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1. Introduction and overview

Algebraic geometry is a continuation of what is sometimes called analytic ge-
ometry, or coordinate geometry, in high school, a subject which I guess goes back
(at least) to Descartes, Fermat, and others of their era, who introduced algebraic
methods and the use of coordinates into the study of geometric questions.

The basic objects of investigation in algebraic geometry are so-called algebraic
varieties,1 which are (roughly speaking) the geometric point-sets that can be cut
out by systems of algebraic equations.

Despite its name, there are various approaches to algebraic geometry, some more
algebraic than others. In what is perhaps the most algebraic approach, a large
amount of commutative algebra is developed in advance, and this is then applied
to deduce geometric facts. This approach is powerful, but can feel somewhat un-
motivated for a beginner, since various simple geometric ideas can become hidden
in the commutative algebra formalism.

There is also a more analytic approach, which focuses on the case of algebraic
varieties over C, and uses analytic as well as algebraic tools. Certainly the use of
analytic tools (sometimes called transcendental methods in this context, to distin-
guish them from purely algebraic methods that, at least in principle, can work over
arbitrary ground fields) adds power, and can be illuminating. (As one example of

1The word variety here is akin to the word manifold; it just indicates that we have a collection
of points bound together in some geometric way. Note e.g. that in French, variété is in fact the
word used for what is called a manifold in English.
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such illumination, the use of formal completion methods in commutative algebra
and its geometric applications is motivated by complex analytic ideas.)

Nevertheless, there is an appeal to using purely algebraic methods to investigate
objects that are defined in purely algebraic terms (although probably one shouldn’t
be too doctrinaire on this point), and for a number theorist interested in using
algebraic geometry to study Diophantine equations over number fields (or local
fields, of finite fields), algebraic methods are indispensible in any case.

In these notes we use algebraic methods (with a few remarks in the context
of algebraic varieties over the real and complex numbers indicating how the ideas
we introduce interact with more analytic and topological ideas). However, we
have tried to keep the presentation as geometric as possible, with an emphasis
on simple ideas in projective geometry, such as projection to linear subspaces,
dimension counting, and so on. One side-effect of this approach is that we don’t
develop terribly much commutative algebra; this can be regarded as either positive
or negative, depending on one’s predilections. Another is that we don’t begin
immediately with the Nullstellensatz for arbitrary algebraically closed fields, but
only prove this after developing a reasonable amount of projective geometry. This
necessitates the consideration of solutions in a universal domain in the meantime,
which adds a layer of complication to our basic set-up which may not be of universal
appeal.2 Hopefully the advantages of our rather direct geometric perspecive provide
some compensation for its short-comings.

1.1. Conventions. Unless otherwise stated, all rings are assumed to be commuta-
tive with 1. A field is a non-zero ring in which every non-zero element is invertible.
An integral domain, or simply a domain, is a non-zero ring containing no non-zero
zero-divisors; equivalently, an integral domain is a ring that may be embedded into
a field. (One direction is clear; the other direction uses the construction of the field
of fractions.)

An ideal I in a ring A is prime if A/I is an integral domain, and maximal if A/I
is a field. Equivalently, a prime ideal in A is the kernel of a homomorphism from
A to a field, and a maximal ideal is the kernel of a homomorphism from A onto a
field.

Note that, by definition, prime and maximal ideals are proper (i.e. not equal to
all of A).

2. Affine space

If k is a field, we let An(k) denote the set kn. We typically label the coordinates
by x1, . . . , xn.

All the concepts we study will be invariant under affine linear coordinate changes,
i.e. coordinates changes of the form xi 7→

∑n
j=1 aijxj +bi, where (aij) is an element

of GLn(k) (i.e. an invertible n× n matrix with entries in k) and (b1, . . . , bn) ∈ kn.

2.1. Polynomials as functions on affine space. We let k[x1, . . . , xn] denote the
polynomial ring in the variables x1, . . . , xn. The elements of k[x1, . . . , xn] induce
functions on An(k) in the obvious way (substitute the coordinates of a point into
the variables of the polynomial). In this way we can think of k[x1, . . . , xn] as a ring
of functions on An(k).

2In defense of this point of view, one can note that the idea of studying Diophantine equations
over Q by first considering the space of solutions over C is a rather natural one.
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Actually, we have to be a little careful on this point. A more precise statement
is the evaluating polynomials on points gives a homomorphism from k[x1, . . . , xn]
to the ring of k-valued functions on An(k), but this homomorphism is not always
injective.

2.1.1. Example. If k is finite of order q, then xq −x vanishes identically on k, and
so each of the polynomials xq

i − xi vanishes identically on An(k), although they
are certainly a non-zero polynomials. Thus in this case the homomorphism from
k[x1, . . . , xn] to functions on An is not injective.

We will see in Lemma 6.3.3 below that this homomorphism is injective if k is
infinite.

If f ∈ k[x1, . . . , xn] is non-zero, we define the degree of f to be the maximal
degree of all the monomials appearing with a non-zero coefficient in f .

Note that affine linear coordinate changes induces automorphisms of the k-
algebra k[x1, . . . , xn], and leave the degree of a polynomial unchanged.

2.2. Linear subspaces. One of the basic structures we can consider in affine space
is its collection of linear subspaces. A linear subspace of An(k) = kn is a subset of
kn that is a translate by some element of kn of a vector subspace of kn, i.e. a subset
of the form V + x for some vector subspace V and some element x ∈ kn.

The collection of linear subspaces of An(k) is preserved under affine linear coor-
dinate changes.

2.3. Affine algebraic sets (first naive definition). In naive terms, an algebraic
subset of An is a locus of points cut out by a collection of polynomial equations.
For example, the conic sections, or conics, cut out by equations of the form

ax2 + bxy + cy2 + dx+ ey + f = 0,

are examples of algebraic sets.
We will postpone our formal definition of algebraic set, since we will first provide

some motivation by remarking on the short-comings of this naive definition.

2.3.1. Example. If k = R, and we consider the conic x2 + y2 = 0, then the only
solutions in R2 are (x, y) = (0, 0), although naively one might expect that a single
equation in two variables should cut out a curve.

2.3.2. Example. If k = R, and we consider the conic x2 + y2 + 1 = 0, then the set
of solutions in R2 is empty.

Before introducing a formal definition of algebraic set in general, we will discuss
a particular case which is concrete and requires little theory, but is nevertheless
illustrative of many general feautres of the theory, namely the case of plane curves.

3. Affine plane curves

We focus on the case n = 2. Rather than writing k[x1, x2], we will follow standard
convention and write k[x, y] for the polynomial ring in two variables.
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3.1. The basic definitions.

3.1.1. Definition. We define an affine plane curve to be a non-constant polynomial
f ∈ k[x, y], thought of modulo scaling by non-zero elements of k×.

So an affine plane curve is given by a non-contant poylnomial f(x, y), and we
think of two polynomials as giving the same curve if they differ by a scalar.

We will often denote a curve (we will typically drop the adjectives affine and
plane in this section, since they are always implied) by C, and refer to (one of) the
equation(s) f that gives rise to it as the, or an, equation of C.

3.1.2. Remark. This definition, notation, and terminology may seem a little odd,
since according to our definition C is nothing but f (thought of up to non-zero scal-
ing). However, we ulimately want to think of a curve as being something geometric,
while the equation cutting it out is something algebraic, and so we introduce no-
tation that emphasizes this. Of course, for this to have any content, we have to
introduce more concepts related to curves, and we begin to do so.

3.1.3. Definition. If f is an equation of the curve C, we write C(k) := {(x, y) ∈
A2(k) | f(x, y) = 0}, and call this the set of k-valued points (or sometimes simply
the set of k-points) of the curve C. More generally, if K is any extension field
of k, we write C(K) := {(x, y) ∈ A2(K) | f(x, y) = 0}. (Note that these sets are
well-defined independently of the non-zero scalar ambiguity that is inherent in the
choice of f .)

This definition captures our intuition about what a plane curve should be: it
should be the set of points cut out by an equation f(x, y) = 0 in the plane.

However, as we saw in the examples above, for some choices of k and C, the set
C(k) can be a single point, or even empty! Thus we don’t want to define the curve
C to be the set C(k) itself. We want the curve to be something which exists and
is interesting even if its set of k-points is very uninteresting (e.g. ). As the above
definition suggests, we want to be able to consider the points of the curve not just
over k, but over extensions of k. The most expedient way to achieve these aims is
just to take the curve to be its equation (working modulo non-zero scalars, since
obviosly multiplying f by a scalar doesn’t change its zero locus over any extension
of k).

Later, we will prove the Nullstellensatz, which will show that the curve C is
essentially3 determined by knowing the sets C(K) for all extension K of C (or even
just by knowing the set C(K) for any one algebraically closed extension of k).

3.2. Examples of plane curves — lines and conics.

3.2.1. Example. Any linear (i.e. degree 1) polynomial is of the form ax + by + c,
where (a, b) 6= (0, 0). We call the corresponding degree 1 curves lines.

Note that then C(k) is just a one-dimensional linear subspace of A2(k). In this
case, one easily verifies (just by choosing two distinct points on the line) that C(k)
determines C (i.e. determines the polynomial ax+ by + c up to a non-zero scalar).

