
CLASSICAL MODULAR FORMS AS AUTOMORPHIC FORMS

MATTHEW EMERTON

The object of this note is to describe how the classical theory of modular forms
can be interpreted as a special case of the more general theory of automorphic
forms.

We first recall the classical notion of modular form (in the spirit of [4]). and then
explain its relation on the one hand to the general notion of automorphic forms on
the adelic group GL2(A), and on the other hand to the geometrical interpretation
of a modular form as a section of a line bundle on a suitable (so-called modular)
curve. Both relations have been explained in many other places (for example [2, 3],
all of which have very much influenced our presentation). Nevertheless, it might be
useful to recall them again here. We have attempted to proceed in as succint and
as natural a manner as possible, with a minimal number of ad hoc constructions.
On the other hand, we have tried to give enough detail that our discussion might
provide a useful translation aid for a reader who is familiar with one point of view
but not the other. We close the section by recalling the interpretation of classical
Eisenstein series (as described for example in [4]) as a special case of the general
construction of Eisenstein series in the theory of automorphic forms.

In the following discussion it will be convenient to fix the following basis for the
complexified Lie algebra gl2 of GL2(R):

Z =

(
1 0
0 1

)
, H =

(
0 −i
i 0

)
, Y+ =

(
1 i
i −1

)
, Y− =

(
1 −i
−i −1

)
.

Note that Z is central in gl2, that [H,Y±] = ±2Y±, and that [Y+, Y−] = 4H. We
also have the formulas Z = Z, H = −H, Y± = Y∓. (Here denotes complex
conjugation on gl2.)

We also recall that the centre z(gl2) of the universal enveloping algebra of gl2
is isomorphic to a polynomial ring in two generators. In terms of the above basis
elements, we have

z(gl2) = C[Z , Y+Y− +H2 − 2H].

1. Bases

The set of complex numbers C forms a two-dimensional real vector space. Let
GL(C) denote the group of R-linear automorphisms of C. Since any complex linear
automorphism is certainly R-linear, there is a natural inclusion C× ⊂ GL(C).

1.1. Definition. Let B denote the set of bases of C as an R-vector space, i.e.
B := IsoR(R2,C)

∼−→ { (z1, z2) ∈ C2 | z1 and z2 are R-linearly independent };
here IsoR(R2,C) denotes the set of R-linear isomorphisms from R2 to C, and the
indicated bijection is given by

IsoR(R2,C) 3 ı 7→ (ı(1, 0), ı(0, 1)) .
1
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The second description of B realizes it as an open subset of C2, and thus endows it
with the structure of a complex analytic manifold.

Pre- and post- composition of elements of B with elements of GL2(R) and GL(C)
respectively induce commuting right and left actions of these groups on B. Evi-
dently B becomes a principal homogeneous space under each of these actions.

Both these actions admits simple descriptions in terms of the realization of B as
an open subset of C2. On the one hand, if g ∈ GL(C), then

g · (z1, z2) = (g(z1), g(z2)).

On the other hand, the left action of GL2(C) on C2 restricts to a left action of
GL2(R), which evidently preserves B, and one immediately confirms that this left
action of GL2(R) is related to the previously considered right action of this same
group via the formula g · ı = ı ◦ gt. (Here gt denotes the transpose of g.) In
particular, we see that the right action of GL2(R) on B is via complex analytic
automorphisms. In the remainder of this note we will work systematically with the
right action of GL2(R) on B, rather than with the left action obtained by passing
to transposes. However, in classical texts (e.g. [4]) it is often the left action that
appears. 1

If we fix a base-point ı0 ∈ B, then acting on ı0 from the left and the right
respectively yields simultaneous identifications GL(C)

∼−→ B and GL2(R)
∼−→ B.

The resulting identification GL(C)
∼−→ GL2(R) is the natural one induced by our

choice of basis ı0. The respective left and right actions of GL(C) and GL2(R) on
B then become identified with the actions of GL2(R) on itself by left and right
translations.

In addition to the two descriptions of B given in Definition 1.1, there is a third
very useful description, namely the complex analytic isomorphism

(1) B ∼−→ (C \ R)× C×

defined by (z1, z2) 7→ (z1/z2, z2). We denote a typical element of the target of
this isomorphism via (τ, z). The right GL2(R)-action on B admits the following
description in terms of these coordinates:

(τ, z)

(
a b
c d

)
= (

aτ + c

bτ + d
, (bτ + d)z).

The left action of GL(C) is not so easily described in terms of these coordinates,
but the action of its subgroup C× is: if α ∈ C× then

α · (τ, z) = (τ, αz).

1Explicitly, the left GL2(R)-action on B is given by the classical formula(
a b
c d

)
(z1, z2) = (az1 + bz2, cz1 + dz2).

Correspondingly, the right GL2(R)-action is given by the formula

(z1, z2)

(
a b

c d

)
= (az1 + cz2, bz1 + dz2).
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2. The holomorphic tangent space of B

Let ı : R2 ∼−→ C be a point of B. The action of GL2(R) on ı induces an

isomorphism GL2(R)
∼−→ B (since B is a principal homogeneous space under the

right action of GL2(R)), and hence an isomorphism of (complexified) tangent spaces

(2) TIGL2(R)
∼−→ TıB.

(Here I =

(
1 0
0 1

)
is the identity of GL2(R).) The source of this map is precisely

the (complexified) Lie algebra gl2 of GL2(R).

