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Abstract. We prove that the Mazur-Tate elements of an eigenform f sit
inside the Fitting ideals of the corresponding dual Selmer groups along the

cyclotomic Zp-extension (up to scaling by a single constant). Our method

begins with a construction of local cohomology classes built via the p-adic local
Langlands correspondence. From these classes, we build algebraic analogues of

the Mazur-Tate elements which we directly verify sit in the appropriate Fitting

ideals. Using Kato’s Euler system and explicit reciprocity laws, we prove
that these algebraic elements divide the corresponding Mazur-Tate elements,

implying our theorem.

1. Introduction

Associated to a newform f ∈ Sk(Γ1(N), ψ,Qp) is its collection of Mazur-Tate
elements θan

n,r(f) ∈ O[Gn] with n ≥ 0, O/Zp finite, and Gn ∼= Gal(Q(µpn/Q). Here
the superscript ‘an’ is meant to remind us that these elements are analytically
defined and are connected to L-values via1

χ(θan
n,r(f)) = χ(−1) · (r − 1)! · pn(r−1) · τ(χ−1) · L(f, χ, r)

(−2πi)r−1Ω±f

where χ is a primitive Dirichlet character of conductor pn and Ω±f are the canonical

periods attached to f as in [36].
When f corresponds to an elliptic curve E, Mazur and Tate in [25] conjectured

that θan
n,r(f) (defined with respect to an appropriate period, which should coincide,

up to p-adic unit, with the canonical period when the Galois representation on E[p]
is irreducible) belongs to the Fitting ideal of the corresponding (dual) Selmer group.
In fact, they formulated their conjecture more generally, looking at Selmer groups
over any abelian extension of Q. However, as the methods of this paper are rooted
in Iwasawa theory, we restrict ourselves to the case of p-power cyclotomic fields and
aim to prove an analogous conjecture for modular forms of arbitrary weight.

To state our main theorem, we first set some notation. Let ρf denote the (co-
homological) p-adic Galois representation attached to f and let Vf denote the un-
derlying vector space. Let V ∗f denote the linear dual of Vf and let T ∗f denote a

Galois stable lattice of V ∗f . Set A∗f = V ∗f /T
∗
f and let H1

g (Q(µpn), A∗f ) denote the

Block-Kato Selmer group attached to A∗f over Q(µpn).
The following hypotheses will be needed for our main result:

(Irred) ρf and ρf |GQp
are irreducible;

(No pole at s = r) the local Euler factor of f at p does not have a pole at s = r;

1See Remarks 10.1.1 and 10.1.3 if you were expecting χ to be replaced by χ−1.
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there is a basis of T ∗f such that if we identify Aut(T ∗f ) with GL2(O),(Euler)

then the image of ρf (T ∗f ) contains SL2(O).

Theorem A. If (Irred), (No pole at s = r), and (Euler) hold, then there exists a
non-zero constant C ∈ O (independent of n and r) such for all n ≥ 0

C · θan
n,r(f) ∈ FittΛn(H1

g (Q(µpn), A∗f (1− r))∨)

where Λn := O[Gn] and ∨ denotes Pontryagin dual.

Theorem A should be viewed as a “finite-level” (weak) main conjecture for f .
When f is ordinary at p, one can deduce this theorem directly from the main con-
jecture under relatively mild hypotheses simply by using standard control theorems
(see for instance [22, Theorem 1.14]). We note though that (Irred) forces f to be
non-ordinary at p. In particular, the standard control theorems no longer hold and
there seems to be no direct connection between the main conjecture and Theorem A
in this case. We further note that our theorem holds without any restriction on the
power of p that occurs in the level of our form: we have no crystalline hypotheses
nor a finite slope hypothesis.

We will discuss the constant C appearing in the statement of Theorem A later
in the introduction, but for now let us just say that it arises because of our inability
to compare two (potentially different) normalizations of the periods attached to f .

Our method of proof of Theorem A follows two steps. First we define the notion
of an algebraic θ-element, θalg

n (f) ∈ Λn, which is meant to be the algebraic counter-
part of the corresponding Mazur-Tate element. The construction of such elements
dates back to Perrin-Riou’s work [30] (see also [33, 32]). As these elements are
defined purely algebraically, we are able to check directly that θalg

n (f) belongs to
the Fitting ideal appearing in Theorem A. The second step then is to prove that
θalg
n (f) divides C · θan

n,r(f) in Λn. Unsurprisingly, our proof of this fact comes via
Kato’s Euler system.

Our construction of algebraic θ-elements relies upon certain local cohomology
classes cn,j ∈ H1

e (Qp(µpn), Tf (1+j)) which for n ≥ 1 satisfy the three-term relation

corn+1
n (cn+1,j) = ap(f)cn,j − ψ(p)pk−1 resnn−1(cn−1,j).

With these classes in hand, we can directly define θalg
n (f). Namely

θalg
n,r(f) =

∑
σ∈Gn

〈
cσn,r−1, wn

〉
n
σ−1 · charΛ H2

P (T ∗f (1− r))ι.

Here (wn)n is a generator of H1(T ∗f (1 − r)) which is free of rank 1 over Λ :=

O[[Gal(Q(µp∞)/Q)]] and 〈·, ·〉n is the Tate local duality pairing at p. (See section
12.1 for the remaining notation.)

The relation of θalg
n (f) to θan

n,r(f) comes via Kato’s Euler system as we prove that

C · θan
n,r(f) =

∑
σ∈Gn

〈
cσn,r−1, zK,n

〉
n
σ−1

where (zK,n)n ∈ H1(T ∗f (1 − r)) is Kato’s Euler system and C is some non-zero

constant (independent of n and r). The divisibility of C · θan
n,r(f) by θalg

n,r(f) then
follows immediately from Kato’s proof of the main conjecture without p-adic L-
functions [20, Theorem 12.5].

We note that in section 8.2, when we introduce algebraic θ-elements, we give a
different definition from the one above. This alternative definition is more easily
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connected with Fitting ideals, while the above definition more easily relates to
θan
n,r(f) via Kato’s Euler system. In section 11.2, we verify that these two definitions

are the same.
We are now left to describe our construction of the local classes cn,j . We note that

these local classes have appeared in literature in several places before. For example,
Kobayashi in [23] made use of such local points to define plus/minus Selmer groups
of elliptic curves at supersingular primes. His construction proceeded via the formal
group attached to the elliptic curve. As we are working with arbitrary weight
modular forms, this geometric object is unavailable to us. We instead give a purely
local construction of these classes via the p-adic local Langlands correspondence.

Namely, let V denote an irreducible de Rham representations of GQp defined over

a finite extension L/Qp; we will produce elements cn,j ∈ H1
e (Qp(µpn), T (1 + j))

for T a GQp -stable lattice in V . For the remainder of the introduction, we will
assume that j = 0 to ease the exposition and simply write cn for the class cn,j . To
construct these classes, we first produce, for each n ≥ 0, a functional on H1

Iw(V ∗) :=(
lim←−nH

1(Qp(µpn), T ∗)
)
⊗Qp which:

(a) factors through H1(Qp(µpn), T ∗)⊗Qp,
(b) takes integral values on H1(Qp(µpn), T ∗), and
(c) kills H1

g (Qp(µpn), T ∗).

By Tate local duality, such a functional corresponds to a class cn ∈ H1
e (Qp(µpn), T (1)).

To produce this functional, we identify H1
Iw(V ∗) with ψ-invariants of the (ϕ,Γ)-

module D(V ∗). The theory of p-adic local Langlands gives rise to a Banach space
representation π(V ) of GL2(Qp), and moreover, an embedding

D(V ∗)ψ=1 ↪→ π(V )∗

where the superscript ∗ on the right denotes the topological dual.
Thus, to define functionals on D(V ∗)ψ=1, it suffices to simply give natural el-

ements of π(V ). Such natural elements arise from the locally algebraic vectors in
π(V ). Namely, there is an embedding

πsm(V )⊗ (Symk(L2))∗ ↪→ π(V )

where πsm(V ) is the smooth GL2(Qp)-representation associated to V via classical
local Langlands. Let vnew denote a newvector of πsm(V ) and let vhw denote a

highest weight vector of (Symk(L2))∗. For n ≥ 0, set

dn := ( 1 1
0 1 )

(
pn 0
0 1

)
(vnew ⊗ vhw) ∈ π(V )

which, as described above, gives rise to a functional on H1
Iw(V ∗).

Moreover, we have the following explicit reciprocity law, proven (essentially) by
Colmez [10, Prop. VI.3.4]: if z′ ∈ H1

Iw(V ∗) ∼= D(V ∗)ψ=1, we have

{dn, z′} = 〈αn, exp∗(z′n)〉

where z′n is the projection of z′ to H1(Qp(µpn), V ∗) and αn is some element of
DdR,n(V (1)) which is described precisely in Corollary 7.3.2. For now, let us just
mention that αn arises by viewing (1−ϕ)−1(dn) in a generalized Kirillov model of
π(V ), and then evaluating at p−n.

From this explicit formula for {dn, z′} we see immediately that the pairing factors
through H1(Qp(µpn), V ∗), as the dependence of the right hand of the formula on
z′ is only through z′n. Moreover, the formula vanishes for z′n ∈ H1

g (Qp(µpn), V ∗)
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as this subspace is the kernel of exp∗. In particular, there are unique classes cn ∈
H1
e (Qp(µpn), V ∗) such that

{dn, z′} = 〈cn, z′n〉n;

here the pairing on the right is the pairing on Galois cohomology arising from Tate
local duality. The fact that the cn satisfy a three-term relation follows from the
Hecke properties of vnew. Further we mention that this reciprocity law is the key
to our comparison of

∑
σ∈Gn 〈c

σ
n, zK,n〉n σ

−1 with θan
n,1(f), as one recovers L-values

from zK,n via the dual exponential map.
We now discuss the constant C occurring in the statement of Theorem A. The

above construction of the classes cn only determines them up to a scalar as the class
vnew⊗vhw is only well-defined up to a scalar. Our normalization of the choice of this
element is spelled out in section 7.7 and is well-defined up to a p-adic unit. For now,
we just mention that our normalization guarantees that vnew⊗vhw ∈ π(T ) and thus
the cn take values in T (1) (rather than just in V (1)). It appears difficult however to
compare this normalization to the normalization one makes to arise at the periods
Ω±f which are also well-defined up to a p-adic unit. Without a comparison of these
two normalizations, we are obliged to state our theorem with the ambiguity of a
single non-zero constant in O (independent of n and r).

Lastly, we note that Chan-Ho Kim in [21] has recently proven (under some
assumptions) Theorem A in the crystalline case with j = k/2, and moreover, he
can control the periods that appear when 2 ≤ k ≤ p− 1.

Regarding the format of the paper, we have divided the paper into two parts. The
first part is entirely local and devoted to the construction of the classes cn,j . The
second half of the paper is more global in nature and is devoted to the construction
of algebraic theta elements and the proof of Theorem A sketched above. The second
part depends on the first part only through (a) the existence of the local classes
cn,j satisfying a three-term relation, and (b) an explicit formula for

∑
σ〈cσn,j , z′〉nσ

(Proposition 7.4.1) which is derived through the explicit reciprocity law. The reader
only interested in the global methods from Iwasawa theory may attempt to read
the second part with only a limited knowledge of the first part.

Part 1. The local theory

2. Rings

We introduce various rings of Fontaine using the notation introduced by Berger
and Colmez.

2.1. Rings in characteristic p. The basic ring Ẽ+ is the perfection of the char-
acteristic p ring OCp/p:

Ẽ+ := lim
←−
x7→xp

OCp/p.

This ring admits another description, namely

Ẽ+ := lim
←−
x 7→xp

OCp ;

with this latter description, the multiplication is given in the obvious way, but the
addition involves taking an appropriate limit (since raising to the p-th power is
a multiplicative homomorphism of OCp , but is not an additive homomorphism).
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These two definitions give the same object as the map from the second projective
limit to the first given by reducing each component modulo p is an isomorphism.

The second description has an advantage over the first, in that it puts into

evidence the fact that Ẽ+ is a complete valuation ring, with valuation given simply
by projecting onto the initial component in the projective limit, and taking the
p-adic valuation.

We let Ẽ denote the field of fractions of the valuation ring Ẽ+. Alternately, it
can be described as

Ẽ := lim
←−
x7→xp

Cp,

with multiplication being given componentwise in the projective limit, and addition
being given by the same formula as before.

We choose now a generator of Zp(1) and denote the corresponding element of

Ẽ+ as ε. The valuation of ε − 1 is equal to p/(p − 1), which is positive. Thus we

also have the description Ẽ = Ẽ+[(ε− 1)−1].
We define

E+
Qp := Fp[[ε− 1]] ⊂ Ẽ+,

and
EQp := Fp((ε− 1)) ⊂ Ẽ.

The valuation on Ẽ induces the usual discrete valuation (with the slightly odd
p/(p− 1) normalization mentioned above) on EQp .

The field Ẽ is algebraically closed, and is in fact the completion of the algebraic

closure of EQp , or, equivalently, of the separable closure of EQp . We write E ⊂ Ẽ to
denote the separable closure of the field EQp (it is a non-complete valuation ring),

and also write E+ := E∩ Ẽ+ to denote the ring of integers in E. As already noted,

Ẽ is the completion of E. Finally, we let ẼQp denote the completion of the radiciel

(i.e. purely inseparable) closure of EQp in Ẽ, and write Ẽ+
Qp := ẼQp ∩ Ẽ+.

An important point is that Aut(Ẽ/EQp) = Gal(E/EQp) = H, where H ⊂ GQp is

the kernel of the cyclotomic character, and also that EQp = EH , while ẼQp = ẼH .

2.2. General notational principles. In addition to introducing a host of fields
and domains, the preceding subsection illustrates some general notational conven-
tions: (i) Objects in characteristic p are denoted via E; (ii) The objects with tildes
are in some sense complete, while the objects without the tildes are the purely alge-
braic, “decompleted” analogues; (iii) The objects with + superscripts are integral
with respect to the valuation; (iv) The objects with the Qp-subscript are the ones
with trivial Galois action.

There will be some further notational conventions introduced below: (v) objects
in characteristic zero obtained from the Es by Witt vector or Cohen ring construc-
tions will be denoted with an A; (vi) objects obtained from the various As by
inverting p will be denoted with a B.

2.3. Rings in characteristic zero. The key ring is now

Ã+ := W (Ẽ+)

where W denotes Witt vectors. This gives rise to other A-type rings related to
(ϕ,Γ)-modules, and also underlies the definition of Bcrys and BdR. We let ϕ denote

the Frobenius on Ã+. As well as its p-adic topology, the ring Ã+ has another



6 MATTHEW EMERTON, ROBERT POLLACK, AND TOM WESTON

topology, which is more natural to consider, namely its so-called weak topology: we

think of the the Witt vectors W (Ẽ+) as being isomorphic to the product
∏∞
i=0 Ẽ+,

and give them the corresponding product topology, where Ẽ+ is given its valuation
topology.

An important element in Ã+ is T := [ε] − 1. (Here, as usual, [x] denotes the

circular lift to the Witt vectors of an element x ∈ Ẽ+.) Note that this lifts the

positive valuation element ε− 1 of Ẽ+. Thus the weak topology on Ã+ is also the
(p, T )-adic topology.

Since T lifts ε− 1, we find that

T ≡ [ε− 1] mod pÃ+,

and hence that
̂̃

A+[
1

T
] =

̂
Ã+[

1

[ε− 1]
]

(where ̂ denotes the p-adic completion); we denote these (equal) rings by Ã. Since

Ẽ = Ẽ+[(ε− 1)−1], we have the more canonical description

Ã := W (Ẽ).

We now imitate all the other E constructions in this new A context. Firstly, we
set

AQp := Ẑp((T )) ⊂ Ã

(this is a discretely valued Cohen ring with uniformizer p and residue field EQp),
and then we write

A+
Qp := Zp[[T ]] = AQp ∩ Ã+.

We then let A denote the p-adic completion of the maximal unramified extension

of AQp (in Ã), which is a Cohen ring with residue field E, and let A+ := A ∩ Ã+.

Since E+ is dense in Ẽ+, we find that A+ is weakly dense in Ã+.
Finally, we write

ÃQp := W (ẼQp),

and

Ã+
Qp := W (Ẽ+

Qp) = ÃQp ∩ Ã+.

The H-action on Ẽ induces an H-action on Ã, and

ÃH = ÃQp .

Since H fixes ε, we find that the H-action on Ã fixes T , and hence fixes AQp
elementwise. Thus it preserves A, and we have

AH = AQp .

2.4. The B-rings. We can replace A by B everywhere by inverting p. There is
the famous surjection

θ : Ã+ → OCp ,

which extends to a surjection

θ : B̃+ → Cp,
and as usual we write B+

dR to denote the completion of B̃+ with respect to the
kernel of θ.
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Note that the kernel of θ in Ã+, and hence also in B̃+, is principal, generated
by T/ϕ−1(T ). This latter element is traditionally denoted ω. Note also that the

famous element t (see just below) does not belong to B̃+, but only to the completion
BdR; there is thus some advantage to being aware of the element ω, which generates

the kernel of θ in B̃+. Indeed, we will have use for ω later.
Recall that B+

dR is a DVR with uniformizer t := log(1+T ) and with residue field

Cp (given by the extension of θ, which we again denote by θ : B+
dR → Cp). We set

BdR := B+
dR[1/t] = B+

dR[1/T ].