3I write “essentially” because in fact knowing C(K) for all extensions K, or even one alge-
braically closed extension K, allows us to determine the irreducible factors of an equation for C,
but not the powers with respect to which those factors appear in the equation.
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3.2.2. Example. We call degree two plane curves conics.
Suppose that k is algebraically closed, so that C(k) contains a point. We may

make an affine change of coordinates so that this point is the origin (0, 0), and then
the equation for C has the form f(x, y) = l1 + l2l3, where the li are homogeneous
linear polynomials in x and y. (It is in obtaining the factorization of the quadratic
terms that we use the assumption that k is algebraically closed.)

Note that neither l2 nor l3 can vanish (otherwise f wouldn’t have degree 2), but
l1 may. Note also that we may find an affine change of coordinates that takes any
two distinct lines to the standard coordinate lines (x = 0 and y = 0).

Using the preceding remarks, and considering the various possibilities for coin-
cidences among the li, we find that (after an affine linear change of coordinates)
f(x, y) can be of five basic forms: xy−1, x2−y, xy, x(x−1), x2. We refer to these Thanks to Sachi Hashimoto

for pointing out that the
case of parallel lines was
omitted from an earlier
draft.

as a hyperbola, a parabola, two lines crossing, two parallel lines, and a double line.

3.2.3. Example. If k = R, then there are further possibilities for conics, because
the quadratic term in f may not be factorizable. In this case it can be reduced
to x2 + y2 by a linear change of coordinates, and we find the following additional
possible conics (up to affine change of coordinates): x2+y2+1 (whose real points are
empty, as we’ve seen), x2 +y2 (whose real points are a single point), and x2 +y2−1
(whose real points are an ellipse4).

Note that if we consider the complex points of these real conics, then the empty
case, and the case of the ellipse, both merge with the case of a hyperbola, while
the case of a single point becomes that of two lines crossing (with the single point
being the crossing point of the two lines).

3.3. Tangents and smoothness. Let C be a plane curve with equation f , and
suppose that (0, 0) lies in C(k), i.e. that f(0, 0) = 0. This just says that f has no
constant term, and so we may write f = f1 + . . .+fd, where each fi a homogeneous
polynomial of degree i, and fd 6= 0 (so that d equals the degree of f).

3.3.1. Definition. We say that C is non-singular, or smooth, at (0, 0), or that (0, 0)
is a smooth point of C, if f1 6= 0. In this case we say that the line with equation f1
is the tangent line to C at (0, 0).

If f1 = 0 we say that C is singular at (0, 0).

Since any point may be taken to the origin by an affine linear coordinate change
(indeed, by a translation), this definition may be applied to any point (x0, y0) ∈
C(k), by changing coordinates so that (x, y) becomes the origin.

The following lemma gives another description of smoothness and the the tangent
line, which doesn’t require moving the point to the origin.

3.3.2. Lemma. A point (x0, y0) ∈ C(k) is a smooth point of C if at least one of the

partial derivatives
∂f

∂x
or

∂f

∂y
is non-zero at (x0, y0). If this holds, then the equation

for the tangent line to C at (x0, y0) is ax+ yb+ c, where

a =
∂f

∂x
(x0, y0), b =

∂f

∂y
(x0, y0), and c = −

(∂f
∂x

(x0, y0)x0 +
∂f

∂y
(x0, y0)y0

)
.

Proof. This is more-or-less immediate when (x0, y0) = (0, 0), and is easily checked
in general just by making a translation that moves (x0, y0) to (0, 0). �

4We say ellipse, rather than circle, because the former notion is invariant under affine linear
coordinate changes, while the latter is not.
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3.3.3. Remark. The lemma shows that the singular points on a plane curve C with

equation f are the solutions to three simultaneous equations: f =
∂f

∂x
=
∂f

∂y
= 0.

This allows one to compute them in practice; it also suggests that they should
be fairly uncommon. (Morally, the plane has dimension two, and each equation
typically cuts down the dimension by one; so typically we might expect every point
to be non-singular. Later, we will make this kind of argument precise.)

The following discussion relates the tangent line to a plane curve at a smooth
point, as we have defined it above, to traditional idea that a tangent line to a curve
is one which should intersect the curve with “multiplicity > 1”.

We begin by defining the intersection multiplicity of a curve and a line at a point
that is common to both.

3.3.4. Definition. Let C be a plane curve, and let ` be a line, and let P ∈ C(k)∩`(k)
be a point of A2(k) lying on both C and `. Assume that ` 6⊆ C (i.e. that the equation
of ` does not divide the equation of C). Choose coordinates so that ` is cut out by
y = 0, and that P = (0, 0). If f(x) denotes the image of f under the homomorphism
k[x, y] → k[x] defined by y 7→ 0, then we define the multiplicity of the intersection
of C and ` at P to be the multiplicity of x = 0 as a root of f .

3.3.5. Remark. Note that since (0, 0) is a point on C by assumption, it is the case
that x = 0 is a root of f . Since ` 6⊆ C, again by assumption, we see that f 6= 0.
Thus the multiplicity of intersection is finite and positive.

3.3.6. Remark. There is nothing important about our choosing coordinates so that
P = (0, 0) and ` = y; this is just a convenient convention that allows us to give
a concrete definition. One could make a more intrinsic definition as follows: if we
let ` also denote an equation of `, and write A := k[x, y]/(`) (the quotient of the
polynomial ring by the principal ideal generated by `), and write P = (a, b), then
the k-algebra A is isomorphic to a polynomial ring in one variable over k, and the
image of (x− a, y − b) in A is a non-zero prime ideal, which we denote p. If we let
f denote the image of f in A under the canonical surjection, then the multiplicity
of intersection of ` and C at P is equal to the maximal power of p that divides (f).
(This is easily verified. Indeed, the change of coordinates in that we imposed in
Definition 3.3.4 just makes it easy to see that A is a polynomial ring (we identify
it with k[x]), and gives a concrete description of p (as the ideal generated by x).)

3.3.7. Lemma. If C is a plane curve, and P is a point in C(k), then C is smooth
at P if and only if there exists a line ` in A2 such that the intersection multiplicity
of ` and C at P equals 1. In this case, the intersection multiplicity equals 1 for
every line ` passing through P , except for the tangent line at P , whose intersection
multiplicity with C at P is ≥ 2.

Proof. We may change coordinates so that P = (0, 0) and ` is given by y = 0, and
write f = f1 + · · ·+ fd as the sum of its homogeneous parts. Then, setting y = 0,
we obtain f = f1 + · · ·+ fd ∈ k[x], and we see that the intersection multiplicity is
1 precisely if f1 6= 0.

If f1 = 0 then of course this is not possible. Hence if P is not a smooth point,
the intersection multiplicity of any line with P is ≥ 2. On the other hand, if f1 6= 0,
so that C is smooth at P , then we see that f1 6= 0 provided that f1 is not a scalar
multiple of y, that is (in coordinate free terms) if ` and the tangent line to C at P
don’t coincide. �
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3.4. Tangent cones. We have seen in Lemma 3.3.7 that at a singular point P of a
curve C, every line through P intersects C with multiplicity > 1. Still, if one looks
at some examples, it is clear that certain lines through P are “more tangent” to C
at P than others.

3.4.1. Example. Consider the graphs of y2 = x3 + x2, y2 = x3, and also y2 =
x3 − x2. Perhaps in a future itera-

tion, when I learn how to
add pictures, there will be
pictures here . . .We capture this intuition with following definition.

3.4.2. Definition. Let C be a curve and P ∈ C(k). Choose coordinates so that
P = (0, 0), and write the equation f of C in the form f = f1 + . . . fd, where each fi

is homogeneous of degree i. Let m be the least value of i such that fi 6= 0 (so that
i = 1 iff C is smooth at P ). Then we call the curve with equation fm the tangent
cone to C at P .

3.4.3. Remark. If k is algebraically closed, then fm factors as a product of m
linear factors, and so the tangent cone is a union of lines through (0, 0) (possibly
with multiplicities). The reason we call it a cone is that such a union of lines is
invariant under scaling, and such objects are called cones. (Think about the usual
cone x2 + y2 = z2 in space.)

4. Projective space

4.1. Basic definitions. For the moment, these are discussed in Subsection 8.2
below.

4.2. Linear subspaces of Pn. Two points spane a uniquely determined line.
Three points, not all colinear span a plane. Four points, not all coplanar, span
a linear 3-space. Etc.

4.3. Hyperplanes and the dual projective space. A codimension one linear
subspace of Pn is called a hyperplane. The equation for a hyperplane in Pn is of
the form

a0x0 + · · · anxn = 0,

where not all ai are zero, and the ai are determined up to a common non-zero scalar
multiple.

So we see that we may regard the hyperplanes in Pn themselves as the points
[a0 : · · · : an] of an n-dimensional projective space which we denote by (Pn)∗, and
call the dual projective space to Pn.

If we work in a coordinate free fashion, so that Pn is obtained as the projectivia-
tion of a vector space V , then (Pn)∗ is obtained as the projectivization of the dual
vector space V ∗.

If L ⊂ Pn is a linear subspace of dimension d, then the collection of hyperplanes
that contain L form a linear subspace L∗ of (Pn)∗ of codimension d+ 1.

In invariant form, if Pn is the projectivization of V , and L is obtained from the
d+ 1-dimensional subspace W ⊂ V , then L∗ is obtained as the projectivization of
W⊥ ⊂ V ∗ (the annihilator of W in V ∗).



