18) [ • ■ ■ [[*, y]y]* - y] = [*, y>]

for all x. A restricted subalgebra © of 9? is a subalgebra containing yv for every
y in <S. Similarly we define restricted ideal, etc.t

Suppose 9x is an associative algebra. We may define a new composition
[x, y] =xy—yx in terms of xy defined in 9?. It is readily verified that 9f is a

* This is a slight extension of a result announced recently by M. Zorn (Bulletin of the American
Mathematical Society, vol. 42 (1936), p. 485). Cf. H. Poincare, Sur les groupes Continus, Cambridge
Philosophical Transactions, vol. 18 (1899), pp. 220-255.

t For definitions of the important concepts in the theory of Lie algebras the reader is referred to
Jacobson, Rational methods in the theory of Lie algebras, Annals of Mathematics, vol. 36 (1935), pp.
875-881.

Pi A • • D,
h h ■ ■ ■ jr
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restricted Lie algebra if y is defined as the ^th power of y in 9?. We shall call
this Lie algebra the restricted Lie algebra determined by the associative 9t.

5. If 9t is any algebra the mapping ar: x-+xa is a linear transformation
and will be called the right multiplication determined by a. Suppose D is a
derivation in 9f. Equation (2c) gives the commutation relation

(19) [ar, D] = (aD)r.

Similarly we define at as x^-ax and call this mapping the left multiplication
determined by a. In place of (19) we have [at, D] = (aD) t. If 9? is a Lie algebra
ar= —at and, by (16) and (17),

[*, y]ar = [xar, y] + [x, yar}.

Thus a, is a derivation which we call inner.

Theorem 3. The totality of inner derivations of a (restricted) Lie algebra 9t
is a (restricted) ideal 3s in the d-algebra 35 of 9t. 3^9?/& where S is the centrum
of®.*

If ar and br are multiplications associated with a and 6 it follows directly
from the definition of 9? that ar + br = (a + b)r, a^ = (aa)r, [ar, br] = [a, b]r and
if 9i is restricted (aT)p = (ap)r. Hence 3 is a subalgebra of 3) and is restricted
if 9i is. Furthermore the correspondence a—>ar is a homomorphism between
91" and 3- Since the elements of (5 are the ones corresponding to 0 in this
homomorphism 9f/S^3. Equation (19) shows that 3 is an ideal.

Suppose 9i is associative and D a derivation. D is also a derivation in the
restricted Lie algebra determined by 9t Hence the d-algebra of as an asso-
ciative algebra is a restricted subalgebra of the d-algebra of 9? as a Lie algebra.
Moreover the inner derivations x—>[x, a] are derivations of the associative 9f
since

[xy, a] = [x, a]y + x[y, a].

Thus 3 is a restricted ideal in the d-algebra of the associative 9t
If 9c is associative, 3) its d-algebra, Üf3) and ceS the centrum of 9? then

cr = ct = c and it is easily verified that Z>ce3) also. Hence 3) has £ as well as
% as a set of multipliers under which it is invariant. A subalgebra @ of 3)
which contains with every element E also Ec for every c in 6 will be called a
S-sub'algebra of 3).

If 9J is arbitrary, Z>e35 the elements kedl such that kD = 0 are called D-con-
stants. Their totality is a subalgebra. If kD = 0 for all D then ß is a constant.
If 9fhas an identity 1 we have 12 = 1 and hence 1(10)4-(10)1 = \D or 1Z> = 0

* The centrum is the set of elements c such that [c, x] =0 for all x in 9J.
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212 NATHAN JACOBSON [September

so that 1 is a constant. More generally if 3)i is a subalgebra of 33 we denote
the set of elements k in 9t such that kDx = Q for all Dx<®h by 9f(3)i). 9?(3)i) is
a subalgebra. On the other hand if 9ti is a subalgebra of 9J we define 35(9ii)
to be the set of derivations E such that x\E = 0 for all xie9Ji. 3)(9ti) is a re-
stricted subalgebra of 3). Evidently 33(9?(3)i)) o 3)i and 9i(3)(9fi)) => 9?i. If 9?
is associative with centrum £, 35(9?i) is a restricted ©-subalgebra of 33.

© is a characteristic subalgebra of 9? if it is mapped on itself by every ele-
ment of 3). The subalgebra of constants 9?o, the centrum £ and the powers of
9i are characteristic. If © is characteristic, 3)(©) is an ideal. In particular
£)(£) is an ideal containing 3 if 9? is associative or a Lie algebra. The deriva-
tions mapping 9? on the characteristic subalgebra © also form a restricted
ideal ©. In the case of a Lie algebra or an associative algebra the ideal asso-
ciated in this way with £ is the annihilator of 3, i.e., the set of elements G
such that [ar, G] =0 for all ar. This is an immediate consequence of (19).