(To see the asserted equality, note that

t = log(1 + T ) = T

( ∞∑
n=0

(−1)n
Tn

n+ 1

)
,

where the second factor in the right-hand expression is a unit in B+
dR, as T ∈ ker θ.)

There are further observations regarding T , t, and B+
dR that are useful. For

example, ϕ(T )/T = ϕ(ω) is a unit in B+
dR (since its image under θ is p, which is

non-zero). Thus in B+
dR, the elements t and ϕn(T ) differ by a unit for all n ≥ 0.

On the other hand, if n < 0 then ϕn(T ) is a unit in B+
dR (since its image under θ

is non-zero).

There are two more rings that we have to introduce, namely Bmax and B̃+
rig.

From the point of view of p-adic Hodge theory, these rings play the same role
as B+

crys (i.e. they compute the crystalline Dieudonné module), but they have the
advantage of being better behaved, and relating more directly to the rings of (ϕ,Γ)-
module theory. The definitions are as follows: we first let Amax denote the p-adic

completion of Ã+[ω/p], and then set Bmax := Amax[1/p]; these are both subrings

of BdR. Note that ϕ(ω) ≡ ωp mod pÃ+ (by definition of the action of ϕ on a ring

of Witt vectors), so that ϕ(ω)/p ∈ Ã+[ω/p]. Thus ϕ extends by continuity to Amax

and Bmax. However ϕ is not surjective on either of these rings, and we set

B̃+
rig :=

⋂
n≥0

ϕn(Bmax);

we then have, by construction, that ϕ is bijective on B̃+
rig. The sequence of inclusions

B̃+ ⊂ B̃+
rig ⊂ B+

dR

will be of fundamental importance to us.
The following proposition relating divisibilities in the rings involved in these

inclusions may seem technical, but is crucial.

Proposition 2.4.1.

(1) If x ∈ Ã+ (resp. B̃+) is such that ϕn(x) ∈ ker θ for all n ≥ 0 (i.e. if t

divides ϕn(x) in B+
dR for all n ≥ 0), then x ∈ T Ã+ (resp. T B̃+).

(2) If x ∈ B̃+
rig is such that ϕn(x) ∈ ker θ for all n ∈ Z (i.e. if t divides ϕn(x)

in B+
dR for all n ∈ Z), then x ∈ tB̃+

rig.

Proof. The first part is [6, Lemma III.3.7]. For the second part, in [6, Lemma
III.3.4], the analogous statement for B+

max is proven which immediately implies our

statement for B̃+
rig. �
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Corollary 2.4.2. For any m ≥ 0, the inclusion ϕm(T )Ã+ ⊂ Ã+ ∩ ϕm(T )B̃+
rig is

an equality (and similarly with B̃+ in place of Ã+.)

Proof. Let x ∈ Ã+ ∩ ϕm(T )B̃+
rig. Then ϕ−m(x) ∈ Ã+ ∩ T B̃+

rig. Then for any

n ≥ 0, we have ϕn−m(x) ∈ ϕn(T )B̃+
rig ⊂ ker θ, and so part (1) of the preceding

proposition shows that ϕ−m(x) ∈ T Ã+. Applying ϕm, we find that x ∈ ϕm(T )Ã+,
as required. �

3. (ϕ,Γ)-modules and p-adic Hodge theory

We will recall the constructions of (ϕ,Γ)-modules attached to representations
of GQp , as well as various constructions in p-adic Hodge theory, and the relations
between them. This material is all standard, but the systematic use of the rings
with tildes is perhaps less familiar than it might be, and is very important for us,
in part because it gives a very simple approach to relating (ϕ,Γ)-module theory to
p-adic Hodge theory.

3.1. (ϕ,Γ)-modules. If T is a continuous GQp -representation on a finite type Zp-
module, then we define

D(T ) := (A⊗Zp T )H ,

which is an étale (ϕ,Γ)-module over AQp . We can equally well define

D̃(T ) := (Ã⊗Zp T )H ,

which is an étale (ϕ,Γ)-module over ÃQp . (Note that in this second context, the
notion of étale is particularly simple: the map ϕ should simply be bijective.) If V is
a continuous GQp -representation on a finite dimensional Qp-vector space (a p-adic

representation, for short), then we define D(V ) and D̃(V ) by the same formulas (or,

perhaps a little more naturally, we could use B and B̃ instead), and obtain étale

(ϕ,Γ)-modules over BQp or B̃Qp instead. Either one of these functors, D or D̃, gives
an equivalence of categories between GQp -representations and étale (ϕ,Γ)-modules.
(This is probably most familiar in the D context.)

Now one can similarly define D+(T ) and D̃+(T ) using A+ and Ã+ instead. If
T is torsion over Zp, then D+(T ) is a finite type A+

Qp -submodule of D(T ), which

generates D(T ) over AQp . However, if T is not torsion, then D+(T ) vanishes in
general. Similarly, in the case of a p-adic representation V , it is generally the case
that D+(V ) vanishes. One says that V is of finite height if D+(V ) generates D(V )
over AQp , and this is a very restrictive condition.2

On the other hand, the module D̃+(V ) always generates D̃(V ) over ÃQp . Thus

there is an asymmetry between the D+ context and the D̃+ context, which is not
there when we remove the +.

For later use, we note that there is a kind of trace map Tr : D̃(V ) → D(V ),
which restricts to the identity on D(V ) (or equivalently, it is a projection onto
D(V ), i.e. it is surjective, and Tr ◦Tr = Tr), and with the additional properties
that it is continuous (with respect to the weak topologies on source and target),

2Related to this, Colmez [7] has proved a conjecture of Fontaine, stating that all crystalline
representations are of finite height. The theory of Wach modules [3] is a strong witnessing of this

fact, since the Wach module of a crystalline representation V is pretty close to D+(V ).
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it is AQp -linear, and Tr ◦ϕ−1 = ψ ◦ Tr . (Here ψ : D(V ) → D(V ) is the usual left
inverse of ϕ on étale (ϕ,Γ)-modules.)

Using Tr, we may define a map

D̃(V )→ lim
←−
ψ

D(V ) =: D(V ) �Qp,

via

z̃ 7→
(
Trϕn(z̃)

)
n≥0

.

This map is injective (but not surjective in general), and the image of D̃+(V ) is

equal to the intersection of the image of D̃(V ) with D\(V )�Qp. Here D\(V ) is as
defined in [10, I.3.2].

There are a slew of other species of (ϕ,Γ)-module — see, for instance, [10, pg.

116–117]. For instance, we can define D̃+
rig(V ) := (B̃+

rig⊗V )H and this module will
play a large role in what follows. In section 5, we will also make use of several other
kinds of (ϕ,Γ)-modules. Namely, if R is the Robba ring over Qp — that is, the
collection of Qp-power series which converge on an annulus defined by 0 < vp(·) ≤ r
for some r — we have a (ϕ,Γ)-module Drig(V ) which is a module over R.

We will also need (ϕ,Γ)-modules over even larger rings. Namely, the ring B̃†rig is

the largest of all the period rings we will use in this paper (see [1, §2]). With this ring

in hand, we define D̃†rig(V ) := (B̃†rig ⊗ V )H which is a module over R̃ := (B̃†rig)H .

3.2. Sen’s theory, and Fontaine’s generalization. The relation between D̃ and
D (and in particular, the fact that no information is lost when one passes from the
former to the latter), is an instance of a more general principle of “decompletion”,
first studied by Sen.

The basic point in the D̃/D-context is that the ring Ã used to compute D̃ is
the completion (in the weak topology) of the ring A used to compute D. Since the

resulting coefficient ring ÃQp is not the completion of AQp , this situation does not
compare perfectly with Sen’s, but the analogy is still meaningful.

Let us now recall Sen’s context. He works with the period ring Cp. Recall that

CHp = K̂∞,p where K∞,p := Qp(µp∞). Thus if V is a continuous GQp -representation

over Qp, we can consider D̃Sen(V ) := (Cp ⊗Qp V )H , which is a semi-linear Γ-

representation over K̂∞,p, of dimension (over K̂∞,p) equal to the dimension of V
over Qp. Now Sen’s theorem says that we can descend this canonically to a semi-
linear Γ-representation over K∞,p itself, denoted DSen(V ), where “descend” has
the meaning that the natural map

K̂∞,p ⊗K∞,p DSen(V )→ D̃Sen(V )

is an isomorphism.
What is the benefit of this? Well, any element of K∞,p is actually invariant

under a sufficiently small open subgroup of Γ, and so the Lie algebra Lie Γ (which
is canonically identified with Qp via the derivative of the cyclotomic character) acts
linearly on the K∞,p-vector space DSen(V ). In particular, the basis vector 1 ∈ Qp
gives rise to a linear operator ∆V on DSen(V ), and it is the eigenvalues of this
operator that are the Hodge–Sen–Tate weights of V . (So the decompletion allows
us to pass from a semi-linear context to a linear one, where we can then use linear
algebra to define invariants.)
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Fontaine [11] generalized Sen’s theory as follows: instead of Cp, the period ring
is now BdR. Remember that this a twisted version of Cp((t)). Since it contains the

algebraic closure Qp, it does contain Qp((t)) as a dense subfield. Noting that H

fixes t, we find that BH
dR contains K∞,p((t)) as a dense subfield.

Now if V is as before, we define

D̃dif(V ) := (BdR ⊗Qp V )H ,

which is a vector space over BH
dR of dimension equal to the dimension of V over

Qp, equipped with a semi-linear Γ-action. What Fontaine shows is that we may

canonically descend D̃dif(V ), together with its Γ-action, to a vector space Ddif(V )
over K∞,p((t)), where again “descend” means that

BH
dR ⊗K∞,p((t)) Ddif(V )→ D̃dif(V )

is an isomorphism. On Ddif(V ), the basis vector 1 ∈ Qp = Lie Γ acts by a K∞,p-
linear differential operator ∆V (satisfying the Leibnitz rule ∆V (tx) = tx+t∆V (x)).

We can proceed similarly with B+
dR in place of BdR, to define D̃+

dif(V ) and

D+
dif(V ), which are modules over (B+

dR)H and K∞,p[[t]] respectively, and both of
which are invariant under Γ. The latter is thus also preserved by the differential
operator ∆V . Note that reducing mod t returns us to Sen’s situation:

D+
dif(V )/tD+

dif(V )
∼−→ DSen(V )

(compatibly with the operators ∆V ).

3.3. So what? The inclusions B̃+ ⊂ B̃+
rig ⊂ B+

dR gives rise to canonical inclusions

(1) D̃+(V ) ⊂ D̃+
rig(V ) ⊂ D̃+

dif(V )

(the first being (ϕ,Γ)-equivariant, and the second being Γ-equivariant). These
inclusions set up a relation between the world of (ϕ,Γ)-modules and the world of
p-adic Hodge theory which is at the basis of certain explicit reciprocity laws, and
also at the heart of Colmez’s approach to p-adic local Langlands.

To begin our discussion, we first note that the inclusion D̃+(V ) ⊂ D̃+
dif(V ) does

not extend to a map with the +’s removed, because D̃(V ) is obtained by inverting

T and then p-adically completing, while D̃dif(V ) is obtained by inverting t (which
certainly allows us to invert T , since T divides t), but without any subsequent
p-adic completion.

Nevertheless, each of the elements ϕn(T ) divides t in B̃+
rig, and so also in B+

dR,
and so we do have inclusions

D̃+(V )[1/ϕn(T )] ⊂ D̃+
rig(V )[1/t] ⊂ D̃+

dif(V )[1/t] = D̃dif(V ),

for each n ≥ 0. Thus, if we write

D̃+(V )[
(
1/ϕn(T )

)
n≥0

] :=
⋃
n≥0

D̃+(V )[1/ϕn(T )],

then we obtain the inclusions

(2) D̃+(V )[
(
1/ϕn(T )

)
n≥0

] ⊂ D̃+
rig(V )[1/t] ⊂ D̃dif(V ),

which in turn induces maps

D̃+(V )[
(
1/ϕn(T )

)
n≥0

]/D̃+(V )→ D̃+
rig(V )[1/t]/D̃+

rig(V )→ D̃dif(V )/D̃+
dif(V ).
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The first of these maps is an injection, by Corollary 2.4.2, and we regard it as an
inclusion. The second map, which is not injective (unless V = 0), will be crucial for
us, and so we give it a name, namely ı−0 . (The minus sign is to remind us that we
are quotienting out by the plus objects; the reason for the subscript 0 will become
apparent soon.)

A fundamental fact is that we have ϕ actions on our (ϕ,Γ)-modules, but not in
p-adic Hodge theory. In other words, ı−0 is a Γ-equivariant map from a module with
a ϕ-action to a module without such an action. General principles of algebra then

suggest that we induce D̃dif(V )/D̃+
dif(V ) to obtain the module∏

i∈Z
D̃dif(V )/D̃+

dif(V ),

which we equip with the ϕ-action given by translation, namely

ϕ
(
(xi)

)
:= (xi−1).

(The reason for the negative, rather than positive, shift, is to accord with ex-
isting conventions in the literature, in particular in [10].) We make the product∏
i∈Z D̃dif(V )/D̃+

dif(V ) a module over B̃+
Qp by defining the action of an element b

of this ring on an element (xi)i∈Z of the product via

b · (xi)i∈Z := (ϕ−i(b)xi).

In this way the product
∏
i∈Z D̃dif(V )/D̃+

dif(V ), becomes an étale (ϕ,Γ)-module

over B̃+
Qp .

We then define a map

ı− : D̃+
rig(V )[1/t]/D̃+

rig(V )→
∏
i∈Z

D̃dif(V )/D̃+
dif(V )

of (ϕ,Γ)-modules over B̃+
Qp via the formula

ı−(x) =
(
ı−0
(
ϕ−i(x)

))
i∈Z

.

For any i ∈ Z, we define

ı−i : D̃+
rig(V )[1/t]/D̃+

rig(V )→ D̃dif(V )/D̃+
dif(V )

via ı−i (x) := ı−0
(
ϕ−i(x)

)
, so that ı− also admits the description ı−(x) :=

(
ı−i (x)

)
i∈Z.

Proposition 3.3.1. We have:

(1) The map ı− is injective.

(2) For any n ≥ 0, the restriction of ı−i to D̃+(V )[1/ϕn(T )]/D̃+(V ) vanishes
if i > n.

Proof. Fix x = b/ϕn(T )k ∈ D̃+(V )[1/ϕn(T )]. For any i ∈ Z we see that ϕ−i(x) =
ϕ−i(b)/(ϕn−i(T ))k. Since ϕn−i(T ) is a unit in B+

dR when i > n, we see that

ϕ−i(x) ∈ D̃+
dif(V ) when i > n, proving (2). On the other hand, if ϕ−i(x) ∈ D̃+

dif(V )

for some x ∈ D̃+
rig(V )[1/t]/D̃+

rig(V ) and all i, then we conclude from part (2) of

Proposition 2.4.1 that x ∈ D̃+
rig(V ), proving part (1) of the present proposition. �
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From part (2) of the preceding result we see in particular that, when restricted

to D̃+(V )[
(
1/ϕn(T )

)
n≥0

]/D̃+(V ), the map ı− in fact takes values in

lim
−→
n

∏
i≤n

D̃dif(V )/D̃+
dif(V ).

The next result involves a slight refinement of the argument used to prove part (1)
of the preceding proposition.

Proposition 3.3.2. We have:

(1) For n 6= i we have that ı−i vanishes on

D̃+(V )[1/ϕn(ω)]/D̃+(V ),

while ı−n induces an isomorphism

D̃+(V )[1/ϕn(ω)]/D̃+(V )
∼−→ D̃dif(V )/D̃+

dif(V ).

(2) The evident map⊕
n∈Z

D̃+(V )[1/ϕn(ω)]/D̃+(V )→ D̃+(V )[
(
1/ϕn(ω)

)
n≥0

]/D̃+(V )

is an isomorphism, and ı− induces an isomorphism

D̃+(V )[
(
1/ϕn(ω)

)
n≥0

]/D̃+(V )
∼−→
⊕
i∈Z

D̃dif(V )/D̃+
dif(V ).

Proof. The key point is that if n 6= 0, then ϕn(ω) is a unit in B+
dR, which in turn

follows from the facts that if a ≥ b ≥ 0, then ϕa(T )/ϕb(T ) is a unit in B+
dR, while

if n < 0, then ϕn(T ) is a unit in B+
dR. �

4. Representations of the mirabolic

Let P :=

(
Q×p Qp
0 1

)
denote the mirabolic subgroup of GL2. We also write

P+ :=

(
Zp \ {0} Zp

0 1

)
; this is a submonoid of P . Note that P is generated by

P+ together with

(
p−1 0
0 1

)
, and that giving a representation of P is the same as

giving a representation of P+ on which the action of

(
p 0
0 1

)
is invertible. Also,

set N :=

(
1 Qp
0 1

)
, the unipotent subgroup of GL2.