Since B is a complex analytic manifold, we may write TıB = T hol
ı B

⊕
(T hol
ı B)

as the direct sum of its holomorphic and anti-holomorphic subspaces.

2.1. Definition. Let Vı ⊂ gl2 (resp. V ı ⊂ gl2) denote the preimage of T hol
ı B (resp.

(T hol
ı B)) under the isomorphism (2). (Note that the isomorphism (2) preserves the

underlying real structures on each of the source and target, and so V ı is simply the
complex conjugate of Vı in gl2.)

Our goal in this section is to describe Vı (and hence V ı) explicitly as subspaces of
gl2. Since GL2(R) acts complex analytically on B, one sees that Vı◦g = Adg−1(Vı)
for any g ∈ GL2(R). Thus, since GL2(R) also acts transitively on B, we see that it
suffices to calculate Vı0 for some fixed choice of base-point ı0 ∈ B.

2.2. Lemma. If ı0 ∈ B corresponds to the basis (i, 1) of C, then the subspace Vı0
(resp. V ı0) of gl2 is equal to the span of Z + H and Y+ (resp. the span of Z −H
and Y−).

Proof. We will work in the coordinates (τ, z) provided by the isomorphism (1).
Then ı0 corresponds to the point (i, 1) ∈ (C \ R)× C×. We compute that

(i, 1)

(
a 0
c 1

)
= (c+ ai, 1).

(for any (a, b) ∈ R2 \ {(0, 0)}) and that

(i, 1)

(
a b
−b a

)
= (i, a+ bi)

Once we recall that on any complex manifold with local coordinates zµ = xµ + yµi,
the holomorphic tangent bundle is (locally) spanned by the vectors fields ∂zµ :=
1

2
(∂xµ − i∂yµ), we conclude that Vı0 is equal to the span of(

0 0
1 0

)
− i
(

1 0
0 0

)
=

(
−i 0
1 0

)
and

(
1 0
0 1

)
− i
(

0 1
−1 0

)
=

(
1 −i
i 1

)
.

(We have omitted the factors of 1/2, since these obviously don’t affect the span.)
One immediately checks that this coincides with the span of Z+H and Y+. Passing
to complex conjugates then gives the result for V ı0 . �

3. Lattices

Let L denote the set of discrete rank 2 lattices contained in C. The map B → L
defined by ı 7→ ı(Z2) induces a bijection

(3) B/GL2(Z)
∼−→ L.
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Since GL2(Z) acts both complex analytically and properly discontinuously on B (it
is a discrete subgroup of GL2(R) and B is a principal homogeneous GL2(R)-space),
we see that L is naturally a complex analytic manifold.

3.1. Definition. For any N ≥ 1, let L(N) denote the set of discrete rank 2 lattices
contained in C equipped with a level N structure; i.e.

L(N) := { (L, ) | L ∈ L,  : (Z/NZ)2
∼−→ L/NL }.

The map B ×GL2(Z/NZ) → L(N) defined by (ı, g) 7→ (ı(Z2), ıN ◦ g−1) (where

ıN denotes the isomorphism (Z/NZ)2
∼−→ ı(Z2)/Nı(Z2) induced by ı) induces a

bijection

(4)
(
B ×GL2(Z/NZ)

)
/GL2(Z)

∼−→ L(N).

Thus L(N) is naturally a complex analytic manifold for any N ≥ 1. The complex
analytic map L(N)→ L given by forgetting  realizes L(N) as a covering space of
L, with covering group GL2(Z/NZ).

Since the GL(C)-action on B commutes with the GL2(R)-action (and so with the
GL2(Z)-action), the bijection (4) yields a left GL(C)-action on L(N). Explicitly,
if g ∈ GL(C), then g · (L, ) = (g(L), gN ◦ ) (where gN denotes the isomorphism

L/NL
∼−→ g(L)/Ng(L) induced by g). In particular, we obtain a C×-action on

L(N).
The left regular action of GL2(Z/NZ) on itself induces an action of GL2(Z/NZ)

on B×GL2(Z/NZ). This action evidently commutes with the right GL2(Z)-action
on the same space, and so descends via (4) to an action on L(N). Explicitly, if
g ∈ GL2(Z/NZ) and (L, ) ∈ L(N), then g · (L, ) = (L,  ◦ g−1).

4. Modular forms

The following definition is an immediate generalization of the definition of mod-
ular forms of weight k and level one given in [4].

4.1. Definition. A modular form of weight k and level N is a function F : L(N)→
C such that

(1) F is holomorphic;
(2) F

(
α · (L, )

)
= α−kF

(
(L, )

)
for all α ∈ C×, (L, ) ∈ L(N);

(3) F satisfies a growth condition at infinity (which we will make precise in
Remark 4.4 below).

The descriptions (1) of B and (4) of L(N) taken together provide the following
alternative description of modular forms.

4.2. Definition. A modular form of weight k and level N is a function f : (C \
R)×GL2(Z/NZ)→ C such that

(1) f is holomorphic;

(2) f
(aτ + c

bτ + d
, gγ
)

= (bτ + d)kf
(
τ, g
)

for all (τ, g) ∈ (C \R)×GL2(Z/NZ) and

γ =

(
a b
c d

)
∈ GL2(Z);

(3) f satisfies a growth condition at infinity (which we will make precise in
Remark 4.4 below).
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The passage from F to f is given via f(τ, g) = F
(
(L, )

)
, where L = Zτ + Z

and  : (Z/NZ)2
∼−→ L/NL is defined to be the composite  = ıN ◦ g−1, where ıN :

(Z/NZ)2
∼−→ L/NL is defined via ıN ((1, 0)) = τ mod NL, ıN ((0, 1)) = 1 mod NL.