II. Derivations in an associative algebra with a finite basis
6. In the remainder of the paper 9J will denote an associative algebra

with a finite basis over %. We propose to study the (/-algebra 3) of 9i.

Theorem 4. If 9? = 9ii @ 9f2 and 9Ji2 =9Ji, 9?22 = 9i2 then 3) = 3)i©3)2 where
3); is isomorphic to the d-algebra of 9J,-.

9ii is characteristic; for 9f2 = 9?i and so the arbitrary element X\ of 9?i
has the form^yiZi, yi, Ziedtu Hence xj) =zZ,(yiZi)D ='^2(yiD)zi+^Zyi(z1D)edti
since this is an ideal. Similarly 9c2 is characteristic. Let 3),- be the ideals map-
ping 9t onto 9J;. Since 9fi n 9i2 = 0, 1>i n 332 = 0 and hence [3)i, 3)2] c 3)i n 3)2
=0.t If x=xi+x2, Xiedti and D any derivation, the mappings x^>x\D=xDi
and x—>x2Z> = xD2 are derivations in 3)i and 2>2 respectively. Since D = Dj +D2,
3) = 3)i©3)2. The isomorphism between 3)i and the d-algebra of 9ti follows
directly from the fact that the transformations of 3)i induce all the deriva-
tions in 9fi and map 9J2 into 0. Similarly 3D2 is isomorphic to the d-algebra
of 9i2.

Let Xi, x2, ■ ■ ■ , xr be a basis for 9f over % (9f = xi^+x2^+ ■ ■ ■ +xr%) and
suppose xiXj=^2lxpyt>ij, Ypi/eg. If D is a derivation in 9i and

(xiD, x2Z>, • • • , xrZ>) =        x2, • • • , xr)A, A = («„■), ai/eg,

then the condition (xtx^D = (xiD)xj = Xi(xjD) gives

(20) X aitpTpi,- = zZ "IkpiCtpi + 2~1 ykißCtpi        (i, j, k = 1, 2, • • • , f),
p p p

a set of w3 linear homogeneous equations for the coordinates ay of A. Con-

t [21,23] denotes the smallest subspace of 3) containing all the elements [A, B], where i4e?I,ß«$B.
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versely if A is any matrix whose coordinates satisfy (20) the linear transforma
tion D determined by A satisfies (xiX^D = (xiD)xj-\-xi(xjD) for all /, j and
hence (xy)D = (xD)y+x(yD) for all x, y, i.e., D is a derivation. Now suppose
$ is a field containing g and let 9?s = Xi^+x2I'+ • • • +xr® and 3)* be the
d-algebra of 9?Ä (over $). Evidently the matrix A also determines a deriva-
tion D* in 9JS. Furthermore since the maximum number of linearly independ-
ent solutions of (20) in S is the same as in $ it follows that if A, A, • • , A
is a basis for 3) then A*, A*, ■ ■ • , A* is a basis for 5D* and if [A, A]
=2lAMpi/, A" =SA"p< (aw, Jfp.-eg), then [a,-, a<] «2jflw*f> a? = 2jVp< and
hence [A*, A*] =SAVpw> (D*)p =J2D*vpi. Thus we have proved

Theorem 5. If'S) is the d-algebra of 9i ̂ ew 3)g   i/ze d-algebra of 9J$.
7. We now consider the d-algebra of a semi-simple algebra 9i. Since

9J = 9fiffi9?2ffi • ■ • ©3?* where 9fi are simple and 9?/ = 9?< we have as a con-
sequence of Theorem 4

Theorem 6. TAe d-algebra of a semi-simple algebra is a direct sum of alge-
bras isomorphic to the d-algebras of its simple components.

We suppose therefore that 9? is simple and let S denote its centrum. (S is
an algebraic field over g and is characteristic. Let So be the subfield of con-
stants of S. Because of (19),

[A, A]c0 = [Aco, A] = [A, Aco],

where c0 here denotes the multiplication determined by the element c0 of (So-
Thus 3) as well as 9f may be regarded as an algebra over So- We may there-
fore suppose that £o = ?5, i.e., the only constants in (5 are the multiples of 1
by elements of In this case we shall show that S is an inseparable field of
a simple type over

Let c be any element of S not in g. Since cAE, we have

p(c)D m (c' + e^hi H-+ 7r)ö
(21) = (re-1 + (r - l)c'-27i + • • • + 7r-i)(cD)

= P'(c)(cD),

where <p'(k) is the formal derivative of the polynomial p(\) in the polynomial
ring $[k]. If 4>(c) =0 is the minimum equation of c and D is chosen so that
cD?±0, (21) gives <p'(c) =0 and hence 0'(X) =0. Thus c is inseparable. In par-
ticular if the characteristic p=0, & = $ and 9? is a normal simple algebra.
If p^0, cp=ye% since cpD = pcp-l{cD) =0 for all A

Lemma 1. If % is a field of characteristic p^O, the polynomial \p — a is
either irreducible or a pth power of a linear factor in 5 [A].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



214 NATHAN JACOBSON [September

Suppose Xp — a is reducible and <p(K) of degree <p is an irreducible factor,
say

X" - a = p(\YP(\),      (<KX),         = 1.