4.1. P -representations from (ϕ,Γ)-modues. A (ϕ,Γ)-module D with coeffi-
cients in A+

Qp may be equipped with the structure of a P+ representation in the

following manner: the matrix

(
p 0
0 1

)
acts via ϕ, the matrices

(
Γ 0
0 1

)
act through

the given action of Γ on the (ϕ,Γ)-module, and the matrix

(
1 1
0 1

)
acts via 1 + T .

This construction applies in particular if D̃ is an étale (ϕ,Γ)-module over Ã+
Qp .

Since in this case the action of ϕ on D̃ is invertible (this is the definition of étale in



EXPLICIT RECIPROCITY LAWS AND IWASAWA THEORY FOR MODULAR FORMS 13

this context), we see that the P+-action on D̃ extends to an action of P , so that

D̃ is naturally a P -representation.
In particular, if V is any p-adic GQp -representation, we obtain a natural P -

representation on the quotients

D̃
(
V (1)

)
/D̃+

(
V (1)

)
,

D̃+
(
V (1)

)
[
(
1/ϕn(T )

)
n≥0

]/D̃+
(
V (1)

)
,

and

D̃+
rig

(
V (1)

)
[1/t]/D̃+

rig

(
V (1)

)
,

as well as on the product ∏
i∈Z

D̃dif

(
V (1)

)
/D̃+

dif

(
V (1)

)
,

and the map ı− from either of the latter two quotients to the product is P -
equivariant.

In terms of this P -action, the subspace D̃+
(
V (1)

)
[
(
1/ϕn(T )

)
n≥0

]/D̃+
(
V (1)

)
of

D̃
(
V (1)

)
/D̃+

(
V (1)

)
is identified as its subspace of N -locally algebraic vectors. In

particular, the N -smooth vectors in D̃
(
V (1)

)
/D̃+

(
V (1)

)
are equal to the subspace⋃

n≥0

1

ϕn(T )
D̃+
(
V (1)

)
/D̃+

(
V (1)

)
. Their image under the map ı− lies in the sub-

space of N -smooth vectors in
∏
i∈Z D̃dif

(
V (1)

)
/D̃+

dif

(
V (1)

)
, which is equal to∏

i∈Z

1

t
D̃+

dif

(
V (1)

)
/D̃+

dif

(
V (1)

)
=
∏
i∈Z

1

t
D̃Sen

(
V (1)

)
=
∏
i∈Z

D̃Sen(V ).

The P -smooth vectors in D̃
(
V (1)

)
/D̃+

(
V (1)

)
may be identified with the Γ-

smooth vectors of the N -smooth vectors. Thus, they map under ı− to the Γ-

smooth vectors in
∏
i∈Z D̃Sen(V ), which is contained in the product of the Γ-smooth

vectors in each individual factor. Sen theory shows that the Γ-smooth vectors in

D̃Sen(V ) are non-zero if and only if V admits zero as a Hodge–Sen–Tate weight,
and, more precisely, that their dimension as K∞,p-vector space is equal to the
multiplicity of zero as a Hodge–Sen–Tate weight of V . In particular, if V does not
admit zero as a Hodge–Sen–Tate weight, then the subspace of P -smooth vectors in

D̃
(
V (1)

)
/D̃+

(
V (1)

)
vanishes.

4.2. The relationship with Dcrys. For any p-adic representation V of GQp , we
have

Dcrys(V ) :=
(
B̃+

rig[1/t]⊗Qp V
)GQp =

(
D̃+

rig(V )[1/t]
)Γ
.

(The fact that we can do this with B̃+
rig[1/t], rather then with Bcrys, is one of the

basic results of the theory; see e.g. [6, §III.2].) Thus, replacing V by V (1), we get
a ϕ-equivariant map

(3) Dcrys

(
V (1)

)
→
(
D̃+

rig

(
V (1)

)
[1/t]/D̃+

rig

(
V (1)

))Γ

.

If we compose this with ı−0 , we just get the canonical map

Dcrys

(
V (1)

)
→ DdR

(
V (1)

)
/D+

dR

(
V (1)

)
.
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Remark 4.2.1. The image of Dcrys

(
V (1)

)
under ı− is finite-dimensional and sta-

ble under the torus (since it is fixed by Γ, and stable under ϕ). Thus, this image has

trivial intersection with ı−
(
D̃+
(
V (1))[

(
1/ϕn(T )

)
n≥0

]/D̃+
(
V (1)

))
, since elements

of ı−
(
D̃+
(
V (1))[

(
1/ϕn(T )

)
n≥0

]/D̃+
(
V (1)

))
have support bounded away from in-

finity, whereas cleary a non-zero ϕ-eigenvector doesn’t have this property.

5. Iwasawa cohomology and explicit reciprocity laws

Let L denote a finite extension of Qp with ring of integers OL. For the remainder
of the paper we will consider p-adic representations which are L-vector spaces. Note
that if V is such a representation and T ⊆ V is a Galois stable OL-lattice, then
D(T ) is a module over AQp ⊗Zp OL.

We also set some notation that will be in place for the remainder of the paper.
For a vector space V over L, set V ∗ = Hom(V,L). For an OK-lattice T , set
T ∗ = Hom(T,OL). For an OL-module A, set A∨ = Hom(A,L/OL).

5.1. (ϕ,Γ)-modules and Iwasawa cohomology. The fundamental fact (see [5])
relating (ϕ,Γ)-modules to Iwasawa theory is the following: if T is a GQp -invariant
OL-lattice in a finite-dimensional representation V of GQp over L, then

(4) D(T )ψ=1 ∼−→ H1
Iw(T ).

Inverting p then yields an isomorphism

(5) D(V )ψ=1 ∼−→ H1
Iw(V ).

We let R+(Γ) denote the ring of locally analytic distributions on Γ, or equiva-

lently, the ring of rigid analytic functions on weight space W := Homcont(Γ,Q
×
p ).

(This notation is due to Colmez, and is inspired by the analogous notation in the
theory of the Robba ring.) The isomorphism (4) induces an isomorphism

R+(Γ)⊗OL[[Γ]] D(T )ψ=1 ∼−→ R+(Γ)⊗OL[[Γ]] H
1
Iw(T ).

There is also a natural isomorphism

(6) R+(Γ)⊗OL[[Γ]] D(V )ψ=1 ∼−→ Drig(V )ψ=1,

and hence we obtain an isomorphism

(7) Drig(V )ψ=1 ∼−→ R+(Γ)⊗OL[[Γ]] H
1
Iw(T ).

5.2. Pairings: (ϕ,Γ)-modules. Let D := D(T ) be an étale (ϕ,Γ)-module over
AQp⊗ZpOL, associated to aGQp -invariantOL-lattice T in a p-adic representation V .

As in [9, I.2.2], we define the Tate dual of D as Ď := HomAQp
(D,AQp

dT
1+T ⊗ZpOL),

its (ϕ,Γ)-module structure on Ď being determined by the formulas σa( dT
1+T ) = a dT

1+T

for σa ∈ Γ corresponding to an element a ∈ Z×p , and ϕ( dT
1+T ) = dT

1+T . Note that

these formulas identify AQp
dT

1+T with D
(
Zp(1)

)
, and so Fontaine’s equivalence of

categories yields an identification Ď = D
(
T ∗(1)

)
. We denote the corresponding

tautological pairing by 〈·, ·〉 : D× Ď→ AQp
dT

1+T ⊗Zp OL.
Define the residue map res0 : AQpdT = AQp

dT
1+T → Zp by res0(fdT ) = a−1

where f =
∑
k akT

k. Extending this map OL-linearly, and then passing to residues
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in 〈·, ·〉, yields a perfect pairing

{·, ·} : D× Ď→ OL
(x, y) 7→ res0(〈x, y〉)

which identifies Ď with the topological OL-dual of D.
The preceding discussion has analogues for other flavors of (ϕ,Γ)-modules. The

most evident comes from working over L rather than OL, so that D is the étale
(ϕ,Γ)-module associated to the p-adic representation V itself (rather than its lat-
tice T ). Then Ď is associated to V ∗(1), and the pairing {·, ·} identifies Ď with the
topological L-dual of D. Similarly, for étale (ϕ,Γ)-modules defined over the Robba
ring R ⊗Qp L, we have analogous perfect pairings, still denoted by 〈·, ·〉 and {·, ·},
again valued in L. See [10, pg. 128] for details.

Somewhat less obviously, the story carries over to étale (ϕ,Γ)-modules over ÃQp
and R̃. Indeed, using the trace maps ÃQp → AQp and R̃ → R (see [8, Chapter
8] and [9, §4.3]), one can define res0 for these rings, and thus deduce pairings {·, ·}
from the tautological pairing 〈·, ·〉, just as in the cases already considered above.

5.3. Pairings: p-adic Hodge theory. Recall that D̃dif(V ) = (V ⊗Qp BdR)H and

that we can descend D̃dif(V ) to an L∞((t))-module Ddif(V ) where L∞ := K∞,p⊗Qp
L. Further, for each n � 0, we can define a vector space Ddif,n(V ) over Ln((t)),
where Ln := Kn,p ⊗Qp L and Kn,p = Qp(µpn). Namely, following the notation

from [10, §VI.3.1], on D]0,rn] ⊆ Drig(V ), there is a map ın : D]0,rn] → D̃+
dif (V ).

We denote the image of this map by D+
dif,n(V ) and set Ddif,n(V ) := D+

dif,n(V )[1/t].

(Then Ddif(V ) is recovered by extending the scalars of Ddif,n(V ) from Ln((t)) to
L∞((t)).

Then, as in [10, pg. 151], there is a perfect Γ-equivariant pairing

〈·, ·〉dif : Ddif,n(V (1))×Ddif,n(V ∗) −→ L

which is independent of n � 0 (in the sense that, if n′ ≥ n � 0, then the pairing
on the Ddif,n′ restricts to the pairing on the Ddif,n), and under which D+

dif,n(V (1))

and D+
dif,n(V ∗) are orthogonal complements.

We set DdR,n(V ) = D̃dif(V )Γn equal to the de Rham Dieudonné modules at
cyclotomic level n where Γn is the subgroup of Γ of index pn−1(p− 1). By [10, pg.
231], we have

DdR,n(V ) ∼= DdR,Kn,p(V ) ∼= DdR,Qp(V )⊗Qp Kn,p

where DdR,K(V ) := (V ⊗BdR)GK for any finite extension K/Qp.
There is a Ln-valued natural pairing

〈·, ·〉′dR,n : DdR,Kn,p(V (1))×DdR,Kn,p(V ∗)→ DdR,Kn,p(L(1)) ∼= Ln

where the final isomorphism is defined by taking t−1 as a basis of DdR,Ln(L(1)).
We then have an induced the pairing

〈·, ·〉dR,n : DdR,Ln(V (1))×DdR,Ln(V ∗)→ L

defined by 〈·, ·〉dR,n = TrLnL (〈·, ·〉′dR,n).

We note that DdR,n(V ) ⊆ Ddif,n(V ) if n� 0, and under this inclusion we have
the relation 1

pn 〈·, ·〉dR.n = 〈·, ·〉dif as the pairing on Ddif,n objects is defined via



16 MATTHEW EMERTON, ROBERT POLLACK, AND TOM WESTON

a normalized trace while on DdR,n objects, the pairing is defined via an absolute
trace.

We close this subsection with a relation between ın and the dual exponential
map

exp∗ : H1(Q(µpn), V )→ DdR,n(V ).

Lemma 5.3.1. For z ∈ D(V )ψ=1 ∼= H1
Iw(V ), write zn for the projection of z to

H1(Qp(µpn), V ). We then have

pn exp∗(zn) = ιm(z)

for m� 0.

Proof. This lemma is essentially [10, Lemme VIII.2.1], but we need to explain the
factor of pn appearing. The reason this factors appears is that the dual exponential
used in [10] is normalized in a way that does not match the standard normalization
as in [19].

Let’s write ẽxp
∗

for the dual exponential map normalized as in [10]. Then for
x ∈ DdR,n(V ∗(1)) and y ∈ H1(Kn,p, V ), by [10, Théorème VIII.2.2], we have

〈x, ẽxp
∗
(y)〉dif = 〈exp(x), y〉n

where 〈·, ·〉n is the pairing of Tate local duality. Meanwhile, we also have that

〈x, exp∗(y)〉dR,n = 〈exp(x), y〉n
by [19, Theorem 1.4.1(4)]. Since 1

pn 〈·, ·〉dR,n = 〈·, ·〉dif , we deduce that pn exp∗ =

ẽxp∗ and the lemma follows from [10, Lemme VIII.2.1]. �

5.4. An explicit reciprocity law. Colmez has proven the following explicit reci-
procity law [10, Prop. VI.3.4]. (Recall that Drig is the union of the D]0,rn], and

so for any element of Drig, it is in the domain of the map ın : D]0,rn] → D̃+
dif for

n� 0.)

Theorem 5.4.1. Let z ∈ D+
rig

(
V (1)

)
[1/t] and let z′ ∈ Drig(V ∗)ψ=1. If (1 − ϕ)z

lies in D+
rig

(
V (1)

)
, then the sequence 〈ı−n (z), ın(z′)〉dif of elements of L becomes

constant for n� 0, and this constant value is equal to {(1− ϕ)z, σ−1 · z′}.

We need the following variant of Theorem 5.4.1.

Theorem 5.4.2. Let z ∈ D̃+
rig

(
V (1)

)
[1/t], z′ ∈ Drig(V ∗)ψ=1. Assume

(1) (1− ϕ)z ∈ D̃+(V (1)) [1/ϕr(T )] for some r ∈ Z≥0,
(2) z is fixed by Γn for some n.

Then
{(1− ϕ)z, σ−1 · z′} = 〈ı−s (z), ım(z′)〉dif

for s ≥ r and m large enough.

Remark 5.4.3. We explain the pairings in the statement of Theorem 5.4.2. First

note that we can view (1 − ϕ)z ∈ D̃+(V (1)) [1/ϕr(T )] ⊆ D̃†rig(V (1))[1/t] and

z′ ∈ Drig(V ∗) ⊆ D̃†rig(V ∗). The pairing {(1 − ϕ)z, σ−1 · z′} is thus the pairing

between D̃†rig(V (1)) and D̃†rig(V ∗) noted at the end of section 5.2, as these are (ϕ,Γ)-

modules defined over R̃ ⊗Qp L, extended to a pairing between D̃†rig(V (1))[1/t] and

D̃†rig(V ∗)[1/t] in the evident way. (The pairing 〈 , 〉 now takes values in R̃[1/t]⊗Qp
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L, the normalized traces map this to R[1/t] ⊗Qp L, and the pairing (f, g) 7→
res0(fg dT

1+T ) = res0(fgdt) still makes sense.)

To make sense of 〈ı−s (z), ım(z′)〉dif for z ∈ D̃+
rig

(
V (1)

)
[1/t] and for m large

enough, note that since z is fixed by Γn, we have

ıs(z) ∈ D̃dif(V (1))Γn ⊆ DpdR,n(V (1)) ⊆ Ddif,n(V (1)) ⊆ Ddif,m(V (1))

as long as m ≥ n (see [10, VI.3.3]). As ım(z′) ∈ Ddif,m(V ∗), the pairing is defined
as in section 5.3.

Proof of Theorem 5.4.2. Following the proof of [10, Prop. VI.3.4], mutatis mutan-
dis, we find that

{(1− ϕ)z, σ−1 · z′} = 〈ı−m(z), ım(z′)〉dif

for m large enough. Further, since (1− ϕ)z lies in D̃+
(
V (1)

)
[1/ϕr(T )], by Propo-

sition 3.3.1, we have ı−s
(
(1− ϕ)z

)
= 0 for s > r. Thus,

ı−s (z) = ı−s (ϕz) = ı−s−1(z) = · · · = ı−r+1(z) = ı−r+1(ϕz) = ı−r (z)

as desired. �

6. Kirillov models and local Mellin transforms

This section is an interlude, in which we recall some basic facts regarding Kirillov
models and local Mellin transform formulas for local Euler factors. We begin with
the case of GL2(Qp)-representations with complex coefficients before explaining
the modifications necessary for treating the case of representations with p-adic
coefficients.

6.1. Kirillov models of complex smooth GL2(Qp)-representations. If π is
an infinite-dimensional irreducible representation of GL2(Qp) over C, its Kirillov
model identifies it with a space of locally constant functions on Q×p , each of which
is compactly supported as a function on Qp. (More precisely, the closure in Qp
of the support of each function in the Kirillov model is compact, or, equivalently,
the support in Q×p of each such function is bounded away from infinity.) The
entire GL2(Qp)-action on this space of functions is a bit tricky to describe, but the
action of B is quite explicit. Firstly, the centre acts by the central character of π.