8 MATTHEW EMERTON

5. Projective plane curves

5.1. Lines in P2. As a special case of the formation of dual spaces, we remark
that the lines in P2 are parameterized by a space which is itself a projective plane,
which we denote by (P2)∗, and refer to as the dual projective plane (to our original
plane P2).

Concretely, the line with equation aX+bY+cZ corresponds to the point [a : b : c].

5.2. The projective closure of an affine plane curve in P2.

5.2.1. Example. Consider the parabola y = x2 in A2. To compute points at
infinity, we pass to homogeneous coordinates x1x2 = x2

0 and set x2 = 0. The onlyThanks to Oishee Banerjee
for pointing out a typo here;
x0 and x1 had been acciden-
tally switched.

solution is x0 = 0 (in which case necessarily x1 6= 0, and so can be scaled to be 1),
and so we have a unique point at infinity, namely [0 : 1 : 0].

If we pass to the A2 which is the complement of x1 = 0, with coordinates u = x/y
and v = 1/y (so that the point [0 : 1 : 0], which lies at infinity from the perspective
of the (x, y)-plane, now lies at the origin), then the equation for our curve becomes
(after clearing denominators in v) v = u2.

In particular it is smooth at the point (u, v) = (0, 0) (which remember is our
point at infinity), with tangent line v = 0, which is precisely the line x2 = 0, i.e.
the line at infinity (from our original perspective).

In summary, the parabola y = x2 has a single point at infinity, and it is tangent
to the line at infinity at this point.

5.2.2. Example. Consider the hyperbola xy = 1 in A2. To compute points at
infinity, we pass to the equation x0x1 = x2

2, set x2 = 0, and so find two points at
infinity, namely [0 : 1 : 0] and [1 : 0 : 0].

Let’s study what happens at the first of these. Just as in the previous example,
we pass to the (u, v) plane (the complement of x1 = 0), where our curve becomes
u = v2. So again this is a smooth point, but now its tangent line is not the point
at infinity, but rather is the line u = 0, i.e. x0 = 0, which is the line x = 0 in our
original affine coordinates.

Now [0 : 1 : 0] is precisely the point lying at infinity on this the line x = 0, and,
looking at the graph of xy = 1 we see that xy = 1 is asympotic to this line.Add a picture of this graph

some day. . . A completely analogous computation shows that [1 : 0 : 0] is also a smooth point,
with tangent line y = 0, which is the other asymptote of the hyperbola.

In summary, the hyperbola xy = 1 has two points at infinity, it is smooth at each
of them, and the tangent lines are precisely the two asymptotes of the hyperbola.

5.3. Dual curves. If C is a smooth5 projective plane curve, then at each point P
of C (defined over some field l ⊃ k) we have the associated tangent line tp to C
at P , which is a point of the dual plane (P2)∗ (defined over the same field l).

If C is a line `, then of course tP = ` for all P ∈ `(l) (and any l ⊃ k), so in
this case the collection of tP in fact consists of a single point. We will exclude this
somewhat degenerate case from now on.

5.3.1. Proposition. Suppose that degC ≥ 2. There is a curve C∗ in (P2)∗ with the
property that, for any algebraically closed field extension l ⊃ k, the set of tangent

5This means that C is smooth at each of its points. More precisely, it is enough to check
smoothness at all the points C(l) for some algebraically closed field l containing k, e.g. an algebraic
closure of k; it then follows that C is smooth at every point P ∈ C(l) for any field extension l
of k. We haven’t proved this yet, though.
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lines tP , as P ranges over the points of C(l), is precisely the set C∗(l) of l-valued
points of C∗.

Proof. We consider the affine chart of (P2)∗ consisting of lines of the form y =
mx+ b, and show that the set of tP lying in this chart is cut out by a polynomial
equation in m and b. There are analogous computations for the two other affine
charts that, together with this one, cover (P2)∗.

We have to determine when y = mx+ b is of the form tP for some point P of C.
To this end, we substitute Y = mX + bZ into the equation F (X,Y, Z) for C, and
ask whether it has a double root (which is the condition for it to be tangent to at
least one of its points of intersection with C). The polynomial f(X,mX + bZ, Z),
which is homogeneous in the two variables X and Z, has a discriminant ∆, which
is a polynomial in m and b, and which vanishes precisely when f(X,mX + bZ, Z)
has a double root. Thus indeed the condition for a line to be of the form tP is cut
out by a polynomial in the coefficients of the equation of the line. �

It’s not so clear (to me, at least) how to compute the degree of C∗ from the
description of its equation given in the preceding argument. However, we can use
a slightly different approach to compute its degree.

5.3.2. Proposition. If degC = d, then degC∗ = d(d− 1).

Proof. We will intersect C∗ with a typical line in (P2)∗, and count how many
intersection points there are. A line in (P2)∗ corresponds to a point P in P2; points
on this line correspond to lines through P .

So we have to choose a point P in P2, and count the lines through P that are
tangent to C. It will be easier if the points at which these lines are tangent do
not lie at infinity, so we assume P is chosen so that none of the tangent lines to
the points at infinity of C pass through P . (Since there are only finitely points at
infinity on C, there are only finitely many such lines, and so as long as k is infinite,
so that P2(k) is not the union of finitely many lines, this is possible.)

Now choose coordinates so that P = (0, 0), let f(x, y) be equation for (the affine
part of) C, and write f = fd + fd−1 + · · ·+ f0 as the sum of its homogeneous parts.
The requirement that none of the tangent lines to the points through infinity pass
through 0 is equivalent to the requirement that fd−1 is coprime to fd.

Now (0, 0) lies on the tangent line through a point (x0, y0) of C if and only if
x0fx(x0, y0) + y0fy(x0, y0) vanishes, and so we must count the number of solutions
to the simultaneous equations

f = 0, xfx + yfy = 0,

or equivalently

fd + fd−1 + · · ·+ f0 = 0, d · fd + (d− 1) · fd−1 + · · ·+ f1 = 0.

Now subtracting d times the first equation from the second, we may rewrite these
as

fd + fd−1 + · · ·+ f0 = 0, fd−1 + 2 · fd−2 + · · · (d− 1) · f1 = 0.

Thus we are considering simultaneous equations of degree d and d − 1, which by
Bézout’s Theorem (to be proved later) have d(d − 1) common solutions. Fur-
thermore, none of these common solutions lie at infinity (since fd and fd−1 are
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coprime).6 Thus we find that there are d(d − 1) lines (counted with multiplicity)
through P = (0, 0) that are tangent to C, and so C∗ has degree d(d− 1). �

5.3.3. Remark. If C is a curve with singularities, then one can still define a “dual
curve” C∗, as the collection of lines which meet C at a point with multiplicity
> 1. Provided that C contains at least one smooth point (which is true if e.g. k is
perfect and C is irreducible), this will in fact yield a curve, and its degree will be
d(d− 1). However, the resulting curve won’t be irreducible. The point is that if P
is a singular point on C, then any line passing through C will have multiplicity > 1
at P , and so the entire line in (P2)∗ corresponding to P will lie in C∗. In fact, this
line will appear in the equation for C∗ to some power > 1. (For an ordinary node,
it will appear with multiplicity two; for an ordinary cusp, with multiplicity three)

For this reason, the dual curve of a singular curve C is usually defined to be the
dual curve in the above sense, but with all the extra multiple lines removed. The
degree of the dual curve is then called the class of C.

5.3.4. Remark. One can show that if P is a point on C, and tP is the tangent line
to C at P , then the line in (P2)∗ corresponding to P is tangent to C∗ at the point
corresponding to tP . Intuitively, this says that the dual curve to the dual curve is
the original curve.

This may seem impossible, because the degree of C∗ is d(d − 1), so how could
its dual have degree d? However, one has to be careful, because it will turn out
that (once d > 2) that C∗ is quite singular. It turns out that the class of C∗ (in
the sense of the preceding remark) is indeed d, and the dual of C∗ (again, in the
sense of the preceding remark, i.e. after throwing away all extra lines) does coincide
with C.

5.3.5. Example. If C is a smooth cubic curve, then C∗ is a degree 6 curve with
9 cusps (corresponding to the 9 inflection points of C). The naive dual of C∗

(i.e. the set of points in P2 corresponding to lines in (P2)∗ that meet C∗ with
multiplicity > 1) is then of degree 30 = 6(6−1). However, it contains 9 triple lines,
corresponding to the 9 cusps of C∗. Once these are removed, we are left with the
original cubic curve C. (Note that 30− 9 · 3 = 3.)

5.4. The genus of a smooth complex curve. If k = C and C is a smooth
projective plane curve of degree d, then C(C) is a compact connected Riemann
surface.

To compute its genus, we can project C from some point P 6∈ C to a line. This
is a degree d morphism, which (by our computation of the degree of the dual curve)
has d(d− 1) branch points. The Riemann–Hurwitz formula then shows that, if g is
the genus of C(C), we have

2g − 2 = −2d+ d(d− 1) = d(d− 3),

and thus that

g =
(d− 1)(d− 2)

2
.

6Incidentally, this shows why we didn’t “cheat” when we eliminated the degree term from the
second equation. If we had considered the simultaneous solutions of the two original degree d
equations (here we are assuming that d 6= 0 in k, so that d · fd is a non-zero term), they would
have had d spurious common solutions at infinity, and so only d2 − d = d(d − 1) of the solutions
would have been meaningful — and these are the d(d − 1) solutions we have just introduced.
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This is a famous formula, which can be derived in many different ways. If one
knows this formula, then one can run the above argument backwards to determine
that degC∗ = d(d − 1). (This is the approach taken in Hartshorne, for example;
see the exercises on pp. 304-5.)