Differentiating we obtain

0 - r0(X)-V(X)*(X) + 0(X)V'(X).

p'(\)^Q implies that </>(X)r divides r</>(X)r-1</./(X)i/'(X) and 0(X) divides
r<j>'(X)p(X). Since 0'(X) ^0 and (0(X), ̂ (X)) = 1, it follows that r = p and hence
^(X) has degree 0 contrary to the assumption ^'(X)^0. Hence ^'(X)=0 or
p(\) has degree 0 and may be taken to be 1. Then r</>(X)r~V>'(X) =0 and so
r = p, \p-a=<p(\)p.

We return to the consideration of the structure of £ in the case p^O. If
ß^g choose CieS, fg. Cip=yit^. The polynomial \p — yi is irreducible in 5[A]-
For otherwise X"-yi = (X- 8)p, Se% and Xp-yi = (X-ci)p = (X-5)p, Cj = Seg
contrary to the choice of Ci. The order of $1 = $(ci) over g is therefore p. If
S^g1 choose c2eß, fr?1- ft" = Y2«o: and the polynomial Xp —y2 is irreducible
in g1. Hence %2 = %1(ci) = 2i(ci, £2) has order p over and consequently p2
over Continuing in this way we prove that E = 5: (ci, c2, • • • , cm)> c* =7»
and 6 has order pm over g.

8. We determine first the structure of the d-algebra 3) of a normal simple
algebra 3f, i.e., £ = 5- The following theorem is fundamental.

Theorem 7. If © is a semi-simple subalgebra of 3f, any derivation in © may
be extended to an inner derivation in 9t.f

By Wedderburn's theorem 9? is the totality of tXt matrices with coordi-
nates in a normal division algebra @. In particular the elements z of © are
such matrices and we have a representation z—>z of © by matrices in ®. We
suppose first that this representation is irreducible. If D is any derivation
in © it is readily verified that

m        —O '-CD
are also representations of © by matrices (2tX2t) in ®. Since, as E. Noetherf
has shown, every representation of a semi-simple algebra by matrices in a
normal division algebra is completely reducible, any two representations with

t This proof is an extension of an argument communicated to me by r. Brauer.
t E. Noether, Nichtkommutative Algebra, Mathematische Zeitschrift, vol. 37 (1933), pp. 514—

541. The theorem is stated here only for simple algebras but the proof given is also valid for semi-
simple algebras.
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the same irreducible parts are similar. Thus the two representations in (22)
are similar, i.e., there exists a fixed non-singular matrix

such that

/an a21\
A=[ ),

\fll2 022/

/s 0\ /an a12\ _ /an a12\ /z 0\

\zD z) \a2i a2J     \a2i a22/ \0 z)

for all ze®. Hence

zan = anz, zai2 = a12z, (zD)au + za2X = a2iz,

(zD)ai2 + za22 = «22z.

By Schur's lemma, au and aX2 are either 0 or non-singular and both cannot
be 0 since A is non-singular. If an9^0, we set <z= — a^au1 and if an = 0, we
set a = —a22ai2_1. Then ae9t and zD = [z, a] as was to be shown.

If z^-z is not irreducible it is completely reducible and so there exists a
fixed matrix b in 9? such that

o-'zi =
Z2

and z—>z,- are irreducible representations of ©. As before

\(*Z>)< zj \0 z,/

are similar representations of © and there exists a matrix a,- such that
(zD)i= [zi, ffj]. Then if

fax
a2

b-1(zD)b=[b~1zb, a] and zZ)= [z, So*"1], MrhM.
As a special case we have

Theorem 8. The d-algebra of a normal simple algebra contains only inner
derivations.

Corollary. // 9J is simple, £>(@) =
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If Z>e2)(6), (xc)D = (xD)c for all x and all ce6. Thus D is a derivation of 9t
considered as an algebra over 6. By Theorem 8, D is inner and so 33(6) c 3
Since 3 => 33(6) we have equality.