Secondly, the subgroup

(
Q×p 0
0 1

)
acts by scaling the variable. Finally, if b ∈ Qp,

then
((1 b

0 1

)
φ
)

(x) = e2πibxφ(x). (Note that e2πiy makes sense for y ∈ Qp, via

the natural isomorphism Qp/Zp
∼−→ (Q/Z)[p∞].) This can be summarized by the

following formula: ((
a b
0 d

)
φ
)

(x) = δ(d)e2πi(b/d)xφ
(
(a/d)x

)
,

where δ is the central character of π.
An important aspect of the theory is that the realization of π in the Kirillov

model is unique (up to rescaling by a non-zero constant). One way to phrase and
prove this is as follows: if φ is an element of π, thought of in the Kirillov model, the
map φ 7→ φ(1) gives a non-zero linear functional ` : π → C, with the property that

`
((1 b

0 1

)
v
)

= e2πibx`(v) for all v ∈ π. The uniqueness of Kirillov models can then
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be stated as saying that (when π is irreducible and infinite-dimensional) the space
of such ` is one-dimensional, hence ` is uniquely determined up to a non-zero scalar.
Note that we can then recover the Kirillov function φv attached to an element v ∈ π
via the formula

φv(a) = `
((a 0

0 1

)
v
)
.

As an example of Kirillov models, suppose that π is the principal series

Ind
GL2(Qp)

B
χ1 ⊗ χ2

= {f : GL2(Qp)→ C | f(ntg) = (χ1⊗χ2)(t)f(g) for all g ∈ GL2(Qp), n ∈ N, t ∈ T}

(where N denotes the lower triangular unipotent subgroup of GL2(Qp), T denotes

the diagonal torus, and B = NT denotes the lower triangular Borel), equipped
with the right regular GL2(Qp)-action. We may regard π as the space of locally
constant functions on Qp which are proportional to χ1/χ2 in a neighbourhood of
infinity, via

f(x) := f

((
1 x
0 1

))
;

the GL2(Qp)-action on π is then given by the formula((
a b
c d

)
f

)(
x
)

=
χ1

χ2
(cx+ a)χ2(ad− bc)f

(
dx+ b

cx+ a

)
.

Forming the Kirillov model of π in this case amounts to taking the Fourier trans-
form: we map a function f in the principal series to (a rescaling of) its Fourier
transform, namely to

φ(x) := |x|pχ1(x)

∫
Qp
f(y)e−2πixydy.

(For definiteness, we normalize Haar measure on Qp so that Zp has measure 1.)

6.2. Local newvectors. If π is an irreducible infinite-dimensional smooth repre-
sentation of GL2(Qp), then the newvector in π (which is well-defined up to a scalar)

is the vector fixed by

(
Z×p Zp
0 1

)
which is of smallest conductor, i.e. which is also

fixed under

(
1 0

pnZp 1

)
for the smallest possible choice of n.

We will also consider the p-deprived newvector of π (which is again well-defined

up to a scalar); this is any element of π which is fixed by

(
Z×p Zp
0 1

)
and which is

annihilated by the operator

Up :=

p−1∑
i=0

(
p i
0 1

)
.

Note that newvector and p-deprived newvector of π coincide if and only if the the
local Euler factor attached to π is trivial.

As already noted, both the Kirillov model of π and the newvector (or the p-
deprived newvector) of π are only determined up to a non-zero scalar. However,
given a choice of Kirillov model, we can fix the newvector precisely by requiring
that the corresponding function in the Kirillov model takes the value 1 at the point
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1 ∈ Q×p . With this normalization, the p-deprived newvector corresponds in the
Kirillov model to the characteristic function 1Z×p .

If π is the unramified principal series Ind
GL2(Qp)

B
χα ⊗ χβ/p, where χλ is the

unramified character taking p to λ (and π is assumed to be irreducible; equivalently,
we assume that α/β 6= p±1), then the newvector vnew, as a function on Qp, coincides
(up to scaling) with the function

vnew = (1− β/(αp))−1
(
1Zp + (χαp/β)1Qp\Zp

)
.

Converting to the Kirillov model (an exercise in taking Fourier transforms) one
finds that in the Kirillov model (so now as a function on Q×p ), one has

vnew =

∞∑
n=0

1

pn
αn+1 − βn+1

α− β
1pnZ×p =

∞∑
n=0

(α/p)n+1 − (β/p)n+1

(α/p)− (β/p)
1pnZ×p .

(This is the GL2(Qp) case of a formula of Casselman and Shalika.)

6.3. The local Birch Lemma. The goal of this subsection is to explain how
to describe the p-deprived newvector of a ramified twist of a smooth GL2(Qp)-
representation π in terms of the newvector of π.

If χ : Q×p → C× is a character, then f 7→ fχ gives a bijection between the
Kirillov model of π and the Kirillov model of the twist πχ := (χ ◦ det) ⊗ π. In
particular, if φ in Kirillov model corresponds to the newvector of π (normalized as
above so that φ(1) = 1), then φχ is a function in the Kirillov model of πχ (satisfying
(φχ)(1) = 1).

Let pn be the conductor of χ|Z×p . If n = 0, i.e. if χ is unramified, then φχ is the

newvector of πχ. However, if n > 0, i.e. if χ is ramified, then φχ, although it is

invariant under

(
1 Zp
0 1

)
, is not invariant under

(
Z×p 0
0 1

)
, and so cannot be the

newvector. We remedy this by forming a Gauss sum: one easily derives the formula∑
a∈(Z/pnZ)×

χ(a)

(
1 a/pn

0 1

)
(φχ) = τ(χ)1Z×p ,

where τ(χ) is the usual Gauss sum attached to χ. Thus the expression on the
left is equal to τ(χ) times the p-deprived newform of πχ. (Note that, since χ is
ramified, typically the p-deprived newform of πχ coincides with the newform itself;
the only exceptions occur for very particular choices of χ when π is a ramified
principal series or a ramified twist of Steinberg.) This formula is a local version of
the formula known as the Birch Lemma in the theory of modular symbols.

6.4. Local Mellin transforms. Let π be an infinite dimensional irreducible rep-
resentation of GL2(Qp) over C, and let φ ∈ Csm(Q×p ,C) be an element of π, thought
of in the Kirillov model. The local Mellin transform of φ is the integral

Z(φ, s) :=

∫
Q×p
|x|s−1φ(x)d×x.

(We normalize the Haar measure d×x on Q×p so that Z×p has unit measure.) A priori,

unless φ is compactly supported on Q×p , this integral only converges when the real
part of s is sufficiently large. However, for a fixed choice of φ, the convergent values
of the integral are a rational function of p−s, and so the integral can be defined for
any value of s in terms of this rational function.
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These integrals come up in Jacquet–Langlands [17] in the description of local
Euler factors and epsilon factors; in particular, taking φ to be the newvector gives
the local Euler factor. For example, in the case of a principal series, taking φ to
be the newvector, we find that this integral is a sum of geometric series, which we
may formally evaluate to obtain the value

(1− αp−s)−1(1− βp−s)−1.

Note also that the local Euler factor is the “largest” denominator that can occur
in any Z(φ, s); more precisely, it is divisible by the denominator of Z(φ, s) for any
function φ in the Kirillov model.

We now describe an alternative approach to evaluating the Mellin transform
integral. Since Z(φ, s) = Z(| |s−1φ, 1) (thinking of | |s−1φ as a function in the
Kirillov model of the twist π| det |s−1), we focus on the value at s = 1.

Proposition 6.4.1. Suppose that the local Euler factor attached to π does not have
a pole at s = 1. Then given any function φ in the Kirillov model of π, we may find
a uniquely determined function ξ in Csm(Q×p ,C) such that:

(1) The restriction of ξ to (the intersection with Q×p with) any compact neigh-
bourhood of 0 in Qp lies in the Kirillov model of π.

(2)

(
1−

(
p 0
0 1

))
ξ = φ.

If φ is Γ-invariant, then so is ξ. Furthermore, one then has that

Z(φ, 1) =

∫
p−iZ×p

ξ(x)d×x =

∫
Z×p
ξ(p−ix)d×x,

for any i chosen so large that φ vanishes outside of p−iZp.

Proof. We first consider the case where φ has support bounded away from 0. In

this case, we define ξ =
∑
n≥0

(
pn 0
0 1

)
φ. Note that for a fixed x ∈ Q×p , ξ(x) is a finite

sum. Since φ has support bounded away from 0, the same is true of ξ, proving (1).
Further (2) follows immediately from the definition of ξ, as does the fact that ξ is
Γ-invariant if φ is. Lastly, for i large enough so that φ vanishes outside of p−iZp,
we have∫

Z×p
ξ(p−ix)d×x =

∑
n≥0

∫
Z×p
φ(pn−ix)d×x =

∫
p−iZp\{0}

φ(x)d×x =

∫
Q×p

φ(x)d×x

as desired.
For the general case, we may write φ = φ− + φ+ where φ+ is bounded away

from 0, and φ− is a linear combination of functions supported on Zp of the form

x 7→ γordp(x) for some γ ∈ C (see e.g. [12, Chapter 6]). Note further that our
assumption on the local Euler factor forces that γ 6= 1. To complete the proof, we

are thus reduced to the case where φ(x) =

{
γordp(x) x ∈ Zp,
0 otherwise.

In this case, we define ξ(x) =

{
γordp(x)

1−γ x ∈ Zp,
1

1−γ otherwise.
Clearly, ξ satisfies (1) as

near zero it is of the form x 7→ Dγordp(x) for some constant D. To check (2), for
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x ∈ Zp, we have(
1−

(
p 0
0 1

))
ξ(x) = ξ(x)− ξ(px) =

γordp(x)

1− γ
− γordp(x)+1

1− γ
= γordp(x) = φ(x)

while for x 6∈ Zp, we have(
1−

(
p 0
0 1

))
ξ(x) = ξ(x)− ξ(px) =

1

γ − 1
− 1

γ − 1
= 0 = φ(x)

as desired.
Further, we note that from our explicit construction of ξ, it is clear that if φ is

invariant under Γ, then so is ξ.
Lastly, we compute that

Z(φ, s) =

∫
Q×p
|x|s−1φ(x)d×x =

∞∑
n=0

p−n(s−1)γn =
1

1− γ
ps−1

for s� 0. Thus, Z(φ, 1) = 1
1−γ . Finally, for i > 0,∫

Z×p
ξ(p−ix)d×x =

∫
Z×p

1

1− γ
d×x =

1

1− γ
= Z(φ, 1),

completing the proof. �

6.5. Kirillov models of smooth representations of GL2(Qp) with p-adic
coefficients. We now consider the theory of Kirillov models for infinite dimensional
irreducible smooth representations π of GL2(Qp) having coefficients in L, a finite
extension of Qp. The main difference between this case and the case of complex
coefficients is one of rationality: the p-power roots of unity are not all in L.

Recall L∞ := K∞,p⊗Qp L. If we let Csm(Q×p , L) (resp. Csm(Q×p , L∞)) denote the

space of locally constant functions on Q×p with values in L (resp. L∞), then the
Kirillov model will be an embedding

π ↪→ K∞,p ⊗Qp Csm(Q×p , L) ⊆ Csm(Q×p , L∞),

which is B-equivariant for a certain B-action on the target.
To describe this B-action, we have to replace our complex valued additive charac-

ter on Qp by a K∞,p-valued one. Recall that we have chosen a generator ε of Zp(1);

write ε = (ε(n)), where ε(n) is a primitive pnth root of unity, and (ε(n+1))p = ε(n).
We will replace the complex valued character e2πix of Qp by the Qp-valued character

ε(x) := lim
n→∞

(ε(n))p
nx.

(Note that the sequence (ε(n))p
nx eventually stabilizes, so that the limit is just

equal to this stable value.) We then define the B-action on Csm(Q×p , L∞) via the
formula ((

a b
0 d

)
φ
)

(x) = δ(d)ε
(
(b/d)x

)
φ
(
(a/d)x

)
,

where, as before, δ denotes the central character of π. We may also define a Galois-
twisted action of Γ on Csm(Q×p , L∞) via the formula (a · φ)(x) = σa

(
φ(a−1x)

)
.

(Here the Galois element σa acts on L∞ via its action on the first factor in the
tensor product which we normalize so that σa(ζ) = ζa for ζ ∈ µp∞ .) Using the fact
that π is defined over L, together with the uniqueness of Kirillov models, one then
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shows that the image of the Kirillov model lies in
(
K∞,p ⊗ Csm(Q×p , L)

)Γ
, where

the invariants are computed with respect to the Galois-twisted action.
Note that the Kirillov functional given by evaluation at 1 ∈ Q×p is now a non-zero

linear functional
` : π → L∞,

such that

`
((

1 b
0 1

)
v
)

= ε(b)`(v),

and such that

`
((

a 0
0 1

)
v
)

= σa
(
`(v)

)
,

for all a ∈ Γ. The second property of ` shows that (unlike in the complex case), in
the p-adic setting the functions in the Kirillov model of π are determined by their
values on the elements pi (i ∈ Z) of Q×p . Thus, in the following, we will frequently

consider the functions in the Kirillov model just as functions on the powers pi (and
lose no information by so doing).

6.6. Local Mellin transforms with p-adic coefficients. Suppose that π is de-
fined over L, and let

φ ∈ Csm(Q×p , L∞)Γ

be an element of π, thought of via its Kirillov model. (Here Γ-invariance of φ refers
to invariance under the Galois-twisted Γ-action, as discussed above.)

When s is an integer, we can write down the local Mellin transform integral,
and express it as a rational function of p−s. However, we can further simplify the
integral in this context to be just a sum over powers of p (just as the Kirillov model
can be regarded simply as functions on the set of powers of p, rather than on all of
Q×p ), as we now explain.

Let Tr : K∞,p → Qp be the normalized trace, i.e. its restriction to Kn,p :=

Qp(µpn) is given by
1

(p− 1)pn−1
Tr
Kn,p
Qp . We then have the following formula, easily

proved using the Galois-twisted Γ-invariance of φ:∫
Z×p
φ(x)d×x = (Tr⊗idL)

(
φ(1)

)
.

From this, we deduce the corresponding formula for the local Mellin transform:∫
Q×p

φ(x)d×x = (Tr⊗idL)
( ∞∑
n=−∞

φ(pn)
)
.

In light of this formula, we regard the expression

(8) Z̃(φ, 1) =

∞∑
n=−∞

φ(pn) ∈ L∞

(which takes values in Kn,p ⊗Qp L if φ is invariant under the (regular, not Galois-
twisted) action of 1 + pnZp) as being a refined Mellin transform.

We then have the following analogue of Proposition 6.4.1.

Proposition 6.6.1. Suppose that the local Euler factor attached to π does not have
a pole at s = 1. Then given any function φ in the Kirillov model of π, we may find
a uniquely determined function ξ in Csm(Q×p , L∞)Γ such that:
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(1) The restriction of ξ to (the intersection with Q×p with) any compact neigh-
bourhood of 0 in Qp lies in the Kirillov model of π.

(2)

(
1−

(
p 0
0 1

))
ξ = φ.

If φ is invariant under the regular Γ-action, then so is ξ. Furthermore, one then has
that Z̃(φ, 1) = ξ(p−i), for any i chosen so large that φ vanishes outside of p−iZp.

Proof. The proof of this proposition proceeds along the same lines as that of Propo-
sition 6.4.1. �

6.7. The case of locally algebraic representations. In what follows, we are
closely following [10, VI.4]. Namely, we now consider Kirillov models of locally

algebraic representations (e.g. representations of the form π⊗Symk(L2)⊗det` with

π a smooth representation). Here we view Symk(L2) as homogenous polynomials
in e1 and e2 of degree k where GL2(Qp) acts by(

a b
c d

)
e1 = ae1 + ce2 and

(
a b
c d

)
e2 = be1 + de2.

In the smooth p-adic case (section 6.5), our Kirillov models were smooth func-
tions taking values in L∞. We now instead consider larger spaces of functions.

Define LP[`,`+k](Q×p , t`L∞[t]/tk+1+`L∞[t]) to be the space of locally polynomial

functions on Q×p valued in t`L∞[t]/tk+1+`L∞[t]. We equip this space with an action
of the mirabolic via((

a b
c d

)
φ

)
(x) = δ(d)[(1 + T )bx/d]φ(ax/d)

where δ is the central character of our locally algebraic representation, and where
[(1 + T )z] is the character of Qp discussed in [10, §I.1.6]. The simplest way to
describe it in our present context is to use the formula [(1 + T )z] = ε(z) (etz − 1)
(see loc. cit.).

In [10, Prop VI.2.9], it is proven that π ⊗ Symk(L2) ⊗ det` admits a locally
algebraic Kirillov model; that is, it admits an equivariant map to

π ⊗ Symk(L2)⊗ det` −→ LP[`,`+k](Q×p , t`L∞[t]/tk+1+`L∞[t]).

z 7→ Kz

Explicitly, fix a Kirillov model of π where we write φv for the function corresponding
to v ∈ π. Then for

z =

k∑
i=0

zi ⊗ ek−i1 ei2 ∈ π ⊗ Symk(L2)⊗ det`

we set

(9) Kz(x) = (tx)`
k∑
i=0

i!φzi(x)(tx)k−i.

It is easy to see that for a ∈ Z×p , we have σa(Kz(x)) = Kz(ax) where σa(t) = at
as usual. Thus, as before, Kz is invariant under the Galois-twisted action of Γ. In
particular, all of the values of Kz(x) are determined by its values on powers of p.
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Proposition 6.7.1. Suppose that the local Euler factor attached to π does not have
a pole at s = j + 1− `− k. Then given

z = v ⊗ ek−j1 ej2 ∈ π ⊗ Symk(L2)⊗ det`,

we may find a uniquely determined function ξ in LP[`,`+k](Q×p , t`L∞[t]/tk+1+`L∞[t])Γ

such that:

(1) The restriction of ξ to (the intersection with Q×p with) any compact neigh-

bourhood of 0 in Qp lies in the Kirillov model of π ⊗ Symk(L2)⊗ det`.