We let Mk(N) denote the C-vector space of modular forms of weight k and
level N .

4.3. Remark. The left action of GL2(Z/NZ) on L(N) induces a right action of
GL2(Z/NZ) on Mk(N), defined via

(F · g)
(
(L, )

)
= F

(
(L,  ◦ g−1)

)
.

We may convert this into a left action in the usual way, by passing to inverses:

(g · F )
(
(L, )

)
= F

(
(L,  ◦ g)

)
.

4.4. Remark. If F ∈ Mk(N), corresponding to the function f on (C \ R) ×
GL2(Z/NZ) satisfying Definition 4.2, then we see that f(τ +N, g) = f(τ, g) for all
(τ, g) ∈ (C \ R)×GL2(Z/NZ). (Apply condition 2 of Definition 4.2 to the matrix(

1 N
0 1

)
∈ GL2(Z).) In particular, we may expand the function τ 7→ f(τ, I) (where

I denotes the identity of GL2(Z/NZ), and τ is restricted to the upper half-plane
of C \ R) as a Fourier series f(τ) =

∑∞
n=−∞ an(f)e2πinτ/N . The growth condition

on f (i.e. condition 3 of Definition 4.2) is as follows:

an(g · f) = 0 for all n < 0 and all g ∈ GL2(Z/NZ).

4.5. Remark. As a consequence of the growth condition (i.e. condition 3) in the
definition of modular forms, one finds that Mk(N) = 0 if k < 0, and that any
element of M0(N) is constant on each connected component of L(N). In general
Mk(N) is finite dimensional, and (for fixed N) its dimension grows roughly linearly
with k. (See Remark 7.9 below.)

4.6. Remark. If M | N , then pulling back via the natural map L(N) → L(M)
induces an embedding Mk(M) ↪→ Mk(N). We write Mk := lim

−→
N

Mk(N) (where

the set of levels N ≥ 1 is directed by divisibility, and the transition maps are
provided by the embeddings just described).

4.7. Remark. We may inflate the left GL2(Z/NZ)-action on Mk(N) to an action

of GL2(Ẑ), via the natural surjection GL2(Ẑ) → GL2(Z/NZ). The GL2(Ẑ)-action
on eachMk(N) is compatible with the transition maps for varying N introduced in

the preceding remark, and so we obtain an induced action of GL2(Ẑ) on Mk. (As

we observe in Remark 5.8 below, this GL2(Ẑ)-action in fact extends to an action of
GL2(Af ) on Mk.)

5. Classical modular forms as automorphic forms

In this subsection we will explain how to interpret classical modular forms as
automorphic forms on the group GL2(A).

The general definition of automorphic forms on the adèlic points of a reductive
group [1], when applied to the reductive group GL2 over Q, gives the following:

5.1. Definition. The space A
(
GL2(A)

)
of automorphic forms on GL2(A) is the

C-vector space of functions φ : GL2(A)→ C satisfying the following conditions:
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(1) For all γ ∈ GL2(Q) and g ∈ GL2(A), φ(γg) = φ(g) (i.e. φ descends to a
function on the quotient GL2(Q)\GL2(A)).

(2) There is a positive integer N such that φ(gk) = φ(g) for all g ∈ GL2(A)
and k ∈ K(N).

(3) For each fixed element gf ∈ GL2(Af ), the function g∞ → φ(g∞gf ) is a
smooth function of the variable g∞ ∈ GL2(R), which grows moderately at
infinity (i.e. is bounded in absolute value by a polynomial in the absolute
value of the entries of g∞ and g−1∞ ); people also say that this function is
slowly increasing.

(4) There is an ideal I in z(gl2) of finite codimension which annihilates φ. (Here
gl2 denotes the Lie algebra of the real Lie group GL2(R), and z(gl2) denotes
the centre of its universal enveloping algebra over C. Note that this centre
acts naturally, by differential operators, on the space of functions satisfying
the preceding three conditions.)

(5) The function φ is SO(2)-finite, i.e. its translates under the right regular
action of SO(2) (which action leaves invariant the space of functions sat-
isfying the preceding four conditions) span a finite dimensional C-vector
space. (Note that it an equivalent condition is obtained if SO(2) is replaced
by O(2). The role of O(2) here is that it is a maximal compact subgroup of
GL2(R), while SO(2) is the connected component of the identity in O(2).)

5.2. Remark. The space A(GL2(A)) of automorphic forms is invariant under the
action by right translation of GL2(Af ). (It is obvious that conditions 1, 3, 4, and 5
are preserved by this action. Since the open subgroups K(N) form a neighbourhood
basis of the identity in GL2(Af ), condition 2 is also preserved.) On the other
hand, the right translation action of GL2(R) does not preserve A(GL2(A)); more
precisely, it does not preserve condition 5. However, the actions of each of O(2) and
gl2 induced by the right translation action GL2(R) do preserve A(GL2(A)); thus
A(GL2(A)) is a

(
gl2,O(2)

)
×GL2(Af )-module.