Suppose again that 9i is normal simple. Theorem 8 implies that
33 = 3=9V5 where 9t is the restricted Lie algebra determined by the associa-
tive 9? and g is the centrum consisting of the multiples of 1. We may extend
g to the field J? such that 9tÄ = is the complete matrix algebra of order w2
over i.e., has a basis ei, (i,j=l, 2, ■ • , w) such that e<je*i«= 5,-tCn-
We consider the structure of the Lie algebra having basis el7 also and
multiplication table

(23) [eij, eu] = 5,-ken —

The centrum of     is Ü the totality of multiples of 1 =611+622+ • ■ ■ +enn.
This is an ideal as is .$„' = [$„, $„]. From (23) follows that et„ eH — esse^n
if t^s. Evidently every element of Jt„' has trace 0. Conversely if a =XAj°;<;'
and tr(a) =au+a22+ ■ ■ • +«„„ = 0,

a = (en — enn)an + (e22 — e„„)a22 + • • • + (e„_i,n-i — eBB)aB-i,B-i

+ X) «f»au«Än
1»*«

and so is the set of matrices of trace 0 and is generated by en — en„,
622 —cBn, ■ • ■ , Cn-i.n-i — e„, e(s (t?* s). These w2 — 1 elements are evidently line-
arly independent and hence form a basis for Since (ess — ett)p = e3S — elt,
ejt = 0 if />5^0 is the characteristic of I?, JcB by (15) contains the pth power of
every element belonging to it, i.e., is a restricted ideal. contains 1 if
and only if tr(l) = n=0 (mod p).

Suppose 23 is an ideal ^J? in J?„ and 6 =Xaj/3«j«23, Suppose
first /3U„^0 for some pair u, v, If w>2, choose t^v,        and then
[[[b, evu], etu], ett]ßüv1 = etue^8. If p^2, [[b, evu], evu] ( — 2ßuv)-1 = evue$ß. If

all/3,„, = 0 then 6 = en/3ii+e22ft2+ • • • +ennßnn and sinceßuu9^ßvv for some
pair w^z) and hence [o, (/3„u— /3,,,,)-1 = eu„e23. Thus in any case unless
n = p = 2 23 contains an est, s^t and since by (23), [est, $„] = $„', 33 sfc'.
BtM A,,

Any ideal of $„/$ the derivation ring of the associative algebra has
the form 23/1? where 23 is an ideal in the Lie algebra containing If p\n
the only such ideals are $ and Hence $„/$ is a simple Lie algebra, i.e.,
has no proper ideals.

If p\ n and either p^2 or w>2, J?B/has one proper ideal J?B'/$ and this
is restricted. It may be shown by a direct argument similar to the above that

/,f is simple except when p = n = 2 and hence the Lie algebra $„/$t is semi-
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simple. Since is the only proper ideal in S„/$ the latter is not a direct
sum of simple ideals, f

Theorem 9. If St is a normal simple algebra of order n2 and p\n2 then
the d-algebra 35 of 3i is simple.

Theorem 10. // 9? is normal simple and p\n2 but either py*2 or n>2 3) is
semi-simple though not simple.

To prove these theorems we note that a proper ideal 33 of 3) becomes a
proper ideal 23fi of 35fi the d-algebra of 3ts when % is extended to J?. By choos-
ing St so that 9tÄ = 3)Ä^$„/$ it follows that 35 has no such ideals if p\n2.
If p\n2 and either p?±2 or n>2, [3), 35]ffi^$„'/$ is a proper restricted ideal
of $>g and hence 3)'= [35, 3)] is a proper restricted ideal in 35. 35' is simple
since 35^ is.

If n = p = 2 it is easily seen that $2/$ and hence 35 is solvable.
9. We consider next the d-algebra 35 of the other extreme case, namely,

9? = S = 5(ci> ' cm) where cf =yt and the order of 9? over % is pm,
p^O. Let .0 be any element of 35 and consider the correspondence D-*
(ciD, c%D, ■ ■ • , cmD) mapping 35 on the space 9?(m> of ordered m-tuples of
elements of 9?. This correspondence is linear relative to § and since
CiD = c2D = • • ■ =cmD = 0 implies that D = 0 it is (1 — 1). Moreover if
(di, d2, ■ • • , dm) is an arbitrary element of 9t(m) there is a Z)e35 such that
dD = di. For 9t^3:[Xi, X2, • • ■ , Xm]/$ where % is the ideal having the basis
Xip — yu \f -72, • ■ • , Xmp —ym. If di(Xi, ■ ■ • , Xm), d2(Xi, ■ • • , Xm), ■ • • ,
dm(Xi, • • • , Xm) are arbitrary polynomials, then the transformation D de-
fined by

■r-> dc(Xi, X2, ■ • ■ , XOT)
c{\\, X2, ■ • • , Xm)Z) = "i(Xi, X2, • • • , Xm)

i dX,

is easily verified to be a derivation in 3 [Xi, X2, • • • , Xm]. If z(Xi, X2, • • • , X^e^
then zDety also. It follows that D induces a derivation in % [Xi, X2, • • • , Xm]/^J5,
i.e., in 9t and since dt(Xi, • • • , X„) were arbitrary, D may be chosen so that
c{D = di. We have therefore established an isomorphism between 35 and 9t(m)
considered as vector spaces over ft. The order of 9t(m) is mpm and hence the
order of 35 is mpm also.

