ALGEBRAIC GEOMETRY - FIFTH HOMEWORK (DUE MONDAY MARCH 16)

Please complete all the questions. As usual, we consider $k \subset K$ with K assumed to satisfy the Nullstellensatz (equivalently, as we now know, K is algebraically closed).

1. Let $X \rightarrow Y$ be a morphism of affine varieties over a field k. Show that the induced morphism $k[Y] \rightarrow k[X]$ on rings of regular functions is injective if and only if the original morphism $X \rightarrow Y$ has dense image.
2. Let I be an ideal in $k\left[x_{1}, \ldots, x_{n}\right]$, let $Z \hookrightarrow \mathbb{A}^{n}(K)$ be the Zariksi closed subset cut out by I, let $J \subseteq k\left[X_{0}, \ldots, X_{n}\right]$ denote the corresponding homogeneous ideal - i.e. the ideal generated by the homogenizations of all the elements of I - and let $W \hookrightarrow \mathbb{P}^{n}(K)$ denote the Zariski closed subset cut out by the homogeneous ideal J. Show that W coincides with the Zariski closure of Z in $\mathbb{P}^{n}(K)$. [Slogan: projective closure equals Zariksi closure.]
3. (a) Prove that the Segre embedding $\mathbb{P}^{m}(K) \times \mathbb{P}^{n}(K) \hookrightarrow \mathbb{P}^{N}(K)$ (where $N=m n+m+n$) is injective, with image equal to an algebraic set in $\mathbb{P}^{N}(\Omega)$. [This was sketched in class; your job is to check it carefully.]
(b) Recall that there are two ways to define a Zariksi topology on $\mathbb{P}^{m}(K) \rightarrow \mathbb{P}^{n}(K)$: (i) Using bihomogeneous polynomials in X_{0}, \ldots, X_{m} and Y_{0}, \ldots, Y_{n}; (ii) by using the Segre embedding of (a) to regard $\mathbb{P}^{m}(K) \times \mathbb{P}^{n}(K)$ as a closed subset of $\mathbb{P}^{N}(K)$. Verify that these two topologies coincide.
4. (a) If $d \geq 1$, show that the map $\mathbb{P}^{1}(K) \rightarrow \mathbb{P}^{d}(K)$ defined via $\left[X_{0}: X_{1}\right] \rightarrow\left[X_{0}^{d}: X_{0}^{d-1} X_{1}: \ldots: X_{0} X_{1}^{d-1}: X_{1}^{d}\right]$ is (i) well-defined, and (ii) is a morphism.
(b) By elimination theory, the image of the morphism of (a) is closed. In the cases when $d=2$ and 3 , find explicit equations that cut out its image. (The image in the case $d=3$ is called a twisted cubic curve in \mathbb{P}^{3}. What is the traditional name for the image in the case $d=2$?)
(c) [This is really a remark, rather than a question.] Generalizing (a) gives a map $\mathbb{P}^{n}(K) \rightarrow \mathbb{P}^{N}(K)$, where $N:=\binom{n+d}{n}-1$, which is called the degree d Veronese embedding. In the case when $n=2$, we get the
morphisms $\mathbb{P}^{2} \hookrightarrow \mathbb{P}^{5}($ for $d=2)$ and $\mathbb{P}^{2} \hookrightarrow \mathbb{P}^{9}($ for $d=3)$ which came up in our study of linear systems of conics and cubics.