5.5. The complete linear system of conics.
A projective plane conic has an equation of the form

(5.5.1) a0X
2 + a1Y

2 + a2Z
2 + a3XY + a4XZ + a5Y Z = 0.

It determines, and is determined by, the point

[a0 : · · · : a5] ∈ P5.

In other words, the space of conics is a P5; we call it the complete linear system of
conics.

Actually, below we will denote this space as (P5)∗, because we will see that is
naturally identified with the dual space to a certain copy of P5 that contains P2.

5.5.2. Base points. If P ∈ P2(k), we may consider the sublinear system consisting
of conics that pass through P . An examination of (5.5.1) shows that this imposes
a linear condition on the point of (P5)∗ corresponding to the conic. In other words,
each point in P determines a hyperplane on the space of conics; we get a map

(5.5.3) P2(k) → P5(k)

to the dual space of the space of conics. (Since we have taken the space of conics
to be (P5)∗, its dual space is just P5 itself.) This is called the 2-uple embedding of
P2. The following lemma shows that, among other things, it is an embedding.

5.5.4. Lemma. The map (5.5.3) is an embedding.

Proof. We have to show that given two distinct points P and Q, we can find a conic
passing through one, but not the other. Choose a line ` passing through P but not
through Q, and take the conic to be the double line `2. �

Note that the hyperplanes in P5 are precisely the points of (P5)∗, i.e. the conics.
If HC is the hyperplane corresponding to a conic C, then one checks (just chasing
through the definitions) that the intersection of HC with the image of (5.5.3) is
precisely (the image under (5.5.3) of) the set of points C(k) of the conic C.

In other words, the 2-uple embedding allows us to realize conics in P2 as being
obtained by intersecting (the image of) P2 with hyperplanes in a higher dimensional
projective space (namely P5).

If P and Q are two distinct points in P2, then we can consider the sublinear
system of conics with base-points at P and Q, i.e. passing through both P and Q.
The lemma shows that this is the intersection of two distinct hyperplanes in (P5)∗,
and so is a codimension two linear subspace of (P5)∗. It is dual, then, to a line in
P5; this is precisely the line joining (the images under (5.5.3) of) P and Q in P5.

We can similarly impose base-points at three points (and so obtain a plane in P5

— actually we have to check that these three points can’t be colinear; the following
proposition does this), and so on. (Once we impose four or more base-points, there
are non-trivial conditions to check to make sure that we actually cut down the
dimension by one for each extra base-point.)



12 MATTHEW EMERTON

Write S to denote the image of P2 under (5.5.3); it is a surface in P5.7

5.5.5. Proposition. (1) If P and Q are distinct points in S, then the line
joining P and Q contains no other points of S besides P and Q.

(2) If P , Q, and R are three distinct points in S, let Π denote the plane spanned
by P , Q, and R. Either (a) thought of as a points in P2, these points are
not colinear, in which case the plane Π meets S in no other point besides
P , Q, and R; or (b) the points P , Q, and R are colinear as points in P2,
in which case the intersection of Π with S consists precisely of the image
under (5.5.3) of this line, and this image is a conic in Π.

Proof. To prove (1), we have to show that given three points, we can find a conic
containing the first two but not the third. If the three points are not collinear, take
the line through the first two and double it. If they are collinear, take the union
of a line through the first not containing the second and a line through the second
not containing the first.

To prove (2), we suppose given four points P , Q, R, and S, so that any conic
containing the first three necessarily contains the fourth. Let ` be the line joining
P and Q. If `1 is a line through R that misses S, then ``1 is a conic containing
P , Q, and R, hence containing S. Thus S lies on `. Interchanging the roles of Q
and R, we see that the line through P and R also contains S. Thus in fact all four
points are collinear.

To check that the image of a line under (5.5.3) is a conic, make a direct compu-
tation. �

5.5.6. Theorem. (1) If P , Q, R, and S are four points, no three of which are
collinear, then the space of conics passing through them forms a line in the
P5 of conics. (It is called a pencil of conics.) It contains exactly three
singular conics, each of which consists of two lines crossing.

(2) If P , Q, R, S, and T are five points in P2, no three of which are collinear,
then there is a unique conic containing them, which is necessarily irreducible
(and hence smooth).

Proof. Part (2) of the preceding proposition shows that we cut the dimension down
by one for each extra base-point.

In the context of (1), we note that the only reducible (= singular) conics that
contain the four points are the three different unions of lines that can be obtained
by grouping the four points into pairs. �

5.5.7. Example. If we take k = R, we see that circles are precisely the conics
containing the points [1 : i : 0] and [1 : −i : 0] at infinity, and so we get the classical
result that a cirle is uniquely determined by three non-colinear points lying on it.

5.5.8. Remark. Any pencil of conics arises by imposing four base-points; this
follows from Bézout’s Theorem (to be proved later). From the fact that there are
three singular conics in a pencil, we deduce that the discriminant locus in P5 has
degree 3.

7We haven’t yet defined what we mean by a surface in P5, but in this case there are pretty
easy explicit equations cutting out S, so this shouldn’t be too confusing.
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6. Affine algebraic sets

6.1. Zeroes of equations and homomorphisms of k-algegras. Let k be a
field. If Ω is an extension field of k, and if a1, . . . , an ∈ Ωn, then we let

ϕa1,...,an : k[x1, . . . , xn] → Ω

denote the homomorphism defined by mapping each xi to the corresponding ai.
Clearly any k-algebra homomorphism ϕ : k[x1, . . . , xn] → Ω is of this form, for
some uniquely determined n-tuple a1, . . . , an. (One has ai = ϕ(xi).)

If f is a polynomial over k in the variables x1, . . . , xn, then f(a1, . . . , an) = 0 if
and only if ϕa1,...,an(f) = 0 if and only if f ∈ kerϕa1,...,an . (Both assertions are
obvious; indeed, the second is the very definition of the kernel.)

If f1, . . . , fn is a collection of polynomials over k in the variables x1, . . . , xn,
and if I ⊆ k[x1, . . . , xn] denotes the ideal generated by the fi, then a1, . . . , an is a
simultaneous solution of all the fi if and only if each fi ∈ kerϕa1,...,an if and only
if I ⊆ ϕa1,...,an if and only if ϕa1,...,an factors through k[x1, . . . , xn]/I, to induce a
homomorphism k[x1, . . . , xn]/I → Ω. (Again, this is all obvious.)

Putting together these observations, we get the following lemma.

6.1.1. Lemma. If, as above, f1, . . . , fn is a collection of polynomials over k in the
variables x1, . . . , xn, and I ⊆ k[x1, . . . , xn] denotes the ideal generated by the fi,
then the assignment (a1, . . . , an) 7→ ϕa1,...,an induces a bijection

{(a1, . . . , an) ∈ Ωn | f1(a1, . . . , an) = · · · = fr(a1, . . . , an) = 0}
↔ {k-algebra homomorphisms ϕ : k[x1, . . . , xn]/I → Ω}.

This lemma, simple but fundamental, is at the heart of the algebraic approach
to algebraic geometry.

6.2. Aside: the Hilbert Basis Theorem. The Hilbet basis theorem asserts that
any ideal in k[x1, . . . , xn] (where, as before, k is a field) is finitely generated. Thus
there is nothing special about the ideal I considered in Lemma 6.1.1; it could be
any ideal in k[x1, . . . , xn].

We recall the proof of Hilbert’s theorem here, in the more general form that
is usually considered, namely, that A[x] is Noetherian if A is. (This implies the
Noetherianess of k[x1, . . . , xn] by an obvious induction on n, starting with the fact
that a field k is certainly Noetherian, containing as it does only two ideals.)

6.2.1. Theorem. If A is Noetherian than so is A[x].

Proof. Let I be an ideal in A[x]. Let Jr ⊆ A be defined via

Jr := {a ∈ A | a is the leading coefficient of an element of degree r in I} ∪ {0}.
One checks that Jr is an ideal in A (exercise), and that Jr ⊆ Jr+1 (exercise; hint:
consider multiplication by x). Thus J =

⋃
Jr is an ideal in A (exercise), and

so is finitely generated, by the hypothesis that A is Noetherian. Thus for some
sufficiently large r, we have

J0 ⊆ J1 ⊆ · · · ⊆ Jr = Jr+1 = Jr+2 = · · · .
Of course, each Ji is also finitely generated (again using the Noetherianness of A).

We may and do choose, for each i = 1, . . . , r, a finite set Si = {fi,1, . . . , fi,si
} ⊆ I

of degree i polynomials such that the leading coefficients of the elements of Si

generate Ji.
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One now checks that S0 ∪ S1 ∪ · · · ∪ Sr generates I. To see this, let I ′ denote
the ideal generated by this union; certainly I ′ ⊆ I. If i > r, define Bi := xi−rBr;
then each such Bi lies in I ′, and we see that Bi is a set of degree i polynomials
whose leading coefficients generate Ji, for every i ≥ 0 (taking into account the fact
that Ji = Jr when i > r). Recalling the definition of the Ji, we now see that
I = AB0 + AB1 + AB2 + · · · ⊆ I ′, and so I = I ′, as claimed. In particular, the
ideal I is finitely generated. �

6.3. Zero loci of ideals. We make the following basic definition.

6.3.1. Definition. If k is a field, I is an ideal in k[x1, . . . , xn], and Ω is an extension
of k, then we write

ZI(Ω) = {(a1, . . . , an) ∈ Ωn | f(a1, . . . , an) = 0 for all f ∈ I},
and refer to ZI(Ω) as the zero locus of I in Ωn (or in An(Ω); see Definition 6.3.2
below), or as the zero locus of I with values in Ω.