Lemma 2. If 9t is any commutative field, D a derivation in it, and $ the
subfield of D-constants, a necessary and sufficient condition that the elements
yi, yz, ■ ■ ■ ,Jr be linearly dependent over g is that the Wronskian

f If p=0 a fundamental theorem due to E. Cartan, These, Paris, 1894, states that a semi-simple
Lie algebra is a direct sum of simple algebras. The algebras for p\ n show that this does not hold
for p7^0. A second example of this type will be given below.
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yi       y%   •  •   y, .

yiD      y2D   ■ ■ ■   yrD _

yjD^-» y2ör_1 ■ • • yrDr-1

The usual proof of this result for analytic functions is valid here.t As a
consequence we have

Lemma 3. The differential equation y(DT-\-Dr-1ax+ ■ ■ ■ +ar) = 0, a,e9t,
has at most r solutions yt, y2, ■ • ■ , yr in 9t linearly independent over %.

It has been shown byR. Baerfthat if 9^ is a field of the type g(ci,c2, ■ • •, cm),
c? = jie%, there exists a derivation D such that the /^-constants are precisely
the elements of Let D denote a fixed derivation of this type and set cD = c'
for any ce9t. Dp, Dpl, ■ ■ ■ are derivations and since 9t is commutative the
transformation Daa-\-Dpa\-\- ■ ■ ■ -\-D"m~ derivation for arbitrary
right multiplication a< ( = air) in 9?. If Da0-\-Dpax-T- ■ ■ ■ -\-Dpm~1am^=0, i.e.,
y(Z?a0+£'pa1.4- • ■ • +D" am-i) =0 for all y in 9?, it follows by Lemma 3
and the fact that g is the set of Z>-constants that all ß» = 0. Thus as the a;
vary in 9? we obtain in this way mpm linearly independent (over %) deriva-
tions and hence the complete algebra 33. We shall therefore call D a generator
of 3). Since D"m is a derivation we have

dp" m /jP"'-,öm_1 + Dpm~*bm_2 + ■ ■ ■ + Db0.

Taking commutators with D we have by (19),

o = D"m~ib^1 + D»m-2b^ + ■■ • + m,

and hence b' = 0, i.e., bi=ßit'$, and
(24) D"m = D^'ß^ 4- Z}p""X-2 + ■ ■ ■ + Dß0.

As a consequence of (19), we note also

(25) [Dpka, Dpib] = Dpka<*pi)b - DpiVpk)a,

where a(p,)=aDp'. If E = Da^0 then the E-constants are the same as the
Z>-constants since the multiplication a is non-singular and hence £ is a genera-
tor of 3) also.

Theorem 11. The d-algebra of the field 9? = 8 (ci, c2, • ■ • , cm), cf =7, is
simple except when p = 2,m = \.

t See, for example, T. Chaundy, Differential Calculus, Oxford, 1935, p. 106.
% R. Baer, Algebraische Theorie der differentiierbaren Funktionenkörper. I, Sitzungsberichte,

Heidelberger Akademie, 1927, pp. 15-32.
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Let 23^0 be an ideal in 3) and E = Db0+D"bi+ • • ■ +D*b,; b;^0,j<m,
belong to 23. We call j the length of E and suppose E chosen in 23 so that j
is minimal. We assert thaty = 0. For if j>0 we may suppose bj—l. This is
evident if 6/ =0 or &7-=&eg and if bj ^0, [E, D{bj)-1} = Db0*+D»b?+ ■ ■ ■
4-0^23. But if E = Db0+Dpb1+ ■ ■ ■ +D"i-1bj-1+D"'then

[E, Da] = D(ab0' - a'b0 - • • • - a^b^ - a<"'>)

4- D"ab{ + ■ ■ ■ + D^abJ^,.
[E, Da] has length <j and may be chosen 5^0 since by Lemma 3 a may be
chosen so that ab0' —a'b0— ■ ■ ■ — a^'^b^i — a(pi> ̂0. This contradicts the
minimality of j in 23 and shows that E = Db0, b0^0. Since E as well as D is a
generator of 3), by changing the notation we may suppose that 23 3 D. Then
23 3 [Da, D] =Da' also. Since the null space of the linear transformation D
in 9t has order 1, the order of 9t' the set of all a' ispm-\ over g. If 1 «9t' the
smallest space containing all a' and 1 is 9?. Since 23 => D and Da', 23 will then
contain Da for all a in 9J. Also if p^2, 23 =>UDa', Db]+i[Da'b, D]=Da"b
and since a" is not identically 0 and b is arbitrary, 23 3 Da for all a. Suppose
finally that p = 2 and 9?' = 1, say u' = l. Here 23d [[Z>2a, D], Db]=D2a"b
+Da'b". If w>l, a" is not identically 0 and hence b may be chosen so that
a"b = u. Set a'b"' = v. Sß?[D2u+Dv, Da]+D(va+ua'+a)'= D2a and
[D2a, Db]+D2a'b = Dab". Thus in any case unless p = 2, m = l, $5?Da for
all a and since [D**b, Da]+Da^b = D^b'a, 23 = all Z>^a so that 23 = 3).