5.3. Remark. Sometimes condition (5) is omitted from the definition, so that
automorphic forms become simply a GL2(A)-module. But then one needs to invoke
results of Harish-Chandra to see the relationship between that modified definition
and the definition with (5) included.

For a fixed positive integer N , we will say that an automorphic form φ ∈
A
(
GL2(A)

)
has level N if φ satisfies condition 2 of Definition 5.1 for the given

value of N ; equivalently, φ descends to a function φ : GL2(Q)\GL2(A)/K(N)→ C
which satisfies conditions 3, 4, and 5 of Definition 5.1. In order to connect such au-
tomorphic forms with more classical objects, it is convenient to describe the double
quotient GL2(Q)\GL2(A)/K(N) more explicitly.

5.4. Lemma. There are canonical diffeomorphisms(
Γ(N)\GL2(R)+

)
× (Z/NZ)×

∼−→ SL2(Z)\
(
GL2(R)+ ×GL2(Z/NZ)

)
∼−→ GL2(Z)\

(
GL2(R)×GL2(Z/NZ)

) ∼−→ GL2(Q)\GL2(A)/K(N).

Proof. The first of these diffeomorphisms is induced by the embedding

GL2(R)+ × (Z/NZ)× ↪→ GL2(R)+ ×GL2(Z/NZ)



CLASSICAL MODULAR FORMS AS AUTOMORPHIC FORMS 7

which is the product of the identity on the first factors and the map a 7→
(
a 0
0 1

)
on

the second factors. (To see that we obtain a diffeomorphism, use the fact that the
natural map SL2(Z)→ SL2(Z/NZ) is surjective, with kernel Γ(N).) The second is
induced by the inclusion(

GL2(R)+ ×GL2(Z/NZ)
)
⊂
(
GL2(R)×GL2(Z/NZ)

)
(taking into account that SL2(Z) = GL2(Z)

⋂
GL2(R)+ and GL2(Z)GL2(R)+ =

GL2(R).) The third is induced by the inclusion

GL2(R)×GL2(Ẑ)/K(N) ⊂ GL2(R)×GL2(Af )/K(N)

(taking into account that GL2(Z) = GL2(Q)
⋂

GL2(Ẑ) and GL2(Q)GL2(Ẑ) =
GL2(Af ).) �

Let us now fix the same base-point ı0 ∈ B as in Subsection 2; namely, we let
ı0 correspond to the point (i, 1) ∈ (C \ R) × C× under the isomorphism (1). The
diffeomorphism GL2(R)×GL2(Z/NZ)→ B×GL2(Z/NZ) defined via (g∞, gN ) 7→
(ı0 ◦ g−1∞ , g−1N ) induces a diffeomorphism

GL2(Z)\
(
GL2(R)×GL2(Z/NZ)

) ∼−→
(
B ×GL2(Z/NZ)

)
/GL2(Z),

and hence, after composition with (4) and the third isomorphism of Lemma 5.3, a
diffeomorphism

(5) GL2(Q)\GL2(A)/K(N)
∼−→ L(N).

5.5. Proposition. The pull-back of any classical modular form of weight k and
level N via (5) is an automorphic form of level N , and this pull-back induces an
isomorphism

Mk(N)
∼−→ {φ ∈ A(GL2(A)) | Zφ = Hφ = kφ, Y−φ = 0, φ has level N }.

Proof. We first note that a holomorphic function F on L(N) satisfies condition 3
of Definition 4.1 if and only if its pull-back φ satisfies condition 3 of Definition 5.1.

We now show that a smooth function F on L(N) satisfies condition 1 of Defini-
tion 4.1, i.e. is holomorphic, if and only if its pull-back φ satisfies the conditions

(6) (Z −H)φ = Y−φ = 0.

Indeed, the smooth function F is holomorphic if and only if it satisfies the Cauchy-
Riemann equations on L(N); i.e. if and only if it is annhilated by sections of the
antiholomorphic tangent bundle of L(N). Now for any X ∈ gl2 and (g∞, gN ) ∈
GL2(R)×GL2(Z/NZ), we compute that

(Xφ)(g∞, gN ) =
d

dt |t=0
φ(g∞e

Xt, gN )

=
d

dt |t=0
F
(
(ı0 ◦ e−Xt ◦ g−1∞ , g−1N ) mod GL2(Z)

)
=

d

dt |t=0
F
(
(ı0 ◦ g−1∞ ◦ e−Adg∞ (X)t, g−1N ) mod GL2(Z)

)
.
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(Here and below we use (4) to write F as a function on
(
B×GL2(Z/NZ)

)
/GL2(Z).)

In particular, using the notation introduced in Subsection 2, we see that F satisfies
the Cauchy-Riemann equations on L(N) if and only if

(Xφ)(g∞, gN ) = 0

for all X ∈ Adg−1
∞
V ı0◦g−1

∞
= V ı0 and (g∞, gN ) ∈ GL2(R) × GL2(Z/NZ), i.e. F

satisfies the Cauchy-Riemman equations on L(N) if and only if φ is annhilated by
V ı0 . Lemma 2.2 shows that this condition on φ is equivalent to (6).

We next show that F satisfies condition 2 of Definition 4.1 if and only if φ satisfies
the conditions

(7) Zφ = Hφ = kφ.

Note first that (since φ is smooth, C× is connected, and Z and H together span
the Lie algbebra of C×) these conditions are equivalent to the condition

(8)

(
a b
−b a

)
φ = (a+ bi)kφ, for all a+ bi ∈ C×.