(2)

(
1−

(
p 0
0 1

))
ξ = Kz.

If φv is invariant under the regular Γ-action, then so is ξ. Furthermore, one then
has that Z̃(Kz, 1) = ξ(p−i), for any i chosen so large that φv vanishes outside of
p−iZp.

Proof. First note that we have

Kz(x) = (tx)`j!φv(x)(tx)k−j = j!(tx)k+`−jφv(x).

If φv is bounded away from 0, then we can argue exactly as in Proposition 6.4.1

and define ξ =
∑
n≥0

(
pn 0
0 1

)
Kz. Otherwise, again as in Proposition 6.4.1, we can

reduce to the case where φv(x) =

{
γordp(x) x ∈ Zp,
0 otherwise.

In this case, we define

ξ(x) =


(tx)aγordp(x)

1− paγ
x ∈ Zp,

(tx|x|)a

1− paγ
x ∈ Zp,

where a = k + ` − j. A direct computation with

this function verifies the remaining claims of the proposition. We also note that to
define ξ, we need that γ 6= p−a = pj−k−` which is implied by our condition on the
local Euler factor of π. �

7. p-adic local Langlands and Kirillov models

In this section we will turn to the consideration of Colmez’s work on p-adic
local Langlands. This work uses the constructions of the preceding sections in
the particular case of two-dimensional p-adic representations of GQp to associate a
GL2(Qp)-Banach space representation to any such two-dimensional representation.
For us, one of the most important features of Colmez’s work will be the very pow-
erful analogue of the classical theory of Kirillov models for smooth representations
of GL2(Qp) that he develops using the maps ı−i and ı− introduced above.

7.1. Kirillov models via (ϕ,Γ)-modules. If V is a continuous irreducible two-
dimensional representation of GQp over some finite extension L of Qp, then Colmez
associates to V an L-Banach space representation π(V ) of GL2(Qp). (We use
slightly different conventions from Colmez; he would call this π(V (1)).) We won’t
recall the construction of π(V ) as a GL2(Qp)-representation here. Rather, we will
focus on π(V ) just as a P -representation (recall P is the mirabolic subgroup), in
which case π(V ) admits the following description: there is a canonical isomorphism
of P -modules

D̃
(
V (1)

)
/D̃+

(
V (1)

) ∼−→ π(V ),
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where the source has the P -representation structure discussed in the section 4 (see
[10, Corollaire II.2.9]).

Suppose now that V admits zero as a Hodge–Sen–Tate weight with multiplicity

one. If we let (D̃
(
V (1)

)
/D̃+

(
V (1)

)
)P−sm denote the subspace of P -smooth vectors

of the P -representation D̃
(
V (1)

)
/D̃+

(
V (1)

)
, and if we choose an L-basis e for the

one-dimensional space of Γ-invariant vectors in D̃Sen, then we see that ı−0 restricts
to a map

(10) ı−0 :
(
D̃
(
V (1)

)
/D̃+

(
V (1)

))
P−sm

→ L∞e,

with the following two properties: for any n ≥ 0 and any b ∈ Zp,

ı−0
(
ϕ−n(1 + T )bx

)
= (ε(n))bı−0 (x),

or, rewriting this in terms of the P -action,

(11) ı−0

((
1 b/pn

0 1

)
x

)
= (ε(n))bı−0 (x);

and for any a ∈ Γ,

ı−0 (a · x) = σa
(
ı−0 (x)

)
,

or, again rewriting this in terms of the P -action,

(12) ı−0

((
a 0
0 1

)
x

)
= σa

(
ı−0 (x)

)
.

We suppose now (and for the remainder of this section) that V is furthermore
de Rham, with Hodge–Tate weights equal to 0 and 1 − k, for some k ≥ 2 (so
that the jumps in the Hodge filtration of DdR(V ) occur at 0 and k − 1). The
theory of p-adic local Langlands shows that π(V ) contains as a subrepresentation

πsm(V ) ⊗L (Symk−2L2)∗, where πsm(V ) is the smooth representation of GL2(Qp)
over L attached to the Weil–Deligne representation underlying the potentially semi-
stable Dieudonné module of V (see [10, Théorème 0.20, 0.21]).

Let vhw denote a highest weight vector of (Symk−2L2)∗ (well-defined up to scal-
ing). Note that vhw is not only fixed by N (by definition) but is actually fixed by
P . Thus we have an inclusion

πsm(V )
∼−→ πsm(V )⊗L vhw ↪→ π(V )P−sm.

In particular, we may restrict the map ı−0 of (10) above to a map

πsm(V )→ L∞e.

A consideration of the formulas (11) and (12) above then shows that this map is
precisely of the form

v 7→ `(v),

where ` is the (suitably scaled) Kirillov functional of πsm(V ). In summary, we have
the following result, due to Colmez.

Theorem 7.1.1 (Colmez). The Kirillov model of πsm(V ) (suitably scaled) satisfies
the following: if vsm ∈ πsm(V ) corresponds to the function φ in the Kirillov model,
then ı−0 (vsm ⊗ vhw) = φ(1)e.

Proof. See [10, Proposition VI.5.6]. �



26 MATTHEW EMERTON, ROBERT POLLACK, AND TOM WESTON

Note that since V is assumed to be de Rham with Hodge–Tate weights 0 and 1−k,

the Γ-fixed points of D̃Sen(V ) are naturally identified with DdR(V (1))/D+
dR(V (1)),

and so our choice of e is tantamount to a choice of basis of the latter quotient.
In light of the preceding theorem, we regard the map ı− as providing generalized

Kirillov models for the P -representations D̃+
(
V (1)

)
[
(
1/ϕn(T )

)
n≥0

]/D̃+
(
V (1)

)
and

D̃+
rig

(
V (1)

)
[1/t]/D̃+

rig

(
V (1)

)
. More precisely, we regard ı−i as evaluation at p−i, and

regard elements of these representations as functions on the set {p−i}i∈Z, taking

values in D̃dif

(
V (1)

)
/D̃+

dif

(
V (1)

)
.

7.2. The locally algebraic case. In the previous subsection, we embedded πsm(V )

into π(V )P−sm by utilizing the highest weight vector in Symk−2(L2)∗. However, us-
ing only the highest weight vector loses information and we want to be able to work
with all of Symk−2(L2)∗. This consideration was exactly the reason we introducted
Kirillov models of locally algebraic representations in section 6.7. We now explain
how to see this locally algebraic Kirillov model in terms of the morphism ı−, i.e. in
terms of Colmez’s generalized Kirillov model.

To this end, following Colmez [10, VI.5.2], we first define

π(V )U−alg :=
⋃
n≥0

1

(ϕn(T ))k−1
D̃+(V (1))/D̃+(V (1)).

The map ı−0 (of section 3.3) then induces a map

ı−0 : π(V )U−alg −→ t1−kD̃+
dif(V (1))/D̃+

dif(V (1)).

For z ∈ π(U)U−alg, we define a function

K̃z : Q×p −→ t1−kD̃+
dif(V (1))/D̃+

dif(V (1))

x 7→ ı−0

((
x 0
0 1

)
z

)
.

In [10, Lemme VI.5.4], it is verified that σa(K̃z(x)) = K̃z(ax) for a ∈ Z×p and

thus K̃z is uniquely determined by its values on powers of p. That is, K̃ is simply
(a concrete reinterpretation of) the restriction of ı− to π(V )U−alg.

We now state an analogue of Theorem 7.1.1, which will describe the precise
relationship of this generalized Kirillov model to the Kirillov model of a locally
algebraic representation of Section 6.7. To this end, recall that for each

z ∈ πsm(V )⊗L (Symk−2L2)∗ ∼= πsm(V )⊗L (Symk−2L2)⊗ det2−k,

we have an associated locally polynomial map Kz : Q×p → t2−kL∞[t]/tL∞[t]. Fur-

ther, we have previously fixed a basis e of DdR(V (1))/D+
dR(V (1)). Since the Hodge-

Tate weights of V (1) are 1 and 2− k, we have that e ∈ t−1D̃+
dif(V (1)). Thus

t2−kL∞[t]/tL∞[t]→ D̃+
dif(V (1))[1/t]/D̃+

dif(V (1))

f(t) 7→ f(t)e

is a well-defined Γ-equivariant map.

Write Kze to be the map with values in D̃+
dif(V (1))[1/t]/D̃+

dif(V (1)) defined by

sending x to Kz(x)e. Thus Kze and K̃z both take values in the same space. The
following theorem of Colmez compares these two Kirillov models.
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Theorem 7.2.1 (Colmez). As functions of z on

πsm(V )⊗L (Symk−2L2)⊗ det2−k ⊆ π(V )U−alg,

Kze and K̃z agree up to multiplication by a scalar.

Proof. This theorem follows from [10, Prop. VI.5.6(iii)]. �

Note that by suitably scaling the Kirillov model of πsm(V ) we can (and will)

force Kze and K̃z to exactly agree.
We now return to the problem of inverting 1 −

(
p 0
0 1

)
in the setting of gener-

alized Kirillov models. Recall that in Proposition 6.7.1, we solved the equation(
1−

(
p 0
0 1

))
ξ = Kz. However, the solution ξ was not literally in the Kirillov model

of π, but instead ξ restricted to any compact neighborhood was in the Kirillov
model of π. The following proposition realizes ξe in a generalized Kirillov model.

Proposition 7.2.2. Suppose that the local Euler factor of πsm(V ) does not have a

pole at s = 1 + j. For z = v ⊗ ek−2−j
1 ej2 ∈ π ⊗ Symk−2(L2)⊗ det2−k, let

ξ ∈ LP[2−k,0](Q×p , t2−kL∞[t]/tL∞[t])Γ

be the function of Proposition 6.7.1 such that
(
1−

(
p 0
0 1

))
ξ = Kz. Then there exists

an element w ∈ D̃+
rig

(
V (1)

)
[1/t]/D̃+

rig

(
V (1)

)
such that

ı−i (w) = ξ(p−i)e

in D̃+
dif(V (1))[1/t]/D̃+

dif(V (1)) for all i.

Proof. By the proof of Proposition 6.7.1, we can write the function ξ as ξ1 + ξ2
where ξ1 lies in the Kirillov model locally near zero, and ξ2 satisfies: ξ2(pi) = 0 for
i ≥ 0 and ξ2(pi) is constant for i < 0. In light of Theorem 7.2.1, we thus simply

need to show that there is some element w in D̃+
rig

(
V (1)

)
[1/t]/D̃+

rig

(
V (1)

)
such that

ı−i (w) = ξ2(p−i)e for i ∈ Z. But the existence of such an element follows from [10,
Lemme VI.4.11]. �

7.3. Construction of local cohomology classes. We now build the local coho-
mology classes cn,j ∈ H1(Kn,p, V (1 + j)) which will play a key role in the global
arguments in the second half of the paper.

For any n ≥ 0, we define

dn,j ∈ πsm(V )⊗ Symk−2(L2)⊗ det2−k ⊆ π(V ) = D̃(V (1))/D̃+(V (1))

by

dn,j := ( 1 1
0 1 )

(
pn 0
0 1

)
vnew ⊗ ek−2−j

1 ej2.

Recall that e1 and e2 are our basis of L2 and the induced action on Symk−2(L2) is
described in Section 6.7.

Lemma 7.3.1. We have

(1) dn,j ∈
1

ϕn(T )j+1
D̃+(V (1))/D̃+(V (1));

(2) for a ∈ Γn = 1 + pnZp, we have ( a 0
0 1 ) dn,j = a−j · dn,j.
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Proof. First note the simple matrix equation:(
1 pn

0 1

)
( 1 1

0 1 )
(
pn 0
0 1

)
= ( 1 1

0 1 )
(
pn 0
0 1

)
( 1 1

0 1 ) .

Thus, (
1 pn

0 1

)
dn,j = ( 1 1

0 1 )
(
pn 0
0 1

)
vnew ⊗ ek−2−j

1 (pne1 + e2)j

as ( 1 1
0 1 ) fixes vnew. Computing further, we see

ϕn(T )(dn,j) =
(

1 pn

0 1

)
dn,j − dn,j

= ( 1 1
0 1 )

(
pn 0
0 1

)
vnew ⊗ (ek−2−j

1 (pne1 + e2)j − ek−2−j
1 ej2);

note that ek−2−j
1 (pne1 + e2)j − ek−2−j

1 ej2 is a homogenous polynomial in e1 and

e2 where ej−1
2 is the highest power of e2 which occurs. The same computation as

above then shows

(ϕn(T ))2(dn,j) = ( 1 1
0 1 )

(
pn 0
0 1

)
vnew ⊗ g(e1, e2)

where g(e1, e2) is again a homogenous polynomial in e1 and e2, but all powers
of e2 present are less than or equal to j − 2. Iterating this argument yields that
(ϕn(T ))j+1(dn,j) = 0, proving the first part of the proposition.

For the second part, for a = 1 + pnx with x ∈ Zp, we have

( a 0
0 1 ) dn,j = ( a 0

0 1 )
(

( 1 1
0 1 )

(
pn 0
0 1

)
vnew ⊗ ek−2−j

1 ej2

)
= a−j

(
pna a

0 1

)
vnew ⊗ ek−2−j

1 ej2

= a−j
(
pn 1
0 1

)
( 1 x

0 1 ) ( a 0
0 1 ) vnew ⊗ ek−2−j

1 ej2

= a−j
(
pn 1
0 1

)
vnew ⊗ ek−2−j

1 ej2

proving the claim. We note that the factor of a−j arises by combining the action

of ( a 0
0 1 ) on ek−2−j

1 ej2 and the twist by det2−k. �

We now aim to build local cohomology classes from the elements dn,j ∈ π(V ). To
this end, note that as vector spaces we have π(V ) = π(V (j)) though the underlying
Γ-action differs. For z ∈ π(V ), we write z(j) for the element z, but viewed in
π(V (j)). Let z′ ∈ D(V ∗(−j))ψ=1 which we identify with H1

Iw(V ∗(−j)) and write
z′n for the image of z′ to level n in H1(Kn,p, V

∗(−j)) where Kn,p := Qp(µpn).
Lastly, recall the dual exponential map

exp∗ : H1
(
Kn,p, V

∗(−j)
)
→ D+

dR

(
V ∗(−j)

)
⊗Kn,p.

We then have the following twisted version of Theorem 5.4.2.

Corollary 7.3.2. Let z ∈ D̃+
rig

(
V (1)

)
[1/t] and let z′ ∈ D(V ∗(−j))ψ=1. Suppose

that

(1) (1− ϕ)z lies in D̃+
(
V (1)

)
[1/ϕr(T )] for some r ≥ 0,

(2) for some n ≥ 0, we have γz = γ−j · z for all γ ∈ 1 + pnZp = Γn ⊆ Γ.

Then
{(1− ϕ)z(j), z′} = pn〈ı−r (z(j)), σ−1 exp∗(z′n)〉dif .

Proof. By assumption (2), z(j) is fixed by Γn and Theorem 5.4.2 implies

{(1− ϕ)z(j), z′} = 〈ı−r (z(j)), σ−1 · ım(z′)〉dif

for m large enough. This corollary then follows immediately from Lemma 5.3.1. �
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As we intend to be pairing with dn,j , to apply the above corollary, we need
to show that dn,j is in the image of 1 − ϕ. To this end, suppose that the local
Euler factor of πsm(V ) has no pole at s = 1 + j. Thus, by Propositions 6.7.1, we
can solve the equation

(
1−

(
p 0
0 1

))
ξn,j = Kdn,j in the Kirillov model of πsm(V ) ⊗

Symk−2(L2)⊗det2−k. By Proposition 7.2.2, we can then realize ξn,j in a generalized

Kirillov model for π(V ); that is, we can find wn,j ∈ D̃+
rig(V (1))[1/t] such that

ı−i (wn,j) = ξn,j(p
−i)e for all i. Since ı− is injective (Proposition 3.3.1), we deduce

that (1− ϕ)wn,j ≡ dn,j mod D̃+
rig

(
V (1)

)
.

Remark 7.3.3. One can explicitly write down the classes dn,j and wn,j in the

(locally algebraic) Kirillov model of πsm(V )⊗ Symk−2(L2)⊗ det2−k. For instance,
when πsm(V ) is supercuspidal, then vnew corresponds to 1Z×p (x) in the (smooth)

Kirillov model of πsm(V ) (when appropriately normalized) and ( 1 1
0 1 )

(
pn 0
0 1

)
vnew

corresponds to ε(x) · 1Z×p (pnx). Thus, by (9),

Kdn,j (x) = j! · (tx)−j · ε(x) · 1Z×p (pnx);

that is,

Kdn,j (pr) =

{
j! · pnj · ε(p−n) · t−j r = −n,
0 r 6= −n.

Further, tracing through the proof of Proposition 6.7.1, we see that

Kwn,j =
∑
n≥0

(
pn 0
0 1

)
Kdn,j ;

that is,

Kwn,j (pr) =

{
0 r > −n,
j! · pnj · ε(p−n) · t−j r ≤ −n.