The notation we have chosen for ZI suggests that we regard ZI as a functor on
the category of field extensions of k, and to this end, it is helpful to observe that Ω
is indeed functorial in Ω, in so far as if Ω ⊆ Ω′ is an extension (of extensions of k),
then there is an evident inclusion ZI(Ω) ⊆ ZI(Ω′).

As was already noted in Subsection 6.1, if I is generated by f1, . . . , fr, then ZI(Ω)
is the subset of Ωn consisting of simultaneous zeroes of each of the fi. Lemma 6.1.1
shows that ZI(Ω) may also be identified with the set of n-tuples (a1, . . . , an) for
which ϕa1,...,an factors through k[x1, . . . , xn]/I. Thus the functors ZI encode the
concept of solving systems of polynomial equations.

6.3.2. Definition. When I = 0, we write An rather than Z0. Thus

An(Ω) = Ωn.

The notation here stands for n-dimensional affine space.

It is natural to ask to what extent the functor ZI determines the ideal I. (If
we know all the solutions to a collection of equations, can we recover the equations
that have been solved?)

The precise answer to this question is the subject of the Nullstellensatz, which
will take us some time to get to. However, we can at least say something about the
special case of An.

6.3.3. Lemma. If I ⊆ k[x1, . . . , xn] is an ideal, and if k is infinite, then ZI(k) =
An(k) if and only if I = 0.

Proof. The if direction is clear (and holds without any hypothesis on k), and so we
turn to proving the only if direction. More precisely, we will assume that I 6= 0, and
prove that ZI(k) 6= An(k). To this end, choose a non-zero element f of I. Let ` be
the equation for a hyperplane Z`(k) such that ` - f . (Such an ` exists because k is
infinite, and so there are infinitely many homogeneous linear polynomials `, while
f has only finitely many irreducible factors.) Then the restriction of f to Z`(k) is
not identically zero. This restriction is a polynomial in n − 1 variables, and so by
induction we may find a point of Z`(k) at which f does not vanish. In other words,
Z`(k) 6⊆ ZI(k), and so in particuar, ZI(k) 6= An(k). �

6.3.4. Corollary. If I ⊆ k[x1, . . . , xn] is an ideal, then ZI(Ω) = An(Ω) for all
extensions Ω of k if and only if I = 0.
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Proof. The if direction being clear, we focus on proving the only if direction. Thus
we assume that ZI(Ω) = An(Ω) for all extensions Ω of k, with the aim of showing
that I = 0. If k is infinite, this follows immediately from Lemma 6.3.3 upon taking
Ω = k. In any case, k always admits an extension Ω which is infinite. If we let IΩ
denote the ideal of Ω[x1, . . . , xn] generated by I, then ZI(Ω) = ZIΩ(Ω) (this is true
for any choice of I), and so our assumption, together with Lemma 6.3.3, shows that
IΩ = 0. Since I ⊆ IΩ, we find that I = 0 as well. �

6.4. Finitely generated extensions of fields. We need some facts and defini-
tions from field theory.

If Ω/k is an extension of fields and a1, . . . , an ∈ Ω, then we say that the ai are mu-
tually algebraic independent, or simply algebraically independent, if the morphism
ϕa1,...,an : k[x1, . . . , xn] → Ω is injective, i.e. has zero kernel. In this case, ϕa1,...,an

induces an isomorphism between k[x1, . . . , xn] and the k-subalgebra k[a1, . . . , an]
of Ω generated by the ai, which then extends to an isomorphism between the field
k(x1, . . . , xn) and the subfield k(a1, . . . , an) of Ω generated by the ai over k.

6.4.1. Lemma. If l/k is a finitely generated extension of fields, then there exist n
mutually algebraically independent elements a1, . . . , an ∈ l such that l is a finite
extension of k(a1, . . . , an).

Proof. Since l is finitely generated over k, we may write l = k(a1, . . . , an′) for
some collection of elements a1, . . . , an′ ∈ l. Choose a maximal algebraically inde-
pendent subset of these elements, which (after relabelling) we write as a1, . . . , an.
Then, if i > n, the elements a1, . . . , an, ai are not algebraically independent, and
so we may find a dependence non-zero polynomial f in n + 1-variables for which
f(a1, . . . , an, ai) = 0. Since a1, . . . , an are algebraically independent, the polynomial
f(a1, . . . , an, xn+1) ∈ k(a1, . . . , an)[xn+1] is non-zero, and has ai as a zero. Thus ai

is algebraic over k(a1, . . . , an), and so l = k(a1, . . . , an)[an+1, . . . , an′ ] is finite over
k(a1, . . . , an). �

In the context of the preceding lemma, we say that elements a1, . . . , an form a
transcendence basis for l over k. The size of a transcendence basis (the quanity
n of the preceding lemma) is an invariant of the extension l/k, and is called the
transcendence degree of l over k. We won’t prove this till later.

6.5. Universal domains. We say that a field Ω is a universal domain if it is
algebraically closed, and of infinite transcendence degree over its prime subfield
(which we denote by k0). Since we won’t develop the theory of transcendence
degree in the non-finitely generated context, we note the following equivalent, but
more concrete, form of this definition: Ω is a univeral domain if and only if it is
algebraically closed, and contains n elements that are algebraically independent
over k0, for any n ≥ 0.

6.5.1. Example. (1) For any field k, an algebraic closure of k(x1, . . . , xn, . . .)
(where x1, . . . , xn, . . . is a sequence of variables) is a universal domain con-
taining k.

(2) The field C of complex numbers is a universal domain.

Example 6.5.1 (1) shows that any field may be embedded into a universal domain.

6.5.2. Lemma. Let Ω be a universal domain with prime subfield k0,
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(1) If k is any finitely generated field extension of k0, then there is an embedding
k ↪→ Ω.

(2) If k ⊆ l is an extension of finitely generated field extensions of k0, then any
embedding k ↪→ Ω may be extended to an embedding l ↪→ Ω.

Proof. It suffices to prove (2); part (1) then follows as a special case, by replacing
k by k0 and l by k.

Since l is finitely generated over k, by Lemma 6.4.1 we may find a finite number
of elements a1, . . . , an ∈ l such that the ai are algebraically independent over k,
and such that l is algebraic over k(a1, . . . , an). Since Ω is a universal domain, and
since k is finitely generated over k0, we may find elements b1, . . . , bn ∈ Ω which are
algebraically independent over the image of k. We may then define an embedding
k(a1, . . . , an) ↪→ Ω, extending the given embedding k ↪→ Ω, by mapping ai to bi.
Since Ω is algebraically closed (being a univesal domain), while l is algebraic over
k(a1, . . . , an), this may be extended to an embedding l ↪→ Ω. �

We may bootstrap part (2) of the preceding lemma to an apparently stronger
result. To this end, we recall a lemma from commutative algebra.

6.5.3. Lemma. If A is a non-zero ring, then A contains a maximal ideal.

Proof. An ideal I in A is proper if and only if 1 6∈ I. Thus if {Ii} is any chain of
proper ideals in A (labelled by some totally ordered set), then the union

⋃
i Ii is

also a proper ideal in A. (Since 1 does not lie in any of the Ii, it doesn’t lie in their
union either.) Zorn’s Lemma now shows that the collection of all proper ideals in
A contains maximal elements. �

6.5.4. Proposition. If Ω is a universal domain with prime subfield k0, and if A
is a non-zero finitely generated algebra over a finitely generated field extension k
of k0, then any embedding k ↪→ Ω may be extended to a map of k-algebras A→ Ω.

Proof. Let m be a maximal ideal of A (which exists since A is non-zero). The
quotient A/m is then a finitely generated field extension of k, and so part (2) of
Lemma 6.5.2 shows that we may find an embedding A/m ↪→ Ω extending the given
embedding of k. Composing this with the canonical surjection A→ A/m gives the
desired map A→ Ω. �

6.6. The Nullstellensatz for universal domains. We have shown above in
Lemma 6.3.3 that the zero ideal in k[x1, . . . , xn] is characterized by having ev-
ery point of An(k) as a solution, for an infinite field k. Our goal now is to show
that the unit ideal in k[x1, . . . , xn] is characterized by having the empty set of so-
lutions, provided that we consider solutions valued in a universal domain. (Below,
in Subsection 11.1, we will prove the stronger result that the same remains true
provided that we consider solutions valued in an algebraically closed extension of k.
But we will need to develop more geometry before we can prove that result.)

6.6.1. Theorem. If I ⊆ k[x1, . . . , xn] is an ideal, and if Ω is a universal domain
containing k, then ZI(Ω) = ∅ if and only if I = k[x1, . . . , xn].

Proof. The if direction is clear (for any choice of extension Ω of k, universal domain
or not), so we focus on proving the only if direction. That is, we assume that
ZI(Ω) = ∅, and we will show that I is the unit ideal.