If p = 2, m = \, 3) has order 2 and hence is solvable. In all other cases the
algebras 3) are simple algebras which, like inseparable fields, have no counter-
parts for p = 0.

If E is any derivation, the totality of expressions £p*a0+£p*~1Oi+ ■ • •
+Eas, atedt is, by virtue of (15) and (19), a restricted 9J-( = (S-)subalgebra
S of 3). Conversely if S is any restricted 9t-subalgebra of 3), S is generated in
this fashion. To prove this let E = D*eg<)+Dve~igi+ ■ ■ • +Dge, go^O, be an
element of smallest length in g. Since g is an 9t-algebra we may suppose that
go = 1 and then E = D"'+D^'~1g1+ ■ ■ ■ +Dge is unique. If F = Dpfh0+D"f'ih1
+ ■ ■ ■ +Dh/e®,f^e and

Fi = F — E"f-ek0 = D'^ko + ■ ■ ■ + Dkt-i

by (15) and (25). Fi has length g/— 1 and belongs tog. Repeating this proc-
ess we obtain an expression for F of the form Epf~ea0-{- ■ • • -\-EaS-e.

If as in I we denote the elements of 9? which are constants for all the deri-
vations in g by 9J(g) it is clear that 9t(g) coincides with the subfield © of
E-constants. On the other hand if E is any derivation, © the set of £-con-
stants, then the argument at the beginning of this section shows that E gen-
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erates the d-algebra 3)(©) of 9t considered as a field over ©. Hence ©(©) = (g,
i.e.,

®mm) = <s.
If © is any subfield of 9t, 3)(©) contains an element E such that the £-

constants are precisely ©. Hence 9t(35(©)) cannot be larger than © and so

9t(35(©)) =©.

We have therefore proved

Theorem 12. There is a (1-1) correspondence between the subfields © of 9?
containing g awe? <Äe restricted dt-subalgebras £ o/ /Äe d-algebra 3) o/ 9t oz>er
Tfe correspondence is given by either £ = £)(©) or © = 9t (£).

10. We now suppose that 9t is simple and that 9? s £ a g where 6 =
%(ci, c2, ■ ■ ■ , cm), cf =yt and p9^0. Let 3) denote the d-algebra of 9? over
g and £ that of £ over gf. If J9e33, Z) induces a derivation in £ and hence 3)
is homomorphic with a subalgebra £i of 6. Since 3)(£) is the set of elements
corresponding to 0 in this homomorphism, we have £i^3)/3)(£). But by
the corollary to Theorem 8, 3)(£) =3 and hence £i^3)/3- We wish to show
that @i = £.

9? may be regarded as a normal simple algebra over £ and there exists a
separable field £(5) over £ such that 9tX£(s) =£(5)« the matrix algebra of
order n2 with elements in £(5). As has been shown by Albert f the separable
extension £(5) of the inseparable field £ has the form &(ci, ■ • • , cm) =£s
where S is a separable field over g. Now consider 9?^. The centrum of this
algebra is £Ä = £(s) and if form a basis of 9? over £ they are
also a basis for 9tfi over £j} = £(s). It follows that9tÄ = 9? X £(s) = S(f)» = (£«)„•

The d-algebra of 9?^ is 35$ and the ideal of inner derivations of 35Ä is 3s-
If £* is any derivation in £Ä over the correspondence ^finCif-~*£jeifet?E*),
c, *e£s is readily verified to be a derivation in 9ts inducing E* in £Ä. Hence
3)fi/3s is isomorphic to the complete d-algebra of £ff and so has order mpm
over Since 35Ä/3s^(3y3)«, £>/3 has order w/>m over g. Comparing or-
ders we have £^3)/3.

Theorem 13. Suppose 9? is a simple algebra of order n2 over its centrum
£ = ,J (cu c2, ■ ■ ■ , cm), c? = y,, pT^O. Then the d-algebra of 35 over 9? is semi-
simple unless p = 2 and either w = 2 or m = 1.