Recall that when we view the element dn,j in π(V (j)) rather than π(V ), we write

it as d
(j)
n,j . To ease notation a little, let’s simply write d

(j)
n for d

(j)
n,j and likewise for

w
(j)
n . Then given any element z′ ∈ D(V ∗(−j))ψ=1, Lemma 7.3.1 and Corollary 7.3.2

show that

(13) {d(j)
n , z′} = {(1− ϕ)w(j)

n , z′} = pn
〈
ı−n (w(j)

n ), σ−1 exp∗ z′n

〉
dif
.

Note that pairing with d
(j)
n gives a functional on D(V ∗(−j))ψ=1 ∼= H1

Iw(V ∗(−j)),
and by (13), we see that this pairing factors through H1(Kn,p, V

∗(−j)) (since z′n
is the projection of z′ to level n). Thus, by Tate local duality, there is a unique
cn,j ∈ H1(Kn,p, V (1 + j)) such that

〈cn,j , z′n〉n = pn
〈
ı−n (w(j)

n ), σ−1 exp∗ z′n

〉
dif

where 〈·, ·〉n is the perfect pairing on Galois cohomology induced by Tate local
duality. Moreover, (13) implies that pairing with cn,j kills the kernel of exp∗ which
is H1

g (Kn,p, V
∗), and thus cn,j ∈ H1

e (Kn,p, V (1)). We summarize these observations
in the following proposition.
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Proposition 7.3.4. Suppose that the local Euler factor of πsm(V ) does not have a
pole at s = 1 + j. Then there exist classes cn,j ∈ H1

e (Kn,p, V (1 + j)) such that for
z′ ∈ D(V ∗(−j))ψ=1 ∼= H1

Iw(V ∗(−j)), we have

〈cn,j , z′n〉n = pn
〈
ı−n (w(j)

n ), σ−1 exp∗ z′n

〉
dif

where (1− ϕ)w
(j)
n = d

(j)
n in π(V ).

The local classes cn,j will play a key role in the global computations in the second
half of the paper.

7.4. Twisted pairing sums. The formula of the following proposition will be used
in the global half of the paper to relate our algebraic θ-elements to the Mazur-Tate
elements.

In what follows, recall from section 5.3 that 〈·, ·〉′dR,n denotes the pairing

〈·, ·〉′dR,n : (DdR(V (1 + j))⊗Kn,p)× (DdR(V ∗(−j))⊗Kn,p)→ L⊗Kn,p

and 〈·, ·〉dR,n = TrLnL 〈·, ·〉′dR,n.

Proposition 7.4.1. Suppose that the local Euler factor of πsm(V ) does not have
a pole at s = 1 + j. For z′n ∈ H1(Kn,p, V

∗(−j)) and χ a Dirichlet character of
conductor pn, we have∑

a∈(Z/pnZ)×

χ−1(a)
〈
cσan,j , z

′
n

〉
n

=


j! · pnj · τ(χ−1)

〈
t−je,

∑
a∈(Z/pnZ)×

χ(−a) exp∗(z′n)σa

〉′
dR,n

m ≥ 1,

j! · Z̃(x−jφvnew
, 1)
〈
t−je, exp∗ z′0

〉
dR,0

m = 0.

Proof. Using Proposition 7.3.4, we compute for n ≥ 1

〈σacn,j , z′n〉n = pn
〈
ı−n (( a 0

0 1 )w(j)
n ), σ−1 exp∗ z′n

〉
dif

=
〈

( a 0
0 1 ) ı−n (w(j)

n ), σ−1 exp∗ z′n

〉
dR,n

= TrLnL

〈
( a 0

0 1 ) ı−n (w(j)
n ), σ−1 exp∗ z′n

〉′
dR,n

=
∑
b

σb

〈
( a 0

0 1 ) ı−n (w(j)
n ), σ−1 exp∗ z′n

〉′
dR,n

=
∑
b

〈
( ab 0

0 1 ) ı−n (w(j)
n ), σ−b exp∗ z′n

〉′
dR,n

where the sums above and below are over any systems of representatives for (Z/pnZ)×.
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Thus∑
a

χ−1(a) 〈σacn,j , z′n〉n

=
∑
a

χ−1(a)
∑
b

〈
( ab 0

0 1 ) ı−n (w(j)
n ), σ−b exp∗ z′n

〉′
dR,n

=
∑
b

〈∑
a

χ−1(a) ( ab 0
0 1 ) ı−n (w(j)

n ), σ−b exp∗ z′n

〉′
dR,n

=
∑
b

〈∑
a

χ−1(a) ( a 0
0 1 ) ı−n (w(j)

n ), χ(b)σ−b exp∗ z′n

〉′
dR,n

=

〈∑
a

χ−1(a) ( a 0
0 1 ) ı−n (w(j)

n ),
∑
b

χ(b)σ−b exp∗ z′n

〉′
dR,n

.

Focusing on the first term in the above pairing and applying Propositions 6.7.1
and 7.2.2, we have∑

a

χ−1(a) ( a 0
0 1 ) ı−n (w(j)

n ) =
∑
a

χ−1(a) ( a 0
0 1 ) ı−n (wn,j)a

j

=
∑
a

χ−1(a) ( a 0
0 1 ) Z̃

(
Kdn,je, 1

)
aj = Z̃ (Kαe, 1)

where

α =
∑
a

χ−1(a)aj ( a 0
0 1 ) dn,j

=
∑
a

χ−1(a)aj ( a 0
0 1 )

(
( 1 1

0 1 )
(
pn 0
0 1

)
vnew ⊗ ek−2−j

1 ej2

)
=
∑
a

χ−1(a)
(
pna a

0 1

)
vnew ⊗ ek−2−j

1 ej2

=
∑
a

χ−1(a)
(
pn 0
0 1

) (
1 a/pn

0 1

)
( a 0

0 1 ) vnew ⊗ ek−2−j
1 ej2

=
(
pn 0
0 1

)(∑
a

χ−1(a)
(

1 a/pn

0 1

)
vnew

)
⊗ ek−2−j

1 ej2.

By the local Birch lemma (section 6.3), we have
∑
a χ
−1(a)

(
1 a/pn

0 1

)
vnew corre-

sponds simply to τ(χ−1)1Z×p (x) in the smooth Kirillov model attached to πsm(V ).

Thus, by (9), we have

Kα(x) = j! · (tx)−j · τ(χ−1) · 1Z×p (pnx)

and

Z̃(Kαe, 1) = j! · pnj · τ(χ−1) · t−je.
Putting it all together gives∑

a

χ−1(a) 〈σacn,j , z′n〉n = j! · pnj · τ(χ−1)

〈
t−je,

∑
b

χ(−b)σb exp∗ z′n

〉′
dR,n

as desired.
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For n = 0, we have

〈c0,j , z′0〉0 =
〈
ı−0 (w

(j)
0 ), exp∗ z′0

〉
dif

and

ı−0 (w
(j)
0 ) = ı−0 (w0,j) = Z̃

(
Kd0,j , 1

)
e = Z̃

(
j!(tx)−jφvnew , 1

)
e = j!Z̃

(
x−jφvnew , 1

)
t−je.

Thus

〈c0,j , z′0〉0 = j! · Z̃
(
x−jφvnew , 1

)
·
〈
t−je, exp∗ z′0

〉
dif

as desired. �

7.5. Three-term relation. In this subsection, we describe some basic properties
of the local cohomology classes {cn,j} including their key three-term relation.

We continue to assume that V is de Rham and let πsm(V ) be the associated
smooth representation of GL2(Qp) with central character χV . If T is the Hecke
operator associated to the matrix

(
p 0
0 1

)
, write Tvnew = avnew with a ∈ OL. Also,

define δ = χV (p) if πsm(V ) is unramified (i.e. if V is crystalline) and 0 otherwise.
We then have the following lemma.

Lemma 7.5.1. We have

p−1∑
i=0

(
p i
0 1

)
vnew + δ

(
p−1 0
0 1

)
vnew = a · vnew.

Proof. We have

T =



p−1∑
i=0

(
p i
0 1

)
+
(

1 0
0 p

)
if πsm(V ) is unramified,

p−1∑
i=0

(
p i
0 1

)
otherwise,

which implies the lemma. �

For m ≥ n, let cormn : H1(Kn,p, V (1 + j)) → H1(Km,p, V (1 + j)) and resmn :
H1(Km,p, V (1 + j)) → H1(Kn,p, V (1 + j)) denote the natural corestriction and
restriction maps. We then have the following three-term relation for the local
cohomology classes {cn}.

Proposition 7.5.2. For n ≥ 1, we have

corn+1
n (cn+1,j) = acn − δ resnn−1(cn−1,j),

and

cor1
0(c1) = (a− δ − 1)c0.
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Proof. For n ≥ 1, we compute

corn+1
n (d

(j)
n+1) =

p−1∑
i=0

(
1+ipn 0

0 1

)
d

(j)
n+1 =

p−1∑
i=0

(
1+ipn 0

0 1

)
( 1 1

0 1 )
(
pn+1 0

0 1

)
vnew ⊗ ek−2−j

1 ej2

=

p−1∑
i=0

(
pn+1(1+pni) 1+ipn

0 1

)
vnew ⊗ ek−2−j

1 ej2

=

p−1∑
i=0

( 1 1
0 1 )

(
pn 0
0 1

)(
p i
0 1

)(
1+ipn 0

0 1

)
vnew ⊗ ek−2−j

1 ej2

= ( 1 1
0 1 )

(
pn 0
0 1

)(p−1∑
i=0

(
p i
0 1

)
vnew

)
⊗ ek−2−j

1 ej2

= ( 1 1
0 1 )

(
pn 0
0 1

) (
a · vnew − δ

(
p−1 0

0 1

)
vnew

)
⊗ ek−2−j

1 ej2

= a · ( 1 1
0 1 )

(
pn 0
0 1

)
vnew ⊗ ek−2−j

1 ej2 − δ( 1 1
0 1 )

(
pn−1 0

0 1

)
vnew ⊗ ek−2−j

1 ej2

= a · d(j)
n − δ · d

(j)
n−1.

Since 〈cn,j , z′n〉n = {d(j)
n , z′}, the above relations for the d

(j)
n imply the correspond-

ing relations for the cn,j for n ≥ 1.
For n = 0, we have

cor(d
(j)
1 ) =

p−1∑
i=1

( i 0
0 1 )d

(j)
1 =

p−1∑
i=1

( i 0
0 1 )( 1 1

0 1 )
(
p 0
0 1

)
vnew ⊗ ek−2−j

1 ej2

=

p−1∑
i=1

(
p i
0 1

)
( i 0

0 1 )vnew ⊗ ek−2−j
1 ej2

=
(
a · vnew − δ

(
p−1 0

0 1

)
vnew −

(
p 0
0 1

)
vnew

)
⊗ ek−2−j

1 ej2

=
(
a− δ

(
p−1 0

0 1

)
−
(
p 0
0 1

))
d

(j)
0 .

The relation between c1,j and c0,j then follows as above combined with the fact

that {z, z′} =
{(

p±1 0
0 1

)
z, z′

}
for any z ∈ π(V ) and z′ ∈ D(V ∗)ψ=1. �

7.6. The crystalline case. Suppose now that V (1) is crystalline of dimension
two, and that Dcrys

(
V (1)

)
has distinct Frobenius eigenvalues α/p and β/p arising

from eigenvectors

eα/p, eβ/p ∈ Dcrys

(
V (1)

)
⊆ D̃+

rig

(
V (1)

)
[1/t].

Suppose that neither α nor β equals p so that the local Euler factor of πsm(V )
does not have a pole at s = 1. Further suppose that V is irreducible, so that eα/p
and eβ/p both have non-zero image in DdR

(
V (1)

)
/D+

dR

(
V (1)

)
, and scale them so

that their images coincide. We take this common image to be our basis e in the
preceding discussion, and set ω = eα/p − eβ/p ∈ D+

dR

(
V (1)

)
.

In this case, we can give another (more direct) description of the classes cn := cn,0
as follows. (So we are fixing j = 0 for this subsection.). First, for n ≥ 0, set

kn = ε(n) ⊗ ϕω + · · ·+ ε(1) ⊗ ϕnω + (1− ϕ)−1ϕn+1ω ∈ Kn,p ⊗Qp Dcrys(V (1))
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where for n = 0 this formula simply means the final term. Note that 1 − ϕ is
invertible as we have assumed that ϕ does not have 1 as an eigenvalue.

Recall the exponential map

exp : Kn,p ⊗Dcrys(V (1))→ H1
f (Kn,p, V (1))

and consider the elements exp(kn) ∈ H1(Kn,p, V (1)) for n ≥ 0. A simple computa-
tion shows that these elements satisfy the three term relation given in Proposition
7.5.2. In fact, we will show the following:

Proposition 7.6.1. For n ≥ 0, we have cn =
(
α
p −

β
p

)−1

exp(kn).

Proof. Recall that cn is defined by the formula

〈cn, z′n〉n = pn〈ı−n (wn), σ−1 exp∗ z′n〉dif

where wn := wn,0. Further, by [10, Théorème VIII.2.2], we have

〈exp(kn), σ−1 · z′n〉n = pn〈kn, σ−1 exp∗ z′n〉dif .

Thus it suffices to see that the images of
(
α
p −

β
p

)−1

kn and ı−n (wn) agree in

DdR(V (1))/D+
dR(V (1)).

To this end, we first explicitly describe the realization of dn := dn,0 and wn in
(generalized) Kirillov models. If φ denotes the realization of vnew in the Kirillov
model of πsm(V ), then

φ(pn) =


(α/p)n+1 − (β/p)n+1

(α/p)− (β/p)
n ≥ 0,

0 otherwise.

as in section 6.2. Thus,

Kdn(pr)e =


φ(pn+r)e r ≥ 0,

ε(−r)φ(pn+r)e −n ≤ r ≤ 0,

0 r < −n,

where ε(m) = ε(p−m) is a pm-th root of unity.
Tracing through the proof of Proposition 6.6.1, we then see that

ξn(p−n) =(
α

p
− β

p

)−1
n−1∑
j=0

ε(n−j)

((
α

p

)j+1

−
(
β

p

)j+1
)

+
(α/p)n+1

1− α/p
− (β/p)n+1

1− β/p

 e.

Since ω = eα/p − eβ/p, we have

kn =

n−1∑
j=0

ε(n−j) ⊗ ϕj+1ω + (1− ϕ)−1ϕn+1ω

=

n−1∑
j=0

ε(n−j) ⊗

((
α

p

)j+1

eα/p −
(
β

p

)j+1

eβ/p

)
+

(α/p)n+1

1− α/p
eα/p −

(β/p)n+1

1− β/p
eβ/p

and thus

kn ≡
(
α

p
− β

p

)
ı−n (wn) (mod D+

dR(V (1)))
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as desired. �

Remark 7.6.2. One can even go further and directly check that the classes exp(kn)
satisfy Proposition 7.4.1. Nonetheless, we note that the explicit construction in this
section for the crystalline case do not supplant the main arguments given so far in
this paper. Indeed, these explicit constructions with the exponential map do not
give us any integral control of these cohomology classes. In the next section, we
describe how the cn can be normalized so that they are in H1(Kn,p, T (1)) for all
n ≥ 0 for T some Galois-stable lattice in V . We cannot directly check this property
for the classes exp(kn).

7.7. Normalizations. If T is a GQp -invariant OL-lattice in the two-dimensional

irreducible continuous GQp -representation V over L, then we can form D̃+
(
T (1)

)
⊂

D̃+
(
V (1)

)
and D̃

(
T (1)

)
⊂ D̃

(
V (1)

)
. Note that D̃+

(
T (1)

)
= D̃

(
T (1)

)
∩D̃+

(
V (1)

)
(the intersection taking place in D̃

(
V (1)

)
), so that we also obtain an embedding

π(T ) := D̃
(
T (1)

)
/D̃+

(
T (1)

)
↪→ D̃

(
V (1)

)
/D̃+

(
V (1)

)
= π(V ),

which gives an integral structure on the target.
Suppose now, as before, that V is de Rham, with Hodge–Tate weights 0 and

1 − k < 0. Then we have the inclusion πsm(V ) ⊗L (Symk−2L2)∗ ↪→ π(V ), and
we may normalize the vector vnew ∈ πsm(V ) (up to an element of O×L ) by asking

that vnew ⊗OL (Symk−2O2
L)∗ be contained in π(T ), but not in $π(T ). (Here $

is a uniformizer of OL.) Further, if we apply ı−0 to vnew ⊗ vhw (where vhw is a

basis element for the highest weight space of (Symk−2O2
L)∗), we obtain an element

of DdR(V )/D+
dR(V ), well-determined up to multiplication by an element of O×L ;

in other words, we obtain an OL-structure on the one-dimensional L-vector space
DdR(V )/D+

dR(V ). Setting e equal ı−0 (vnew⊗vhw) then pins down the elements dn,j
(and thus the cn,j) up to scaling by a single element in O×L . Further, we note that
under this normalization for all n ≥ 0, we have that cn,j is in H1(Kn,p, T (1 + j))
(as opposed to just being in H1(Kn,p, V (1 + j))).