INTRODUCTION TO ALGEBRAIC GEOMETRY 17

Let k0 denote the prime subfield of k (and hence of Ω). By Hilbert’s Basis The-
orem we know that I is finitely generated, say by f1, . . . , fr, and so we may find a
subfield k′ of k, finitely generated over k0, such that f1, . . . , fr ∈ k′[x1, . . . , xn]. Let
I ′ denote the ideal in k′[x1, . . . , xn] generated by f1, . . . , fr. Clearly ZI′(Ω) =
ZI(Ω) (just using that I ′ and I have the same set of generators), and hence
ZI′(Ω) = ∅. Lemma 6.1.1 therefore implies that there are no k′-algebra ho-
momorphisms k′[x1, . . . , xn]/I ′ → Ω. It now follows from Proposition 6.5.4 that
k′[x1, . . . , xn]/I ′ must be the zero k′-algebra, i.e. that I ′ must be the unit ideal,
and so in particular that 1 ∈ I ′. Since I ′ ⊆ I, we find that 1 ∈ I, and thus that I
is also the unit ideal, as required. �

6.7. Consequences of the Nullstellensatz. We say that a field Ω satisfies the
Nullstellensatz if the conclusion of Theorem 6.6.1 holds, for any subfield k of Ω, i.e.
if for any subfield k ⊆ Ω and any ideal I ⊆ k[x1, . . . , xn] (with n arbitrary), we
have that ZI(Ω) = ∅ if and only if I is the unit ideal. Clearly, it actually suffices to
consider the case when k = Ω (since we may replace I by the ideal in Ω[x1, . . . , xn]
that it generates, without changing the set ZI(Ω)).

As already remarked, we will prove later that a field satisfies the Nullstellensatz
if (and only if) it is algebraically closed.

In this subsection, we describe the precise extent to which ZI(Ω) determines the
ideal I, under the assumption that Ω satisfies the Nullstellensatz.

6.7.1. Definition. If I an ideal in a ring A, then rad(I) (the radical of I) is the
ideal of A defined by

rad(I) := {a ∈ A | aN ∈ I for some N}.

Note that I ⊆ rad(I), and rad(rad(I)) = rad(I).

Clearly for an ideal I in k[x1, x2, . . . , xn], we have Zrad(I)(Ω) = ZI(Ω).

6.7.2. Theorem. If k ⊆ Ω is an extension of fields, and Ω satisfies the Nullstellen-
satz, then, for any ideal I ⊆ k[x1, . . . , xn], a polynomial f ∈ k[x1, . . . , xn] vanishes
identically on ZI(Ω) if and only if f ∈ rad(I).

Proof. We have already observed that if direction holds (without any assumption
on Ω). Thus we turn to proving the only if diretion, and, to this end, we suppose
that f vanishes identically on ZI(Ω).

We define J ⊆ k[x1, . . . , xn, y] to be the ideal generated by I together with
the element 1 − fy. The assumption that f vanishes identically on ZI(Ω) is im-
mediately seen to imply that ZJ(Ω) = ∅. Our assumption that Ω satisfies the
Nullstellensatz then implies that J is the unit ideal of k[x1, . . . , xn, y]. If we set
A := k[x1, . . . , xn]/I, then we may rephrase this as saying that 1−fy generates the
unit ideal of A[y]. Lemma 6.7.3 below implies that f is nilpotent in A, and thus
that f ∈ rad(I), which is what we wanted. �

6.7.3. Lemma. If A is a ring and a ∈ A, then the polynomial 1 − ay is a unit in
A[y] if and only if a is nilpotent in A.

Proof. We may embed A[y] in the power series ring A[[y]], and the usual computa-
tion with geometric series shows that 1− ay is a unit in A[[y]], with

(1− ay)−1 = 1 + ay + a2y + · · ·+ any + · · · .
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Thus we see that 1 − ay is a unit in A[y] if and only if this geometric series is in
fact a polynomial if and only if a is nilpotent, as claimed. �

6.7.4. Remark. The proof of Theorem 6.7.2 is known as the Rabinowitz trick.

The following result is an immediate corollary of Theorem 6.7.2.

6.7.5. Corollary. If k ⊆ Ω is an extension of fields, and Ω satisfies the Nullstellen-
satz, then, for any ideals I, J ⊆ k[x1, . . . , xn], we have that ZI(Ω) ⊆ ZJ(Ω) if and
only if rad(I) ⊃ rad(J).

6.7.6. Corollary. If k is a field satisfying the Nullstellensatz, then the maximal
ideals of k[x1, . . . , xn] are precisely the ideals of the form (x1−a1, . . . , xn−an), for
some n-tuple (a1, . . . , an) ∈ kn.

Proof. Clearly any such ideal is maximal. Conversely, if m is a maximal ideal,
write Ω = k[x1, . . . , xn]/m. Since Zm(Ω) is non-zero (tautologically), we conclude
that Zm(k) is non-zero. If (a1, . . . , an) is a point of Zm(k), then we see that (x1 −
a1, . . . , xn − an) (which is the kernel of ϕa1,...,an) contains m, and thus these two
ideals coincide (since m is maximal by assumption). �

6.8. The Zariski topology. We suppose that k ⊆ Ω is an extension of fields, and
that Ω satisfies the Nullstellensatz.

6.8.1. Definition. The Zariski topology on An(Ω) over k is defined by declaring
the closed subsets to be those subsets of the form ZI(Ω) for ideal I ⊆ k[x1, . . . , xn].
We write An

/k(Ω) to denote An(Ω) equipped with its Zariski topology over k.

6.8.2. Remark. We note that

(1) ZI(Ω) ∪ ZJ(Ω) = ZIJ(Ω).
(2)

⋂
i ZIi(Ω) = ZP

i Ii
(Ω).

(3) Zk[x1,...,xn](Ω) = ∅.
(4) Z0(Ω) = An(Ω).

Thus the Zariski topology is indeed a topology.

6.8.3. Remark. The Zariski topology on An
/k(Ω) depends on the choice of k (which

is why we include k in the notation). For example, the singleton {i} is closed in
A1

/C(C) (it is the zero locus of the polynomial x − i ∈ C[x]), but is not closed in
A1

/R(C); its closure in A1
/R(C) is equal to {i,−i} (this set being the zero locus of

the polynomial x2 + 1 ∈ R[x]).

The Zariski topology on An
/k(Ω) induces a topology on each ZI(Ω), which we

refer to as the Zariski topology on ZI(Ω). Corollary 6.7.5 shows that the closed
subsets of ZI(Ω) are precisely the subsets ZJ(Ω), as J ranges over ideals J ⊆ rad(I).

6.8.4. Definition. We refer to the sets ZI(Ω), endowed with their Zariski topology,
as affine algebraic sets

7. Interlude on topology

Here we will discuss irreducibility, dimension, etc..
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8. Projective algebraic sets

8.1. The incompleteness of affine algebraic sets. A technical difficulty with
affine algebraic sets is that (when they are not just a finite union of points) they
are not complete, in a sense that the following example should convey.

8.1.1. Example. Consider the intersection of the locus xy = 1 and the locus y = tx
(where t is, to begin with, a non-zero parameter). Clearly, the intersection is equal
to the set {(x, tx) |x2 = 1/t}, and so consists of two points. However, if we consider
what happens as t → 0 (in an informal sense, for the moment), we see that these
two points of intersection disappear: the loci xy = 1 and y = 0 do not intersect.

There is another way to phrase the incompleteness described in the preceding
example which is technically more precise (it doesn’t appeal to notions of conver-
gence and limit which make little or no sense when k and Ω are not equal to C),
if slightly less intuitive. Namely, rather than thinking of t as a parameter, in some
slightly unspecified sense, just regard y = tx as an equation in three variables x, y,
and t. Then we can consider the affine algebraic set Z(xy−1,y−tx)(Ω) ⊆ A3

/k(Ω).
Projection onto the third variable (i.e. projecting onto the t-line) gives a map

A3
/k(Ω) → A1

/k(Ω), and the fibre of this projection over any particular value of t
is then equal to the intersection of the loci cut out by the equations xy = 1 and
y = tx (with t now taken to be the particular value under consideration). Our
previous vague remarks about a limit of intersections disappearing as t → 0 can
now be made precise in the following way: the image of Z(xy−1,y−tx)(Ω) under this
projection, which is equal to {t ∈ A1(Ω) | t 6= 0}, is not Zariski closed. (Its Zariski
closure is equal to all of A1(Ω), but it does not contain the point t = 0 of this
closure.)

Our goal in introducing projective space and projective algebraic sets, first and
foremost, is to find a setting in which the incompleteness problems of the type just
described are eliminated. The technical expression of the completeness of projective
space will be given in Theorem 8.6.1 below; a quick glance at the statement of that
theorem will show that it is phrased in terms of certain projections being closed
maps in the Zariski topology. (It then becomes a bit of an art to learn how to apply
the completeness property for projective spaces, described in such terms, to deal
with problems of “limits” (intuitively understood) such as the one described in the
above example.)

8.2. Projective space. We begin by introducting projective space, and to moti-
vate this, we consider perhaps the simplest situation of “missing limits”, namely
missing points at infinity in affine space. To this end, consider affine space An(Ω)
(with coordinates x1, . . . , xn), but regard it as the hyperplane H in Ωn+1 (with
coordinates x0, . . . , xn) cut out by the equation x0 = 1.

If we consider any line ` through the origin in Ωn+1 which does not lie in the
plane x0 = 0, then ` intersects H in precisely one point, and in this way we identify
An(Ω) with a subset of the set of all lines through the origin in Ωn+1. Now imagine
varying `, and in particular, rotating it so that it ultimately lies in the plane x0 = 0.
The point of intersection with H will then run off “to infinity” and disappear as
the line ` comes to rest in the plane x0 = 0.