Let 93 be a solvable ideal in 3). 23+3J is an ideal and (23+30/3 is a solva-
t A. A. Albert, Simple algebras of degree p' over a centrum of characteristic p, these Transactions,

vol. 40 (1936), p. 113.
t 23+3 denotes the smallest space containing 23 and 3-
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ble ideal in 2)/3^@. But by Theorem 11, g is simple. Hence (23+3)/3 = 0
or 23+3 = 3 and 23 c 3- However, by Theorem 10, 3 is semi-simple and so
23 = 0.

3) is not a direct sum of 3 and a second ideal. For we have seen (§5) that
the elements commutative with all elements in 3 are those mapping 9t into £.
If F is such an element, then F* the extension of F maps 9JÄ into £$ (cf.
Theorem 5). If e^F* = c<*egÄ, it follows from e^eui = d]keu that c,* = 0. Hence
(etjC*)F* = eij(c*F*) for c*egs. If this belongs to gfi we must have c*F* = 0.
Thus F* = 0, F = 0, and 3) is not a direct sum.

III. Theory of D-fields

11. In this part we propose to study 9i = % (ch c2, • • • , cm), c? =7,-, p^0
relative to the fixed derivation D and shall obtain several analogues of theo-
rems on automorphisms of cyclic fields. Without loss of generality we may
assume that g is the field of D-constants and hence D is a generator of the
d-algebra of 9t. We have seen that D satisfies (24),

D*  = D" h + D"m~2ß2 + + Dß„

and no equation of lower degree of the form Dr+Dr~1ai+
Suppose y\, y2, ■ • • , yPm is a basis for 9? and

• +ar, a,e9i.

(yiD, y2D, • • • , yp«D) = (yu y2, >>p»)A        A = (oty).

If/(X) is the characteristic function j XI —A j, then by the Hamilton-Cayley
theorem, f(D) =0. Since the degree of/(X) is pm we have

(26) /(X) = I XI - A j = X"™ - \"m 'fr X0„

Since the characteristic and minimum equations of A are identical, A is simi-
lar to

ro 0

B =

1 ß-
0

0i
0

1 Ö
It follows that 9f has a basis of the form 2, zD, zD2, ■ ■ ■ , zD"m-1, i.e., 9t is a
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cyclic space relative to the linear transformation ZXf
A polynomial of the form Xpe+Xpe_1pi+ • ■ • +Xpe will be called a p-poly-

nomial.% A subfield © of 9? containing % and vD for every v in © will be called
a D-subfield of 9J. Thus © is a space invariant under the transformation D.

Theorem 14. There is a (1-1) correspondence between the D-subfields of 9i
and the p-polynomial factors off(\).

Any subspace © of 9J is cyclic with generator w. If g(X) is a polynomial
of least degree such that wg(D) = 0 then g(X) is the minimum function of D
acting in © and the order of ©= degree of g(X). g(X) is therefore uniquely
determined by © and is a factor of /(X). For if h(K) =/(X)g(X) +g(X)r(\)
= (g(X),/(X)) then wh(D)=0 and since g(X) is minimal, g(X)=A(X). Con-
versely if g(X) is a factor of /(X), /(X) =g(X)£(X), the vectors t> such that
üg(Z))=0 form an invariant subspace ©. ©3z£(D), zd(D)D, • • • if z is a
generator of dt, and if the degree of g(X) is r, zk(D), zk{D)D, ■ • • , zk(D)Dr~1
are linearly independent. Hence the order of © is =r. On the other hand the
minimum function of D in © is g(X) so that order of © is r, <& = (zk(D),
zk(D)D, • • • )• Thus we have a (1-1) correspondence between the invariant
subspaces © of SR and the factors g(X) of/(X). If © is a field, D is a generator
of the d-algebra of © over % and hence g(X) is a ^-polynomial. Conversely
if g(\) is a ^-polynomial and vh %«©, i.e., vig(D) = vng(D) =0, then since g(D)
is a derivation, viv2g(D) = (vig(D))v2+v1(v2g(D)) =0 so that © is closed under
multiplication and hence is a .D-subfield of 91.

Suppose g(\)=\re+\pe~lpi+ ■ ■ • +Xp„ Ä(X)=Xp/-r-Xp/-1o-1+ • • • +Xoy
and e^/. Then g(X)-Ä(X)pr"/=X^Vi4- • • ■ 4-Xn_i. By repeating this pro-
cess we may express g(\) in the form

«(X) = Ä(X)"-" + Ä(X)**-'V + • • • + A(X)W_, + r(X) (», = n),

where r(X) is a ^-polynomial of degree </>/. Since r(X) is the remainder ob-
tained by dividing g(\) by A(X), by continuing the euclid algorithm we find
that (g(X), h(\)) is a p-polynomial.