Part 2. The global theory

8. Algebraic θ-elements

8.1. Notations and assumptions. Let f be a newform in Sk(Γ1(N), ψ,Qp) for
k ≥ 2, and let L/Qp denote the field generated by the Fourier coefficients of f . Let
ρf : GQ → Aut(Vf ) denote the associated (cohomological) Galois representation;
that is, the determinant of ρf is ψ−1ε1−k where ε is the cyclotomic character. Let
Σ denote the finite set of primes where ρf ramifies.

As f will be fixed for the remainder of the paper, we simply write V := Vf and

V := Vf where f is the complex conjugate of f . Fix T a Galois stable lattice in V .

Set A = V/T and A∗ = V ∗/T ∗. We similarly write T , A, and A
∗

for the analogous
constructions using V . Note that A∗ ∼= A(k−1). In what follows, to ease notation,
we will simply write A∗r for A∗(1− r) for any r ∈ Z whose Tate dual is simply T (r).

Further, setKn = Q(µpn), K∞ = Q(µp∞), Γn = Gal(K∞/Kn), Gn = Gal(Kn/Q),
Λ = OL[[Gal(K∞/Q)]], and Λn = ΛΓn

∼= OL[Gal(Kn/Q)]. We fix an isomorphism
of (Z/pnZ)× with Gn by mapping a to σa where σa(ζ) = ζa for ζ ∈ µpn .
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Let πn+1
n : Λn+1 → Λn be the natural projection, and let corn+1

n : Λn → Λn+1

be the natural injection which sends a group like element σ ∈ Gn to
∑
τ where τ

runs over all elements in Gn+1 whose image in Gn equals σ.

8.2. Selmer groups. In this section, we give a construction of algebraic θ-elements
attached to f along the Z×p -extension K∞/Q. We begin by recalling the definition
of the relevant Selmer groups. We have

H1
g (Kn, A

∗
r) := ker

H1(Kn, A
∗
r)→

∏
v-p

H1(Iv, A
∗
r)×

H1(Kn,p, A
∗
r)

H1
g (Kn,p, A∗r)


where v runs over places of Kn and Iv denotes an inertia group at v, and

H1
g (K∞, A

∗
r) := ker

H1(K∞, A
∗
r)→

∏
w-p

H1(Iw, A
∗
r)


where w runs over places of K∞. We note that no condition at p is imposed in this
second Selmer group since H1

g (K∞,p, A
∗
r) = H1(K∞,p, A

∗
r) by [4, Theorem A].

The key global input in what follows is the sequence in the following proposition
which precisely describes the failure of the control theorem in this non-ordinary
situation.

Proposition 8.2.1. Assuming (Irred) there is a natural exact sequence

(14) 0→ H1
g (Kn, A

∗
r)→ H1

g (K∞, A
∗
r)

Γn → H1(Kn,p, A
∗
r)

H1
g (Kn,p, A∗r)

⊕Bn

where Bn is a finite group with size bounded independent of n.

Proof. This sequence is derived via the Snake Lemma as in [14, Chapter 3] or as in
[16, Theorem 3.1]. We note that the local ingredients needed to prove this are:

(1) H1(K∞,w/Kn,v, A
∗
r(K∞,w)) is finite with size bounded independent of n

for v - p.
(2) H1

g (K∞,p, A
∗
r) = H1(K∞,p, A

∗
r).

The first of these facts can be proven as in [14, Lemma 3.3]. The second fact follows
from [4, Theorem A] by Tate local duality and (Irred). �

Dualizing (14) and applying Tate local duality yields

(15) H1
e (Kn,p, T (r))⊕B∨n −→ (H1

g (K∞, A
∗
r)
∨)Γn −→ H1

g (Kn, A
∗
r)
∨ −→ 0.

Let QΣ denote the maximal extension of Q unramified outside of Σ, and let

Hi(T ∗r ) := lim←−
n

Hi(QΣ/Kn, T
∗
r ).

The following is a deep theorem of Kato.

Theorem 8.2.2 (Kato). Assuming (Irred) we have

(1) H1(T ∗r ) is a free Λ-module of rank one.
(2) H1

g (K∞, A
∗
r)
∨ is a rank one Λ-module.
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Proof. The first part is [20, Theorem 12.4.3]. For the second part, we have that
the Λ-corank of H1(QΣ/K∞, A

∗
r) equals the Λ-rank of H1(T ∗r ) by [31, Proposition

1.3.2]. Further, consider the exact sequence

(16) 0→ H1
g (K∞, A

∗
r)→ H1(QΣ/K∞, A

∗
r)→

⊕
w∈Σ−{p}

H1(K∞,w, A
∗
r).

Since H1(K∞,w, A
∗
r) is Λ-cotorsion if w - p (see [13, Proposition 2]), we have

corankΛH
1
g (K∞, A

∗
r) = corankΛH

1(QΣ/K∞, A
∗
r) = 1

as desired. �

To ease notation, let Xr = H1
g (K∞, A

∗
r)
∨. Set (Xr)Λ-tor equal to the Λ-torsion

submodule ofXr, and let Zr = Xr/(Xr)Λ-tor, a torsion-free Λ-module. LetRΛ(Zr) :=
HomΛ

(
HomΛ(Zr,Λ),Λ

)
denote the reflexive hull of Zr. Choosing an isomorphism

of α : RΛ(Zr) ∼= Λ (via Theorem 8.2.2) yields maps for each n ≥ 0

(17) (Xr)Γn −→ (Zr)Γn −→ Λn.

Combining (15) and (17), we get a map

ψn = ψn,α : H1
e (Kn,p, T (r))→ H1

e (Kn,p, T (r))⊕B∨n −→ (Xr)Γn → (Zr)Γn → Λn.

Lemma 8.2.3. The diagram

H1
e (Kn,p, T (r))

ψn−−−−→ Λn

resnm

x xcornm

H1
e (Km,p, T (r))

ψm−−−−→ Λm

commutes for n ≤ n.

Proof. This commutativity can easily be checked. See [16, Proposition 6.3] for a
similar computation. �

Recall our local cohomology classes cn,r−1 ∈ H1
e (Kn,p, T (r)) defined in section

7.3. For 1 ≤ r ≤ k − 1, we set

ψalg
n,r(f) = ψn(cn,r−1)

and

θalg
n,r(f) = ψalg

n,r(f) · charΛ((Xr)Λ-tor)

which is our n-th layer algebraic θ-element.
Further, let Ialg

n,r(f) (resp. Jalg
n,r(f)) denote the ideal of Λn generated by the el-

ements cornm(θalg
m,r(f)) (resp. cornm(ψalg

m,r(f))) for 0 ≤ m ≤ n. Note that Ialg
n,r(f) =

Jalg
n,r(f) · charΛ(Xr)Λ-tor. Also, changing our fixed isomorphism α has the effect of

scaling all of the ψalg
n,r(f) by a unit in Λ. In particular, the ideals Ialg

n,r(f) and Jalg
n,r(f)

are independent of this choice.

Remark 8.2.4. This construction of algebraic θ-elements dates back to Perrin-
Riou in her 1990 paper [30].
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9. Algebraic results on Fitting ideals

9.1. Main algebraic results. The remainder of this section will be occupied with
proving the following purely algebraic result.

Theorem 9.1.1. If (Irred) holds, we have

ψn(c) · charΛ(Xr)Λ-tor ∈ FittΛn H
1
g (Kn, A

∗
r)
∨

for any c in H1
e (Kn,p, T (r)).

We note that as an immediate corollary we get.

Corollary 9.1.2. If (Irred) holds,

Ialg
n,r(f) ⊆ FittΛn H

1
g (Kn, A

∗
r)
∨.

Proof. This corollary follows immediately from Theorem 9.1.1 by taking c = cornm(cm,r)
for 0 ≤ m ≤ n. �

9.2. Fitting ideal lemmas.

Lemma 9.2.1. If An, Bn, Cn are Λn-modules, and Y is a Λ-module then

(1) If An → Bn is surjective, then FittΛn(An) ⊆ FittΛn(Bn).
(2) If 0→ An → Bn → Cn → 0 is exact, then

FittΛn(Bn) ⊇ FittΛn(An) · FittΛn(Cn).

(3) FittΛn(YΓn) = πn(FittΛ(Y )) where πn : Λ→ Λn is the natural map.

Proof. See [27, Appendix: 1,9,4] �

Lemma 9.2.2. If Y is a finitely generated torsion Λ-module with no non-zero finite
submodules, then FittΛ(Y ) = charΛ(Y ). In particular, FittΛ(Y ) is a principal ideal.

Proof. See [35, Proposition 1.3.4]. �

We thank Cornelius Greither for the following argument.

Lemma 9.2.3. Let I ⊆ A be ideals of Λ with A finite-index in Λ. Then

I ⊆ FittΛ(A/I).

Proof. We first note that it suffices to assume that I is a principal ideal. Indeed,
assume that we have proven this lemma for all principal ideals, and let f be any
element of I. Then we have

fΛ ⊆ FittΛ(A/fΛ) ⊆ FittΛ(A/I)

where the second inclusion follows from Lemma 9.2.1. Since this is true for all
f ∈ I, we have I ⊆ FittΛ(A/I).

Thus, we will now assume that I = fΛ. We then have an exact sequence

0→ A/fΛ→ Λ/fΛ→ Λ/A→ 0.

Since A has finite index in Λ, for any height one prime p in Λ, we have

(A/fΛ)p ∼= (Λ/fΛ)p.

Thus, (
FittΛp

(A/fΛ)
)
p

= FittΛp
((A/fΛ)p) = FittΛp

((Λ/fΛ)p) = (fΛ)p.
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By Lemma 9.2.2, we have FittΛ(A/fΛ) = gΛ for some g in Λ. Thus,

(gΛ)p = (fΛ)p

for all height one primes p. Hence fΛ = gΛ and fΛ = FittΛ(A/fΛ) as desired. �

Lemma 9.2.4. Let A be some finite-index ideal of Λ, and let In be a Λn-submodule
of AΓn . Then

in(In) ⊆ FittΛn AΓn/In

where in is the natural map AΓn → Λn.

Proof. Let πn denote the natural map from Λ→ Λn, and let pn denote the natural
map from A to AΓn so that in ◦ pn = πn|A. The map pn induces an isomorphism

A

p−1
n (In)

∼=
AΓn

In
,

and thus

FittΛn

(
AΓn

In

)
= πn

(
FittΛ

(
A

p−1
n (In)

))
by Lemma 9.2.1.3

⊇ πn
(
p−1
n (In)

)
by Lemma 9.2.3

= in(In)

as desired. �

We can now prove the main algebraic theorem of this section.

Proof of Theorem 9.1.1. Consider the sequence

0→ (Xr)Λ-tor → Xr → Zr → 0.

Taking Γn-coinvariants yields

0→ ((Xr)Λ-tor)Γn → (Xr)Γn → (Zr)Γn → 0

since the kernel of the first map equals ZΓn
r = 0. Let En denote the image of

H1
e (Kn,p, T (r))⊕{0} in (Xr)Γn under (15), and let Fn denote its image in (Zr)Γn .

If in denotes the natural map (Zr)Γn → Λn, we recall that by definition in(Fn)
equals the image of ψn.

We have

0→ ((Xr)Λ-tor)Γn

((Xr)Λ-tor)Γn ∩ En
→ (Xr)Γn

En
→ (Zr)Γn

Fn
→ 0
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Note that (15) equates a quotient of the middle term of this sequence withH1
g (Kn, A

∗
r)
∨.

Thus,

FittΛn(H1
g (Kn, A

∗
r)
∨)

⊇ FittΛn

(Xr)Γn

En
by Lemma 9.2.1.1

⊇ FittΛn

(
((Xr)Λ-tor)Γn

((Xr)Λ-tor)Γn ∩ En

)
· FittΛn

(
(Zr)Γn

Fn

)
by Lemma 9.2.1.2

⊇ FittΛn (((Xr)Λ-tor)Γn) · FittΛn

(
(Zr)Γn

Fn

)
by Lemma 9.2.1.1

= πn(FittΛ ((Xr)Λ-tor)) · FittΛn

(
(Zr)Γn

Fn

)
by Lemma 9.2.1.3

⊇ πn(charΛ ((Xr)Λ-tor)) · FittΛn

(
(Zr)Γn

Fn

)
by Lemma 9.2.2

⊇ πn(charΛ ((Xr)Λ-tor)) · in(Fn) by Lemma 9.2.4

⊇ πn(charΛ ((Xr)Λ-tor)) · ψn(H1
e (Kn,p, T (r)))

as desired.
We note that in applying Lemma 9.2.2, the fact that (Xr)Λ-tor has no non-zero

finite submodules is a theorem of Greenberg (see [15, Proposition 4.1.1]). �

10. Mazur-Tate elements and Kato’s Euler system

10.1. Mazur-Tate elements and statement of main results. Following [26],
we define

λ(f, zj , a,m) := 2πi

∫ −a/m
∞

f(z)(mz + a)j dz.

Setting λ±(f, zj , a,m) := λ(f, zj , a,m)± λ(f, zj , a,m), we further define

ϕ(f, zj , a,m) :=
λ+(f, zj , a,m)

Ω+
f

+
λ−(f, zj , a,m)

Ω−f
.

With this notation in hand, we define our Mazur-Tate elements of f over Kn:

θan
n,r(f) :=

∑
σa∈Gn

ϕ(f, zr−1, a, pn)σ−1
a .

For χ a primitive character of Gn we have

(18) χ(θan
n,r(f)) = χ(−1) · (r − 1)! · pn(r−1) · τ(χ−1) · L(f, χ, r)

(−2πi)r−1Ω±f
.

where the sign ± equals the sign of (−1)r−1χ(−1).

Remark 10.1.1. Our definition here is a bit non-standard as Mazur and Tate’s
original definition would replace σ−1

a above with σa. That is, if ι is the involution
on Λn sending σ to σ−1, then in our notation above θan

n,r(f)ι is the more standard
definition of Mazur-Tate elements. Nonetheless, the methods of this paper naturally
show that our θan

n,r(f) belong to a Fitting ideal of a Selmer group and so we chose
to state our results in this more natural form.
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The Mazur-Tate elements satisfy the relations:

(19) πn+1
n (θan

n+1,r(f)) =


ap(f) · θan

n,r(f)− ψ(p)pk−2 · cornn−1(θan
n−1,r(f)) n ≥ 1,

(ap − 1− ψ(p)pk−2) · θan
0,r(f) n = 0,

where πn+1
n is the natural projection from Λn+1 to Λn. These formulas follow from

[26, (4.2)]. See also [34, Proposition 2.5] for the case r = 1.
We have the following conjecture relating these analytically defined Mazur-Tate

elements to Selmer groups.

Conjecture 10.1.2. (Mazur-Tate [25]) For each n ≥ 0, we have

θan
n,r(f) ∈ FittΛn(H1

g (Kn, A
∗
r)
∨).

We note that Mazur and Tate only formulated this conjecture for elliptic curves,
but in that formulation, the conjecture was much more general, covering Selmer
groups over all abelian extensions of Q.

Remark 10.1.3. The functional equation for L-values gives an equality

θan
n,r(f) = C · θan

n,k−r(f)ι

where C is some constant. Thus, it may be equally reasonable to conjecture that
θan
n,k−r(f)ι belongs to the above Fitting ideal. Moreover, since A∗r = A∗(1 − r) ∼=
A(k − r), that second conjecture equivalently reads

θan
n,r(f)ι ∈ FittΛn(H1

g (Kn, A(r))∨)

which might be a more familiar form of this conjecture for some (noting the presence
of ι is caused by our non-standard definition of the Mazur-Tate element as in
Remark 10.1.1).

However, as the above constant C need not be integral, neither conjecture is
stronger nor weaker than the other. We do note that for n large enough, the
constant C is a p-adic unit and thus the two conjectures (for n large) are equivalent.
Also, showing that these Fitting ideals were stable under the ι-involution (which
seems very plausible), would give a neat explanation of the equivalence of the two
conjectures.

We set Ian
n (f) to be the ideal of Λn generated by the elements cornm(θan

m,r(f)) for
0 ≤ m ≤ n. The remainder of the paper will be devoted to proving the following
divisibility.

Theorem 10.1.4. If (Irred), (No pole at s = r), and (Euler) hold, then there ex-
ists a non-zero constant C ∈ OL (independent of n and r) such that

C · Ian
n,r(f) ⊆ Ialg

n,r(f)

for all n ≥ 0.

From Corollary 9.1.2 and Theorem 10.1.4, we get our main result.

Corollary 10.1.5. If (Irred), (No pole at s = r), and (Euler) hold, then there
exists a non-zero constant C ∈ OL (independent of n and r) such that

C · Ian
n,r(f) ⊆ FittΛn(H1

g (Kn, A
∗
r)
∨).

for all n ≥ 0. In particular, C · θan
n,r(f) ∈ FittΛn(H1

g (Kn, A
∗
r)
∨) for all n ≥ 0.
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10.2. Kato’s Euler system. In this section, we describe how to recover the
Mazur-Tate elements from Kato’s Euler system and the local classes cn,j con-
structed in section 7.3.