Now the choice of base-point ı0 induces an isomorphism GL(C)
∼−→ GL2(R), and

hence an embedding

(9) C× ↪→ GL2(R),

given explicitly via

a+ bi 7→
(
a b
−b a

)
.

Writing g =

(
a b
−b a

)
and α = a+ bi, we then have

(10) ı0 ◦ g = α ı0.

In particular, if (g∞, gN ) ∈ GL2(R)×GL2(Z/NZ) and α = a+bi ∈ C×, then, again

writing g =

(
a b
−b a

)
, we find (using (10) to rewrite ı0 ◦ g−1) that

(gφ)(g∞, gN ) = φ(g∞g, gN )
= F

(
(ı0 ◦ g−1 ◦ g−1∞ , g−1N ) mod GL2(Z)

)
= F

(
α−1(ı0 ◦ g−1∞ , g−1N ) mod GL2(Z)

)
Thus

(gφ)(g∞, gN ) = αkφ(g∞, gN )

if and only if

F
(
α−1(ı0 ◦ g−1∞ , g−1N ) mod GL2(Z)

)
= α−kF

(
(ı0 ◦ g−1∞ , g−1N ) mod GL2(Z)

)
,

and so indeed F satisfies condition 2 of Definition 4.1 if and only if φ satisfies (8),
or equivalently (7).

Altogether, we have shown that pulling back via (5) identifies Mk(N) with
the space of smooth functions on GL2(Q)\GL2(A)/K(N) satisfying condition 3 of
Definition 5.1, as well as conditions (6) and (7). It remains to show that any φ
satisfying (6) and (7) also satisfies conditions 4 and 5 of Definition 5.1 (and thus
is in fact an automorphic form). On the one hand, conditions (6) and (7) taken
together imply that φ is annihilated by the codimension one ideal

I = (Z − k, Y+Y− +H2 − 2H − k2 + 2k) ⊂ z(gl2).
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Thus φ satisfies condition 4 of Definition 5.1. On the other hand, condition (8)
(which is equivalent to (7)) implies that the span of φ is invariant under the right
translation action of SO(2), and thus that φ satisfies condition 5 of Definition 5.1.
This completes the proof of the proposition. �

5.6. Remark. There is a relation between our choice of base-point ı0 and our choice
of maximal compact subgroup O(2) of GL2(R); namely, it is important that the
image of the embedding (9) contain the connected component of O(2). If we were
to replace ı0 by the base-point ı0 ◦g ∈ B (for some g ∈ GL2(R)) in the construction
of the diffeomorphism (5), then in order for the analogue of Proposition 5.4 to
hold, we would have to replace O(2) by its conjugate g−1O(2)g in condition 5 of
Definition 5.1.

5.7. Remark. The preceding proposition identifies the space Mk(N) (for each k
and N) with a certain space of automorphic forms of level N . These identifica-
tions are evidently compatible with change of N , and so we obtain an embeding
Mk ↪→ A(GL2(A)). This subspace admits a more conceptual representation theo-
retic interpretation, as we now explain.

As was noted in Remark 4.5,Mk is non-zero only if k ≥ 0, and so we may as well
assume that this inequality holds. Suppose first that k = 0. As was also noted in
Remark 4.5, a modular form of weight 0 and level N is constant on the connected
components of L(N). Using this one easily sees that modular forms of weight zero
correspond precisely to automorphic forms of the form GL2(A) 3 g 7→ χ(det(g)),
where χ : Q×\A× is a finite order idèle class character.

Suppose now that k ≥ 1. One may form the cyclic
(
gl2,O(2)

)
-module Dk, with

generator v say, satisfying the relations

Zv = Hv = kv, Y−v = 0.

It is easy to give an explicit description of Dk: integrating the first two equations
satisfied by v determines the action of the image of (9) on v. Namely, we find that

for any α = a+ bi ∈ C×, if we write g =

(
a b
−b a

)
, then gv = αkv. (Compare the

equivalence of (7) and (8) above.) If we write n =

(
−1 0
0 1

)
(so n is a representative

of the non-trivial coset of SO(2) in O(2)), then Adn(Y±) = Y∓, and so writing
v := nv, we find that Y+v = 0. Now using the commutation relations in gl2, it
is easy to see that Dk has as a basis over C the vectors Y i+v (i ≥ 0) and Y i−v

(i ≤ 0), and that Dk is irreducible as a
(
gl2,O(2)

)
-module. (As a gl2-module it is

reducible, being the direct sum of the irreducible submodules generated by v and
v respectively.)

The representation Dk is called a discrete series representation of (gl2,O(2)) if
k ≥ 2, and a limit of discrete series if k = 1. (This is a particular instance of
terminology used in the representation theory of real Lie groups.)

Now evidently, if M is any
(
gl2,O(2)

)
-module, then ψ 7→ ψ(v) induces an iso-

morphism

Hom(gl2,O(2))(Dk,M)
∼−→ {φ ∈M | Zφ = Hm = km, Y−v = 0 }.

Combining this isomorphism with those of the proposition, we obtain an isomor-
phism

(11) Mk
∼−→ Hom(gl2,O(2))

(
Dk,A(GL2(A))

)
.
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Thus the classical modular forms of weight k correspond to the various realizations
of the irreducible (gl2,O(2))-module Dk inside the space of automorphic forms.