If k(X) is any polynomial (coefficients in g), then

X* = *(X)?,(X) + *XX) (j = 0, 1, 2, • ■ • ),
where degree s,(X) <degree k(X) = r. Since there are at most r independent
polynomials of degree <r there exist elements, a0, oti, ■ ■ • , ar not all 0 such
that 5r(X)a0+^r-i(X)ai4- • ■ • +j0(X)a, =0 and hence

t For a discussion of cyclic spaces see Jacobson, Pseudo-linear transformations, Annals of Mathe-
matics, vol. 38 (1937), p. 496.

t This term is due to O. Ore, On a special class of polynomials, these Transactions, vol. 35 (1933),
p 560.
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A(X) = X"a„ + \v-lai -\-+ \ar = k(\) zZ ?*(X)«/,

i.e., any polynomial is a factor of some p-polynomial.] Since the h.c.f. of ^-poly-
nomials is a ^-polynomial, the ^-polynomial of least degree divisible by k(X)
is unique. We denote it by {k(X)}.

Now suppose © is a subspace of 9J invariant under D and k(X) is the mini-
mum function of D in ©. Let {©} denote the enveloping field of ©. {©} is a
Z)-field and D has minimum function {&(X)j in {©}. If ©1 and ©2 are in-
variant subspaces, £i(X), k2(X) the corresponding minimum functions, then
©i+©2 and ©ifl ©2 are invariant and the associated functions are respec-
tively [kx{\), k2{\)} and (£X(X), £2(X)).

12. Let 9JJ denote the algebra of linear transformations generated by D
and the multiplications of 9?. Since Dpm~1ai+DJ,m~2az + • ■ ■ +apm = 0 implies
all a, = 0, 30? has order p2m over g and hence is isomorphic to %pm the algebra
of all pmXpm matrices in The multiplication of the elements of 90? may be
ascertained from the multiplications of the elements of 9? and the rules

(27) (a) aD = Da + a',      (b) f(D) = D"m - Dpm~iß1 - ■ ■ ■ - Dßm = 0.

Let c be an arbitrary element of 9? and consider the powers of A = D+c.
From (27a) we obtain by induction

(28) A* = (D + cY = Dk + C».xD^Fi(c) + Ck,2Dk~W2(c) + ■■■ + Vk(c),

where

(29) Fx(c) = c,      Vfa) = F3-_x(c)' + V^{c)c.

For k = p>, (28) specializes to

(30) D?' = (D + cy = Dpi + Vj(c).

A evidently satisfies (27a), and from (30) and (27b) we have as the con-
dition that A also satisfies (27b),

(31) V(c) = Vpm(c) - V^-i^ßi- Fi(c)(8„ = 0.

On the other hand if A satisfies (27) the correspondence /)—>A, a—>a defines
an automorphism of 9J? and conversely. Since every automorphism of
Wl^ftpm is inner there exists an element Belttl such that

B~xaB = a,      B~lD\B = D

for all a in 9i. Since 9{ has maximum order for a commutative subfield of W,
B = oe9J and hence the second condition gives

f This result is due to Ore, loc. cit., p. 581.
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(32) c = trW,

i.e., c is a logarithmic derivative. We have therefore proved

Theorem 15. A necessary and sufficient condition that cedt be a logarithmic
derivative is that (31) hold.

This is an analogue of Hilbert's theorem on the elements of norm 1 in a
cyclic field. V(c) takes the part of the norm and derivation that of the gen-
erating automorphism of the cyclic field.

We denote the set of logarithmic derivatives by ?. Since —b'/b
= (b~1)'/(b~1)a.Tid b'/b+c'/c = (bc)'/bc, 2 is a group under addition and the
correspondence b—*b'/b establishes a homomorphism between the multiplica-
tive group of 9? and 2. The elements corresponding to 0 here are those of g.
Hence S^9?/g.

By means of the recursion formula (29) we may prove by induction

' f'      / c \ a /c' \P

where the summation in PtJ- is extended over all non-negative integers such
that

a + ß 4- 7 4- • • • = £,       a + 2ß + 3y 4- • • • = /.

(The coefficients in P,,- are understood to be the integers obtained by cancel-
ling the common factors mj\/(alßl ■ ■ ■ )(l!)a(2!)" ■ • • .) By (33) it is easily
seen that Vp(c) =cp4-c(p_1>. Since

zv = (D^-y = (d*-1 + vp>-i{c)y = Dt* + VA4,
we have

(34) vpi(c) = (7P>-.(C))* + Wt*m*-**\M .
and hence

(35) Vpi{c) = c* + (et»-1')"1'-1 4- (c(p'-»)pi-* -I-4- c«f-»V

Then Vpl (c)' = and so by (27b), (V(c))' = 0, i.e., V(c)e% for any c in dt.
Also by (35), or more directly by (30),

(36) V(b + c) = V(b) + V(c).
University of Chicago,

Chicago, III.
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