If we want this limiting point of intersection to exist, we have no choice but to
add points to An(Ω). We do this in the simplest (and most tautological!) way
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possible, namely, beginning with the identification of An(Ω) with the set of lines `
through the origin of Ωn+1 which do not lie in the hyperplane x0 = 0, we simply
define Pn(Ω) to be the set of all lines through the origin of Ωn+1.

8.2.1. Definition. If Ω is a field, we let Pn(Ω) denote the set of lines through the
origin of Ωn+1.

A line through the origin, which is to say a point in Pn(Ω), is determined by
any non-zero point (x0, x1, . . . , xn) lying on it, and we write (x0 : x1 : . . . : xn) to
denote the line through the origin that passes through such a non-zero point. Two
non-zero points (x0, x1, . . . , xn) and (x′0, x

′
1, . . . , x

′
n) lie on the same line through

the origin if and only if (x0, x1, . . . , xn) = λ(x′0, x
′
1, . . . , x

′
n) for some λ ∈ Ω×, and

so (x0 : x1 : . . . : xn) = (x′0 : x′1 : . . . : x′n) if and only if (x0, x1, . . . , xn) =
λ(x′0, x

′
1, . . . , x

′
n) for some λ ∈ Ω×. We refer to the numbers x0, x1, . . . , xn as the

homogeneous coordinates of the point (x0 : x1 : . . . : xn) ∈ Pn(Ω); they are thus
well-determined up to simultaneous multiplication by a non-zero scalar.

8.3. Zero loci of homogeneous ideals. Since points in Pn(Ω) are described not
by well-defined coordinates, but only by coordinates that are well-defined up to a
simultaneous non-zero scalar multiple, it doesn’t make sense to evaluate an arbitrary
element f ∈ k[x0, . . . , xn] at a point of Pn(Ω).

However, if f ∈ k[x0, . . . , xn] is homogeneous, say of degree d, then

f(λx0, . . . , λxn) = λdf(x0, . . . , xn)

for any λ ∈ Ω×, and so the vanishing or not of f at a point of Pn(Ω) is well-defined,
independently of the choice of homogeneous coordinates.

8.3.1. Definition. For each d ≥ 0, we write k[x0, . . . , xn]d to denote the k-vector
subspace of k[x0, . . . , xn] consisting of homogenous polynomials of degree d. (The
dimension of k[x0, . . . , xn] is equal to

(
n+d

n

)
.)

We regard k[x0, . . . , xn] as a graded ring via the decomposition

k[x0, . . . , xn] = k[x0, . . . , xn]0 ⊕ k[x0, . . . , xn]1 ⊕ · · · ⊕ k[x0, . . . , xn]d ⊕ · · · .

8.3.2. Definition. We say that an ideal I ⊆ k[x0, . . . , xn] is homogeneous if the
inclusion

⊕∞
d=0

(
I ∩ k[x0, . . . , xn]d

)
⊆ I is an equality, or, equivalently, if I can be

generated by homogenous polynomials.

Studying the simultaneous zero loci of collections of homogeneous polynomials
is evidently the same as studying the zero loci of homogeneous ideals.

The following result gives the analogue of Theorem 6.6.1 in the context of ho-
mogeneous ideals and projective algebraic sets.

8.3.3. Proposition. Suppose that Ω satisfies the Nullstellensatz. Then for a homo-
geneous ideal I ⊂ k[x0, . . . , xn], the zero locus of I in Pn(Ω) is empty if and only if
Id = k[x0, . . . , xn]d for some d (and hence for all sufficiently large d).

Proof. The zero locus of I in Pn(Ω) is empty if and only if the zero locus of I
in An+1 is either empty or equal to (0, . . . , 0). In the former case, Theorem 6.6.1
implies that I = k[x0, . . . , xn], and so Id = k[x0, . . . , xn]d for every d ≥ 0. In the
latter case, since {(0, . . . , 0)} is the zero locus of the ideal (x0, . . . , xn), it follows
from Corollary 6.7.5 that I contains some power of the ideal (x0, . . . , xn), and
elementary manipulations show that this is equivalence to showing that I contains
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k[x0, . . . , xn]d0 for some d0 ≥ 0, and hence for all d ≥ d0 (since I is an ideal). Since
I is homogeneous, this in turn is equivalent to having Id = k[x0, . . . , xn]d for all
d ≥ d0, as required. �

8.4. Zariski topology and projective closure.

8.5. The products Am × Pn. Let x1, . . . , xm be coordinates for Am, and let
x0, . . . , xn be homogeneous coordinates for Pn. We can define Zariski closed subsets
of Am(Ω)×Pn(Ω) using polynomials that are of arbitrary nature in the x variables,
and homogeneous in the y variables.

Equivalently, we may may use ideals I ⊂ k[x1, . . . , xm, y0, . . . , yn] that are ho-
mogenous with the respect to the y variables.

8.6. Elimination theory. The following result, known as the main theorem of
elimination theory, although it may seem technical, is the key result which formu-
lates the “completeness” of projective space.

8.6.1. Theorem. Suppose that the field Ω satisfies the Nullstellensatz, and let I ⊆
k[x1, . . . , xm, y0, . . . , yn] be an ideal, homogeneous in the yi. If ZI(Ω) denotes the
zero locus of I in Am(Ω)× Pn(Ω), then the image of ZI(Ω) under the projection

Am(Ω)× Pn(Ω) → Am(Ω)

is Zariski closed over k.

Proof. Let π : Am(Ω)×Pn(Ω) → Am(Ω) denote the projection onto the first factor.
To show that π

(
ZI(Ω)

)
is closed, we have to show that if (a1, . . . , am) 6∈ π

(
ZI(Ω)

)
,

then there exists a polynomial f such that f(a1, . . . , am) 6= 0, and such that if
f(b1, . . . , bm) 6= 0, then (b1, . . . , bm) 6∈ π

(
ZI(Ω)

)
.

Since (a1, . . . , am) 6∈ π
(
ZI(Ω)

)
, it follows from Proposition 8.3.3 that

ϕa1,...,am(Id) = k[y0, . . . , yn]d

for some sufficiently large value of d. Thus, if we let {fi} be a basis for k[y0, . . . , yd],
then we may find elements {gi} of Id for which ϕa1,...,am(gi) = fi, and we may
further write  g1

...
gm

 = M ·

 f1
...
fm

 ,

for some matrix M with entries in k[x1, . . . , xm]. If we set f := detM , then f
is an element of k[x1, . . . , xm], whose value at (a1, . . . , am) is non-zero (indeed,
ϕa1,...,am(M) is the identity matrix, and so f(a1, . . . , am) = 1), and with the prop-
erty that f(b1, . . . , bm) 6= 0 implies that ϕb1,...,bm(Id) = k[y0, . . . , yn]d, and hence
that b1, . . . , bm /∈ π

(
ZI(Ω)

)
. This completes the proof. �

Here is one way to phrase this result (which in fact reflects that way the we
proved it). Namely, if X ⊆ Am(Ω)×Pn(Ω) is a closed subset, and ϕ : X → Am(Ω)
denotes the natural projection (i.e. projection from Am(Ω) × Pn(Ω) onto the first
factor), then if P ∈ Am(Ω) is such that ϕ−1(P ) is empty, then there is an open
subset U ⊂ Am(Ω) such that ϕ−1(U) is empty. (Indeed, the theorem assures us
that ϕ(X) is closed, and the assumption that ϕ−1(P ) = ∅ is just another way of
saying that P 6∈ ϕ(X). Thus we can take U to be the complement of ϕ(X) in
Am(Ω).)
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We now give an application of elimination theory to prove a strengthening of
this result, with the condition of being empty replaced by that of being finite.

8.6.2. Corollary. Suppose, as in the above discussion, that we are given a closed
subset X ⊂ Am(Ω)×Pn(Ω), and let ϕ : X → Am(Ω) denote the natural projection.
If P ∈ Am(Ω) has the property that its preimage ϕ−1(P ) is finite, then we may
find an open neighbourhood U of P in Am(Ω) such that for each point Q ∈ U , its
preimage ϕ−1(Q) is finite.

Proof. We may as well assume that k = Ω, and in particular that k is infinite.
Observe that ϕ−1(P ) is equal to the intersection X ∩

(
{P}× Pn(Ω)

)
. Since this

set is finite, and since k is infinite, we may find a hyperplane H ⊂ Pn(Ω) such that
ϕ−1(P ) is disjoint from {P} ×H.

Now consider the intersection X ∩ (Am(Ω) × H). This is a closed subset of
Am(Ω) × Pn(Ω) (being the intersection of two closed subsets), and so by Theo-
rem 8.6.1 its image under ϕ is closed. By the choice of H, this image doesn’t con-
tain P , and so its complement U is an open neighbourhood of P . If Q ∈ U , then
we see that ϕ−1(Q) = X∩

(
{Q}×Pn(Ω)

)
is closed in {Q}×Pn(Ω) (being the inter-

section of the latter with the closed set X), and is contained in {Q}×
(
Pn(Ω) \H

)
.