5.8. Remark. There are other irreducible (gl2,O(2))-modules besides the represen-
tations Dk (and their twists by powers of the determinant character), namely the
so-called principal series representations. (Actually, the limit of discrete series rep-
resentation D1 and its twists are also principal series representations; by “principal
series” we really mean “principal series other than D1 and its twists”.) One can
correspondingly consider the realizations of these representations inside the space
A(GL2(A)). An analogue of Proposition 5.4 identifies the space of such realizations
with a certain space of non-holomorphic modular forms, known as Maass forms.

5.9. Remark. Since A(GL2(A)) is a
(
gl2,O(2)

)
× GL2(Af )-module, there is an

induced action of GL2(Af ) on the target of (11). We may transport this action
via the isomorphism (11) to obtain an action of GL2(Af ) on Mk. We leave it to

the reader to check that the restriction of this action to GL2(Ẑ) coincides with the

GL2(Ẑ)-action on Mk described in Remark 4.7.

6. Modular curves

As noted in Subsection 3, there is a left action of C× on L(N), which is evidently
holomorphic. The isomorphisms (1) and (4) together yield an isomorphism

(12) C×\L(N)
∼−→
(
(C \ R)×GL2(Z/NZ)

)
/GL2(Z).

Thus C×\L(N) is naturally a Riemann surface, which in fact is (the space of C-
valued points of) an affine algebraic curve over C. 2

6.1. Definition. Write Y (N) := C×\L(N), and let X(N) denote the smooth pro-
jective algebraic curve over C obtained by completing Y (N). We refer to Y (N)
(resp. X(N)) as the open (resp. complete) modular curve of level N .

6.2. Remark. If M | N , then the projection L(N) → L(M) induces a finite map
Y (N)→ Y (M), which extends to a finite map X(N)→ X(M).

6.3. Remark. The GL2(Z/NZ)-action on L(N) induces a GL2(Z/NZ)-action on

the modular curve Y (N). Evidently the element −I :=

(
−1 0
0 −1

)
acts trivially on

Y (N), and so this action factors to give an action of GL2(Z/NZ)/〈−I〉 on Y (N),
which is then faithful. This action extends to an action of GL2(Z/NZ)/〈−I〉 on
its completion X(N). If M | N and H ⊂ GL2(Z/NZ)/〈−I〉 denotes the kernel of

the projection GL2(Z/NZ)/〈−I〉 → GL2(Z/MZ)/〈−I〉, then Y (N)/H
∼−→ Y (M)

and X(N)/H
∼−→ X(M). If M ≥ 3 then H acts freely on Y (N) (compare the

proof of Lemma 7 below), and so Y (N) is a covering space of Y (M). However, the
map X(N) → X(M) is always ramified at the points in the complement of Y (N)
(except of course in the trivial case when M = N).

2One way to see this is to note that the natural projection L(N) → L realizes C×\L(N) as a

finite (ramified) cover of C×\L, which (12) identifies with (C \ R)/GL2(Z). This latter quotient
is well known to be isomorphic to C (for example, via the j-function – see [4]), and hence may be

regarded as a copy of the affine line over C.
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6.4. Remark. The points of X(N) \ Y (N) are refered to as the cusps of X(N).
(This is classical terminology, which is a bit misleading geometrically, since X(N)
is by construction a smooth curve, and so these points are not cusps of X(N)
in the algebro-geometric sense.) As was noted in footnote 2, there is an isomor-

phism Y (1)
∼−→ C, and so X(1)

∼−→ P1(C) has just one cusp. Since the pro-
jection X(N) → X(1) restricts to a finite map Y (N) → Y (1), we see that the
cusps of X(N) are precisely the preimage under the projection of the cusps of

X(1). From the isomorphism X(N)/
(
GL2(Z/NZ)/〈−I〉

) ∼−→ X(1) we conclude
that GL2(Z/NZ)/〈−I〉 acts transitively on the set of cusps.

It is simple enough to exhibit the cusps explicitly. For any T ∈ R>0, write

RT := { τ ∈ C | Im(τ) > T } ⊂ C \ R.

Let I denote the identity of GL2(Z/NZ). The matrix γ :=

(
1 N
0 1

)
∈ GL2(Z)

leaves RT ×{ I } ⊂ (C\R)×GL2(Z/NZ) invariant, and if T is sufficiently positive,
then the induced map

(13) (RT × { I })/〈γ〉 →
(
(C \ R)×GL2(Z/NZ)

)
/GL2(Z)

∼−→ Y (N) ⊂ X(N)

identifies the source (which is isomorphic to a punctured open disk, via the map
τ 7→ e2πiτ/N ) with the deleted neighbourhood of a cusp in X(N). (The map extends
to the unpunctured disk by mapping the origin of the disk to the cusp itself.) Since
GL2(Z/NZ)/〈−I〉 acts transitively on the set of cusps, all the cusps of X(N) (or
rather their deleted neighbourhoods, which carry essentially the same information)
can be obtained by translating the map (13) by elements of GL2(Z/NZ)/〈−I〉. In
particular, we find that the set of cusps is in bijection with 〈γ〉\GL2(Z/NZ)/〈−I〉.

7. Classical modular forms as sections of line bundles

In this subsection, we recall the algebro-geometric interpretation of modular
forms as sections of certain line bundles on modular curves. We begin by con-
structing the appropriate line bundles.