Let zK = (zK,n)n ∈ H1(T ∗r ) = H1(T (k − r)) denote Kato’s Euler system where

we recall that T is a lattice in the Galois representation attached to f , the complex
conjugate of f . We now state Kato’s theorem relating zK to L-values. To this end,
let e continue to denote our fixed basis from section 7.1 of DdR(V (1))/D+

dR(V (1)),

and let ωf denote the element of D+
dR(V ∗) canonically identified with f , via Eichler–

Shimura theory and the comparison theorems.

Theorem 10.2.1 (Kato). Let χ denote a primitive character of Gn. Then

∑
σ∈Gn

χ(σ) exp∗(σ(zK,n)) =
L{p}(f, χ, r)

(−2πi)r−1Ω±f
· tr−1ωf

where the sign ± equals the sign of χ(−1) and L{p} denotes the L-value with the
Euler factor at p removed.

Proof. See [20, Theorem 12.5]. �

The following proposition shows how one can recover Mazur-Tate elements from
Kato’s Euler system and the local classes cn,j .

Proposition 10.2.2. If (No pole at s = r) holds, then there exists a non-zero con-
stant C ∈ OL (independent of n and r) such that

C · θan
n,r(f) =

∑
σ∈Gn

〈
cσn,r−1, resp(zK,n)

〉
n
σ−1.

Proof. Set

θn,r =
∑
σ∈Gn

〈
cσn,r−1, resp(zK,n)

〉
n
σ−1.

To prove this proposition it suffices to check that the θn,r satisfy the same inter-
polation property (up to a constant) as the Mazur-Tate elements (e.g. (18)) for
primitive characters, and that they satisfy the same three-term relation (e.g. (19)).

To this end, for n > 0, we have

χ(θn,r) =
∑
σ∈Gn

χ(σ)−1
〈
cσn,r−1, resp(zK,n)

〉
n

= (r − 1)! · pm(r−1) · τ(χ−1) ·
∑
σ∈Gn

χ(σ)
〈
t1−re, exp∗(zσK,n)

〉
dR,n

[Proposition 7.4.1]

= χ(−1) · (r − 1)! · pm(r−1) · τ(χ−1) ·
L{p}(f, χ, r)

(2πi)r−1Ω±f
〈e, ωf 〉dR [Proposition 10.2.1]

= χ(θan
n,r(f)) · 〈e, ωf 〉dR.

since the local Euler factor at p is trivial for L(f, χ, s). Note that the application
of Proposition 7.4.1 requires the hypothesis (No pole at s = r).
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For n = 0, we have

1(θ0,r) = 〈c0,r, resp(zK,0)〉0
= (r − 1)! · Z̃(x1−rφvnew , 1)

〈
t1−re, exp∗ z′0

〉
dR,0

[Proposition 7.4.1]

= (r − 1)! · Z̃(x1−rφvnew , 1) ·
L{p}(f, r)

Ω+
f

〈e, ωf 〉dR [Proposition 10.2.1]

= (r − 1)! · L(f, r)

Ω+
f

〈e, ωf 〉dR

= 1(θan
0,r(f)) · 〈e, ωf 〉dR .

Here φvnew
is the newvector associated to f and Z̃(x1−rφvnew , 1) is the simply the lo-

cal Euler factor at p for L(f, r). Thus, θn,r and θan
n,r(f) agree at primitive characters

(up to a constant).
To finish the proof, we compute

πn+1
n (θn,r) = πn+1

n

 ∑
τ∈Gn+1

〈
cτn+1,r−1, resp(zK,n+1)

〉
n+1

τ−1


=
∑
σ∈Gn

 ∑
τ∈Gn+1
τ→σ

〈
cτn+1,r−1, resp(zK,n+1)

〉
n+1

σ−1

=
∑
σ∈Gn

〈
corn+1

n (cn+1,r−1), corn+1
n (resp(zK,n+1))

〉
n
σ−1

=
∑
σ∈Gn

〈
ap(f)cσn,r−1 − ψ(p)pk−2 resnn−1(cσn−1,r−1), resp(zK,n)

〉
n
σ−1

= ap(f) ·
∑
σ∈Gn

〈
cσn,r−1, resp(zK,n)

〉
n
σ−1 − ψ(p)pk−2

∑
σ∈Gn

〈
resnn−1(cσn−1,r−1), resp(zK,n)

〉
n
σ−1

= ap(f) ·
∑
σ∈Gn

〈
cσn,r−1, resp(zK,n)

〉
n
σ−1 − ψ(p)pk−2

∑
σ∈Gn

〈
cσn−1,r−1, resp(zK,n−1)

〉
n−1

σ−1

= ap(f) · θn,r − ψ(p)pk−2 · cornn−1(θn−1,r)

as desired. Here we used Proposition 7.5.2. A similar computation handles the case
n = 0 as well. �

11. Algebraic θ-elements, take II

Throughout this section we assume that (Irred) holds.

11.1. An alternative construction of θ-elements. In section 8, we gave a con-
struction of algebraic θ-elements working with the Galois cohomology of the dis-
crete module A∗r which allowed us to relate these elements to the Fitting ideals of
its Selmer group. We now give a simpler and more direct construction of these
elements using the cohomology of T ∗r . The advantage of this second construction is
that it will be easier to relate to Mazur-Tate elements (via Kato’s results) and thus
to prove Theorem 10.1.4. However, showing that these two constructions match
then takes additional work, and will be carried out in this subsection.
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By Theorem 8.2.2, let w = (wn) ∈ H1(T ∗r ) denote some generator of this free
Λ-module of rank 1. For c ∈ H1

e (Kn,p, T (r)), set

ψ̃n(c) := ψ̃n,w(c) :=
∑
σ∈Gn

〈cσ, resp(wn)〉n σ ∈ Λn

where resp denotes restriction to the unique place over p. The pairing 〈·, ·〉n is given
by Tate local duality

H1(Kn,p, T (r))×H1(Kn,p, T
∗
r )→ OL.

11.2. Comparing the two constructions. Let ι be the involution of Λn which
sends a group-like element σ to σ−1. We will see that the above simple and direct

definition of ψ̃n yields a function which, up to ι, equals ψn (which was the key input
in defining algebraic θ-elements). However, to make this claim precise, recall that
the definition of ψn = ψn,α depended on an isomorphism α : RΛ(Xr) ∼= Λ while the

definition of ψ̃n = ψ̃n,w depended on a choice of a generator w of H1(T ∗r ). Thus, to

relate ψn to ψ̃n, we must first relate these choices.
We now show how to use our fixed w = (wn) ∈ H1(T ∗r ) to give an explicit

identification of RΛ(Xr) with Λ. Set Hr = H1(QΣ/K∞, A
∗
r) and XΣ

r := H∨r .
Dualizing (16) yields

W → XΣ
r → Xr → 0

where W is some finitely generated torsion Λ-module. Thus, applying HomΛ(·,Λ)
gives a canonical isomorphism

HomΛ(Xr,Λ)
∼−→ HomΛ(XΣ

r ,Λ)

and hence a canonical isomorphism RΛ(Xr) ∼= RΛ(XΣ
r ). It therefore suffices to

make an identification of RΛ(XΣ
r ) with Λ which we now do.

From (Irred), we deduce that H0(Qp(µp), ρf ) = 0, and thus the control theorem
holds for Hr; that is, the restriction map

rn : H1(QΣ/Kn, A
∗
r)→ HΓn

r

is an isomorphism for any n. Let

πmn : H1(QΣ/Kn, T
∗
r )→ H1(QΣ/Kn, T

∗
r /p

mT ∗r ) ∼= H1(QΣ/Kn, A
∗
r [p

m])
rn→ HΓn

r [pm]

denote the canonical map. Define a Λ-homomorphism

ξw : XΣ
r → Λ = lim←−

n

Λn

given, for η : Hr → Qp/Zp, by ξw(η) =
(∑

σ∈Gn aσσ
)
n

where

aσ = lim←−
m≥n

pmη
(
πmn (wσn)

)
∈ Zp.

Note that η(πmn (wσn)) lies in 1
pmZp/Zp, so that the mth term in this limit lies in

Z/pmZ.

Lemma 11.2.1. HomΛ(XΣ
r ,Λ) is free of rank one over Λ with generator ξw.
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Proof. We have the following Λ-module homomorphisms:

HomΛ(XΣ
r ,Λ) ∼= HomΛ(Λ∨, (XΣ

r )∨) ∼= HomΛ(Λ∨, Hr) ∼= HomΛ

(
lim−→
n

(Λ∨)Γn [pn], Hr

)
∼= lim←−

n

HomΛ

(
(Λ∨)Γn [pn], Hr

) ∼= lim←−
n

HomΛ

(
(Λn/p

n)∨, Hr

)
∼= lim←−

n

HomΛ(Λn/p
n, Hr) ∼= lim←−

n

Hr[p
n]Γn ∼= H1(T ∗r ).

Above we used the self-duality

Λn/p
n × Λn/p

n → Z/pn〈∑
aσσ,

∑
bσσ
〉
7→
∑

aσbσ−1

as this is the duality which induces a Λ-module isomorphism: (Λn/p
n)∨ ∼= Λn/p

n.
To prove this lemma, one then chases through the above maps to see that ξw in
HomΛ(XΣ

r ,Λ) maps to the generator w in H1(T ∗r ). �

Corollary 11.2.2. The map

Ξw : RΛ(Xr)
∼→ RΛ(XΣ

r )→ Λ

given by evaluation at ξw is an isomorphism.

We have thus built an explicit identification of RΛ(Xr) with Λ given a generator
of H1(T ∗r ).

Theorem 11.2.3. For c ∈ H1
e (Kn,p, T (r)), we have

ψn,Ξw(c) = ψ̃n,w(c)ι

In particular,

θalg
n,r(f) =

(∑
σ∈Gn

〈
cσn,r−1, resp(wn)

〉
n
σ−1

)
· charΛ((Xr)Λ-tor)

Proof. Let Ξw,n : XΓn → Λn denote the Γn-coinvariants of the composition of the
canonical map ev : Xr → RΛ(Xr) and Ξw. Recall the isomorphisms:

(20) (XΣ
r )Γn = (H∨r )Γn

∼−→ (HΓn
r )∨

∼−→ H1(QΣ/Kn, A
∗
r)
∨.

Thus, we may define an element in (XΣ
r )Γn by defining it as the functional on

H1(QΣ/Kn, A
∗
r).

For c ∈ H1
e (Kn,p, T (r)), consider the element ϕΣ

c ∈ (XΣ
r )Γn defined by first

restricting to p and then pairing (via Tate local duality) against c. That is, for
h ∈ H1(QΣ/Kn, A

∗
r), set

ϕΣ
c (h) = 〈c, resp(h)〉 .

Set ϕc ∈ (Xr)Γn equal to the image of ϕΣ
c under the natural surjection XΣ

r → Xr.
Then, by definition, ψn,Ξw(c) = Ξw,n(ϕc).

However, we can also compute Ξw,n(ϕc) directly as the image of ξw(ϕΣ
c ) in Λn.

By the definition of ξw, this image equals
∑
σ∈Gn bσσ where

bσ = lim←−
m≥n

pm 〈c, resp(π
m
n (wσn))〉n .

But, by definition, this limit equals

〈c, resp(w
σ
n)〉n =

〈
cσ
−1

, resp(wn)
〉
n
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as desired. �

12. The main results

In light of Proposition 10.2.2 and Theorem 11.2.3, to compare θan
n,r(f) and θalg

n,r(f)

we need to understand the index of Kato’s Euler system in H1(T ∗r ) compared to
charΛXΛ-tor. This relation will follow from Kato’s proof of half of the main conjec-
ture (without p-adic L-functions).

12.1. Euler system result. Let Hi(T ) = lim←−nH
i(QΣ/Kn, T ) and HiIw,w(T ) =

lim←−nH
i(Kn,vn , T ) where w is some place of Q∞ and vn is the place of Kn below

w. Further, set

H2
P (T ) = ker

(
H2(T )→

∏
w∈Σ∞

H2
Iw,w(T )

)
where Σ∞ is the set of places of K∞ sitting over Σ.

Theorem 12.1.1 (Kato). We have

(1) H2
P (T ∗r ) is a torsion Λ-module;

(2) if (Euler) holds,

charH2
P (T ∗r ) divides charΛ(H1(T ∗r )/〈zK〉).

Proof. This is [20, Theorems 12.4 and 12.5]. See also [24, pg. 217] where the étale
cohomology groups in [20] are written in terms of Galois cohomology with local
conditions (e.g. H2

P ). �

We must now relate H2
P (T ∗r ) to (Xr)Λ-tor. We begin with a lemma. If M is

a Λ-module, we write M ι for the Λ-module whose underlying set is M , but the
group-like element σ acts by σ−1.

Lemma 12.1.2. If X is a finitely generated torsion Λ-module, then Ext1
Λ(X,Λ) is

pseudo-isomorphic to (XΛ-tor)
ι.

Proof. The exact sequence

0→ XΛ-tor → X → Z → 0

induces

Ext1
Λ(Z,Λ)→ Ext1

Λ(X,Λ)→ Ext1
Λ(XΛ-tor,Λ)→ Ext2

Λ(Z,Λ).

We first claim that ExtiΛ(Z,Λ) is pseudo-null for i = 1, 2.
To see this, let RΛ(Z) denote the reflective-hull of Z and consider the exact

sequence
0→ Z → RΛ(Z)→ H → 0

with H finite. We then have

0 = ExtiΛ(RΛ(Z),Λ)→ ExtiΛ(Z,Λ)→ ExtiΛ(H,Λ)

since RΛ(Z) is free. So it suffices to show that ExtiΛ(H,Λ) is finite for i = 1, 2. To
see this, note that AnnΛ(H) is finite-index in Λ and thus the same is true for the
annihilator of ExtiΛ(H,Λ). But since this module is finitely-generated, it must then
be finite as desired.

Thus, Ext1
Λ(X,Λ) is pseudo-isomorphic to Ext1

Λ(XΛ-tor,Λ). Lastly, by [37, pg.
474], Ext1

Λ(Y,Λ) is pseudo-isomorphic to Y ι for any finitely generated Λ-module
which completes the proof. �
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Theorem 12.1.3. Assume (Irred) holds. If XΛ-tor denotes the Λ-torsion submod-
ule of X, we have

charΛ(Xr)Λ-tor = charΛ(H2
P (T ∗r )ι).

Proof. By the two exact sequences in [28] appearing right after (0.13.2), we have a
pseudo-isomorphism

(H̃1
f,Iw(A∗r)

∨)Λ-tor
∼= Ext1

Λ(H̃2
f,Iw(Q∞/Q, T ∗r ),Λ)

Here H̃i
f,Iw are Selmer complexes where, for A∗r , there is no local condition at p

(and thus for T ∗r we impose the harshest local condition). Relating these back to
classical Selmer groups (as in [28, (0.10)], we have a pseudo-isomorphism

XΛ-tor
∼= Ext1

Λ(H2
P (T ∗r ),Λ).

By Theorem 12.1.1 and Lemma 12.1.2, we then have a pseudo-isomorphisms

XΛ-tor
∼= H2

P (T ∗r )ι

as desired. �

12.2. Divisibility. We begin with a simple lemma whose proof we leave to the
reader.

Lemma 12.2.1. For λ ∈ Λ, we have

λ ·
∑
σ∈Gn

〈
cσn,r−1, resp(wn)

〉
n
σ =

∑
σ∈Gn

〈
cσn,r−1, resp(λwn)

〉
n
σ.

We conclude with our main theorem which immediately implies Theorem 10.1.4.

Theorem 12.2.2. If (Irred), (No pole at s = r), and (Euler) hold, then there ex-
ists a non-zero constant C ∈ OL (independent of n and r) such that

θalg
n,r(f) | C · θan

n,r(f)

in Λn for all n ≥ 0.

Proof. Recall, w = (wn) is our fixed generator of H1(T ∗r ). By Theorem 11.2.3, we
have

θalg
n,r(f) = charΛ ((Xr)Λ-tor) ·

∑
σ∈Gn

〈
cσn,r−1, resp(wn)

〉
n
σ−1

Applying the involution ι : Λn → Λn which sends group-like elements to their
inverse, yields

ι(θalg
n,r(f)) = charΛ H2

P (T ∗r ) ·
∑
σ∈Gn

〈
cσn,r−1, resp(wn)

〉
n
σ(21)

by Theorem 12.1.3. Now write zK = α·w for some α ∈ Λ. Thus, α = charΛ(H1(T ∗r )/〈zK〉),
and charΛ H2

P (T ∗r ) divides α by Theorem 12.1.1.
Scaling (21) by α, applying Lemma 12.2.1 and then Proposition 10.2.2 gives

α · ι(θalg
n,r(f)) = charΛ H2

P (T ∗r ) ·
∑
σ∈Gn

〈
cσn,r−1, resp(zK,n)

〉
n
σ

= charΛ H2
P (T ∗r ) · C · ι(θan

n,r(f))

Thus

ι(θalg
n,r(f)) · α

charΛ H2
P (T ∗r )

= C · ι(θan
n,r(f))
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for some non-zero C independent of n and r. In particular, θalg
n,r(f) divides C ·θan

n,r(f)
in Λn. �
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[30] Bernadette Perrin-Riou, Théorie d’Iwasawa p-adique locale et globale, Invent. Math. 99

(1990), no. 2, 247–292.

[31] , p-adic L-functions and p-adic representations, American Mathematical Society;
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