7.1. Lemma. If N ≥ 3, then C× acts on L(N) without fixed points.

Proof. If α(L, ) = (L, ) for some α ∈ C× and (L, ) ∈ L(N), then firstly αL = L,
and secondly the automorphism of L induced by multiplication by α becomes trivial
when reduced modulo N . The first condition implies that either α = ±1, or else
that L is a square lattice and α is a 4th root of unity, or else that L is a triangular
lattice and α is a 6th root of unity. Since N ≥ 3, it is immediately seen that the
only way to meet the second condition is if α = 1. �

The preceding lemma shows that if N ≥ 3, then the natural projection

L(N)→ Y (N)

realizes L(N) as the total space of a holomorphic principal C×-bundle over Y (N).

7.2. Definition. We denote by ω the holomorphic line bundle over Y (N) associated
to the C×-bundle L(N) (for any N ≥ 3).

7.3. Remark. There is an ambiguity in our notation, since we are using the one
symbol ω to denote not a single line bundle, but a collection of line bundles, one
on each of the curves Y (N) for N ≥ 3. However, this should not cause confusion.
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7.4. Remark. The GL2(Z/NZ)-action on L(N) induces a GL2(Z/NZ)-action on
the total space of ω, which is obviously compatible with the GL2(Z/NZ)-action on
Y (N). Thus ω is naturally a GL2(Z/NZ)-equivariant line bundle over Y (N).

7.5. Remark. If M ≥ 3 and M | N, then the diagram

L(N) //

��

L(M)

��
Y (N) // Y (M)

(in which the arrows are the various natural projections) is evidently Cartesian.
Thus the line bundle ω on Y (N) is canonically isomorphic to the pull-back of the
line bundle ω on Y (M) under the projection Y (N)→ Y (M).

7.6. Remark. The isomorphisms (1) and (4) provide the following explicit descrip-
tion of the total space of ω:

ω
∼ //

��

(
(C \ R)× C×GL2(Z/NZ)

)
/GL2(Z)

��
Y (N)

∼ //
(
(C \ R)×GL2(Z/NZ)

)
/GL2(Z),

where the GL2(Z) action on
(
(C \ R)× C×GL2(Z/NZ)

)
is given via

(τ, z, g)γ = (
aτ + c

bτ + d
, (bτ + d)z, gγ),

for any (τ, z, g) ∈
(
(C \ R)× C×GL2(Z/NZ)

)
and γ =

(
a b
c d

)
∈ GL2(Z).

More generally, for any k ∈ Z, we see obtain an analogous description of the
total space of the tensor power ω⊗k :

ω
∼ //

��

(
(C \ R)×GL2(Z/NZ)× C

)
/GL2(Z)

��
Y (N)

∼ //
(
(C \ R)×GL2(Z/NZ)

)
/GL2(Z),

where now the GL2(Z) action on (C \ R)×GL2(Z/NZ)× C is given via

(τ, g, z)γ = (
aτ + c

bτ + d
, gγ, (bτ + d)kz),

for any (τ, z, g) ∈ (C \ R)×GL2(Z/NZ)× C and γ =

(
a b
c d

)
∈ GL2(Z).

7.7. Construction. Given the holomorphic line bundle ω on Y (N), there are many
possible ways to extend it to a holomorphic line bundle on X(N). (In fact any holo-
morphic line bundle on an affine curve over C is trivializable, and so we may extend
ω to any line bundle on X(N) that we choose.) However, we are going to specify
a particular extension, which we will continue to denote by ω. By stipulation, this
extension will also be GL2(Z/NZ)-equivariant.

Fix T sufficiently large so that (13) is an embedding. Write D× := RT /〈γ〉;
then (13) identifies D× with the deleted neighbourhood of a cusp in X(N). Let D
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denote the undeleleted neighbourhood obtained by adding the cusp to D×. Since
GL2(Z/NZ) acts transitively on the cusps, to specify a GL2(Z/NZ)-equivariant
extension of ω, it suffices to specify the conditions under which a section of ω over
D× extends to a section over D.

Remark 7.6 provides the following description of ω|D× :

ω|D×
∼ //

��

(
RT × { I } × C

)
/〈γ〉

��
D×

∼ //
(
RT × { I }

)
/〈γ〉.

Thus any section of ω over D× is of the form

RT × { I } 3 (τ, I) 7→ (τ, I, f(τ)) ∈ RT × { I } × C,
where f(τ) is a holomorphic function on RT that is invariant under τ 7→ τ + N .
We may expand such a function in a Fourier series f(τ) =

∑∞
n=−∞ ane

2πinτ/N . We

declare that the section of ω over D× associated to f extends over D precisely when
an = 0 for n < 0.

7.8. Proposition. There is a canonical isomorphism between the space of sections
H0(Y (N), ω⊗k) and the space of functions f : (C \ R) × GL2(Z/NZ) → C satis-
fying conditions 1 and 2 of Definition 4.2. Under this identification, the subspace
H0(X(N), ω⊗k) of H0(Y (N), ω⊗k) is identified with the space of functions f that
furthermore satisfy condition 3 of Definition 4.2.

Proof. The description of ω⊗k provided by Remark 7.6 shows that any such function
f satisfying conditions 1 and 2 corresponds to the section of ω defined by(

(C \ R)×GL2(Z/NZ)
)
/GL2(Z) 3 (τ, g) mod GL2(Z)

7→ (τ, g, f(τ, g)) mod GL2(Z) ∈
(
(C \ R)×GL2(Z/NZ)× C

)
/GL2(Z),

and conversely, that any such section of ω over Y (N) arises in this manner. (Con-
dition 1 shows that this section is holomorphic, while condition 2 ensures that it is
well-defined.) A comparison of the description of condition 3 given in Remark 4.4
and the extension of ω to X(N) described in Construction 7.7 shows that f does
indeed satisfy condition 3 precisely when the associated section of ω⊗k extends over
X(N). �

7.9. Remark. Proposition 7.8 identifiesMk(N) withH0(X(N), ω⊗k). SinceMk(N)
is trivial for negative values of k, we see that the line bundle ω on X(N) must have
positive degree. The Riemann-Roch formula then shows that the dimension of
Mk(N) grows essentially linearly with k when k is positive.

7.10. Remark. If we think of C× as a real Lie group, rather than a complex one,
then it has many more characters than just the characters z 7→ zk. Indeed, for
any s ∈ C and k ∈ Z, we have the complex valued character z 7→| z |s zk. Note
that this character is smooth but non-holomorphic if s 6= 0. Starting with the C×-
bundle L(N) over Y (N), this character gives rise to an associated (smooth, but
non-holomorphic, if s 6= 0) complex line bundle over Y (N), which we will denote
by ωs,k (so ω0,k = ω⊗k, the holomorphic line bundle considered above).

Conditions 4 and 5 of Definition 5.1 imply that any automorphic form φ of
level N generates some finite dimensional representation under the action of C×
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by right translation. Let us suppose that φ in fact transforms under the character
z 7→| z |s zk. (Any finite dimensional representation of C× will be an extension
of such characters.) Then an analogue of Propositions 5.4 and 7.8 will associate
to φ a (typically non-holomorphic) section of ωs,k. Thus one can in part regard
the passage from classical modular forms to more general modular forms as arising
from enlarging the collection of characters of C× under consideration, by viewing
it merely as a smooth, rather than holomorphic, structure group.

8. Eisenstein series

In the general theory of automorphic forms, Eisenstein series are a method for
realizing elements of parabolically induced representations as automorphic forms.
In the context of GL2, let B denote the Borel subgroup of lower triangular matrices,
and T the maximal torus consisting of diagonal matrices. If χ : T (A) → C×
is a continuous character, then (thinking of T (A) as a quotient of B(A) in the
obvious way) we may also regard χ as a character of B(A). We may then form the

induced representation Ind
GL2(A)
B(A) χ, which is defined to be the space of functions

f : GL2(A) → C such that f(bg) = χ(b)f(g) for all b ∈ B(A), g ∈ GL2(A). To
be precise, we have to impose appropriate regularity conditions on the function
f . In the context of studying automorphic forms, it is natural to ask that f be
locally constant in the finite adèlic variables, be smooth and slowly growing at
infinity in the real variables, and be SO(2)-finite, i.e. f should satisfy conditions 2,
3, and 5 of Definition 5.1. Note that f automatically satisfies condition 4 of that
definition; indeed, it is an eigenvector for z(gl2), with eigenvalues depending on the

derivative of the∞-component of χ. With this definition of Ind
GL2(A)
B(A) χ, it becomes

a
(
gl2,O(2)

)
×GL2(Af )-module via the right regular action on functions.

If χ is a character of T (Q)\T (A) (i.e. an automorphic form on T (A)), then Eisen-

stein series provide an embedding of
(
gl2,O(2)

)
×GL2(Af )-modules of Ind

GL2(A)
B(A) χ

into the space of automorphic forms on GL2(A), in the case when χ is character
of T (Q)\T (A) (i.e. an automorphic form on T (A)). In order to obtain such an

embedding, for each f ∈ Ind
GL2(A)
B(A) χ we must construct a corresponding automor-

phic form. Now f itself already satisfies conditions 2 through 5 of Definition 5.1,
and is left-invariant under B(Q) (since χ is trivial on T (Q)). To obtain a func-
tion satisfying condition 1 of that Definition, it is thus natural to average f over
B(Q)\GL2(Q). To this end, we define the Eisenstein series Ef : GL2(A) → C via
the formula

Ef (g) =
∑

γ∈B(Q)\GL2(Q)

f(γg),

provided that this sum converges. Assuming that the convergence is reasonable,
the Eisenstein series Ef (g) will then be an automorphic form on GL2(A), and
f 7→ Ef (g) will provide the required embedding.

The following lemma will let us give a more concrete description of Ind
GL2(A)
B(A) χ.

8.1. Lemma. There is a canonical diffeomorphism

B(Z)\
(
GL2(R)×GL2(Z/NZ)

) ∼−→ B(Q)\GL2(A)/K(N).

Proof. The required diffeomorphism is induced by the inclusion

GL2(R)×GL2(Ẑ)/K(N) ⊂ GL2(R)×GL2(Af )/K(N),
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taking into account the equalitiesB(Z) = B(Q)
⋂

GL2(Ẑ), GL2(Q) = B(Q)GL2(Z),

and GL2(Q)GL2(Ẑ) = GL2(Af ). (The last two equalities taken together imply that

B(Q)GL2(Ẑ) = GL2(Af ).) �

Which Eisenstein series will give rise to classical modular forms of weight k and
level N under the isomorphism of Proposition 5.4?
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