Note that, for an appropriate choice of coordinates, Pn(Ω) \H = An(Ω), and so
we are left with following problem: to show that a closed subset of Pn(Ω), which is
contained in An(Ω), is finite. We leave this as an exercise. (Later we will prove a
more general version of this statement.) �

8.6.3. Remark. The analogues of Theorem 8.6.1 and Corollary 8.6.2, in which
Pn(Ω) is replaced by An(Ω), are false.

We already gave a counterexample to Theorem 8.6.1 for affine space in the dis-
cussion of Subsection 8.1. Here we give another, simpler one. Namely, if we consider
the projection

A2(Ω) = A1(Ω)× A1(Ω) → A1(Ω)

(projection onto the first coordinates), and let Z = {(x, y)xy = 1}, then Z is a
closed subset of A2(Ω), but its image in A1(Ω) is equal to the subset {x |x 6= 0},
which is not Zariski closed. Thus the main theorem of elimination theory doesn’t
hold when projective space is replaced by affine space.

If we consider a slight variation of this, namely the projection

A3(Ω) = A1(Ω)× A2(Ω) → A1(Ω),

and let X = {(x, y, z)xy = 1}, then, letting ϕ : X → A1(Ω) denote the projection
(as above), we see that ϕ−1(0) is empty (and hence finite), while for any x 6= 0,
we have ϕ−1(x) = {(x, 1/x, z) z ∈ Ω}, which is infinite. Thus the analogue of
Corollary 8.6.2 is also false if we replace projective space by affine space.

9. Morphisms and the category of quasi-projective algebraic sets

Already in the previous section, in the discussion of elimination theory, we found
ourselves discussing products, and certain natural maps that arise when thinking
about products (such as projections). It is convenient to introduce some categorical
language for discussing these sorts of things.
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9.1. Quasi-projective algebraic sets. So far, we have introduced three kinds
of algebraic sets: affine algebraic sets (Zariski closed subsets of An(Ω)), projective
algebraic sets (Zariski closed subsets of Pn(Ω)), and a kind of hybrid object, namely
Zariski closed subsets of Am(Ω)× Pn(Ω).

Note that An(Ω) is a Zariski open subset of Pn(Ω) (it is the complement of the
hyperplane at infinity), and so any affine algebraic set is an open subset of its
projective closure (i.e. its Zariski closure in Pn(Ω)).

We will see soon (in Subsection 10.1 below) that Am(Ω) × Pn(Ω) may also be
regarded as an open subset of a projective algebraic set.

Thus the following definition incorporates, and extends, all our previous nota-
tions of algebraic set.

9.1.1. Definition. We say that a subset X ⊂ Pn(Ω) is a quasi-projective algebraic
set over k if there is a Zariski closed subset (i.e. a projective algebraic set) over k,
say Z ⊂ Pn(Ω), such that X is a Zariski open subset of Z.

9.1.2. Remark. If S is any topological space, then we say that a subset X of S is
locally closed if there is a closed subset Z ⊂ S such at X is an open subset of Z
(when Z is given its induced topology). One easily checks that we may take Z to
be the closure of X, i.e. that X is locally closed in S if and only if it is an open
subset of its closure in S.

The preceding definition may then be rephrased as follows: the quasi-projective
algebraic sets are precisely the subsets of Pn(Ω) that are locally closed in the Zariski
topology.

9.1.3. Remark. If X is any quasi-projective variety, and P ∈ X, then we choose
coordinates so that P ∈ X ∩ An(Ω) ⊂ X. (Just choose coordinates so that the
hyperplane at infinity doesn’t contain P .) Since An(Ω) is an open subset of Pn(Ω),
we see that U := X ∩ An(Ω) is an open subset of X. Thus any point of a quasi-
projective algebraic set has an open neighbourhood which is contained in An(Ω)
(for some appropriate choice of coordinates on projective space).

We always endow a quasi-projective algebraic set with its Zariski topology, i.e.
the topology induced on it by the Zariski topology on the projective space that
contains it.

We also remark that an easy argument shows that if X is a locally closed subset
of a topological space S, and Y is a locally closed subset of X (when X is endowed
with its induced topology), then Y is a locally closed subset of S. Thus locally
closed subsets of quasi-projective varieties are again quasi-projective varieties.

9.2. Morphisms. To define a category, one must define a collection of objects, and
one must define the morphisms between them. The objects of our category will the
quasi-projective algebraic setse. In this subsection we define the morphisms, and
establish their basic properties.

9.2.1. Definition. LetX and Y be quasi-projective algebraic sets, say withX being
locally closed in Pm(Ω) and Y being locally closed in Pn(Ω). We say that a function
ϕ : X → Y is a morphism fromX to Y if it satisfies the following condition: for each
point P ∈ X, there exists an open neighbourhood U of P in X which is contained
in Am(Ω) (for some suitable choice of coordinates on Pm(Ω) — see Remark 9.1.3)
and an open neighbourhood V of ϕ(P ) in Y which is contained in An(Ω) (for some
suitable choice of coordinates on Pn(Ω) — again, see Remark 9.1.3), such that
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ϕ(U) ⊂ V , and such that the restriction ϕ|U : U → V (which is now a function
from a subset of Am(Ω) to a subset of An(Ω)) admits a formula of the form

(9.2.2) ϕ(x1, . . . , xm) =
(f1(x1, . . . , xm)
g1(x1, . . . , xm)

, . . . ,
fn(x1, . . . , xm)
gn(x1, . . . , xm)

)
,

where the fi and gi are elements of k[x1, . . . , xm], and furthermore the polynomials
gi are nowhere zero on U (so that the preceding formula makes sense as a function
from U to An(Ω)).

9.2.3. Remark. In the context of the preceding definition, we have to choose co-
ordinates on Pm(Ω) and Pn(Ω), and open neighbourhoods U of P and V of ϕ(P ),
such that ϕ(U) ⊂ V and such that U ⊂ Am(Ω) and V ⊂ An(Ω). The condition for
ϕ to be a morphism is then expressed in terms of the coordinates on Am(Ω) and
An(Ω); namely, ϕ|U has to be expressible in terms of rational functions in these
coordinates whose denominators are nowhere zero on U .

Now, if U and V have been chosen, it might be that there is another choice of
coordinates on Pm(Ω), or on Pn(Ω), so that U also lies in Am(Ω), or V also lies in
An(Ω), with respect to these new coordinates. Our goal in this remark is to observe
that if we change coordinates in this way in either the source or target of ϕ, then
it is still given by a formula of the form (9.2.2).

We begin by supposing that the open set U lies in more than one copy of affine
space; i.e. that there is more than one hyperplane that is disjoint from U . Suppose
that H is the hyperplane at infinity, so that U ⊂ Am(Ω) = Pm(Ω)\H. Suppose now
that H ′ is another hyperplane (defined over k) disjoint from U , so that Pm(Ω) \H ′

is another copy of Am(Ω) containing U .
We may choose coordinates x1, . . . , xm for (the first copy of) Am(Ω) so that

H ′ ∩ Am(Ω) is cut out by x1 = 0. Then y1 = 1/x1, y2 = x2/x1, . . . , ym = xm/x1

will be (the restriction to Pm \ (H ∪H ′) of) affine coordinates on Pm(Ω) \H ′.
Now suppose that

ϕ(x1, . . . , xm) =
(f1(x1, . . . , xm)
g1(x1, . . . , xm)

, . . . ,
fn(x1, . . . , xm)
gn(x1, . . . , xm)

)
is a formula for ϕ|U in terms of the coordiantes x1, . . . , xm. (Note that the con-
dition of being expressible in this manner is invariant under affine linear changes
of coordinates on the source, so ϕ|U is indeed expressible in this manner.) Then
substituting x1 = 1/y1, x2 = y2/y1, . . . , xm = ym/y1, we find the formula

ϕ(y1, . . . , ym) =
(f1(1/y1, y2/y1, . . . , ym/y1)
g1(1/y1, y2/y1, . . . , ym/y1)

, . . . ,
fn(1/y1, y2/y1, . . . , ym/y1)
gn(1/y1, y2/y1, . . . , ym/y1)

)
for ϕ|U in terms of the coordinates y1, . . . , ym. Since y1 is nowhere vanishing on U ,
we see that we may rewrite this formula as

ϕ(y1, . . . , ym) =
(f ′1(y1, . . . , ym)
g′1(y1, . . . , ym)

, . . . ,
f ′n(y1, . . . , ym)
g′n(y1, . . . , ym)

)
,

where f ′i , g
′
i ∈ k[y1, . . . , ym], and the g′i are nowhere vanishing on U .

The conclusion of this analysis is that if ϕ : X → Y is a morphism, and U is an
open subset of X, contained in Am(Ω), on which ϕ is given by a formula involving
rational functions in the coordinates on Am(Ω) as in Definition 9.2.1, then if we can
embed U into any other copy of Am(Ω) contained in Pm(Ω) (by choosing a different
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hyperplane at infinity) then ϕ|U will be equally well given by a formula involving
rational functions of these new coordinates.

A similar analysis applies if the neighbourhood V of ϕ(P ) is contained in two
different copies of affine space inside Pn(Ω) (given by making two different choices
of the hyperplane at infinity). Certainly, if we compose a formula of the form (9.2.2)
with an affine linear change of coordinates on the target, we obtain another formula
of the same form (whose denominators are again nowhere vanishing on U). Now,
after making such a linear change of coordinates, we may assume that the affine
coordinates, say u1, . . . , un, in the first copy of An(Ω) are related to the affine
coordinates in the second copy, say v1, . . . , vn, via the formula

v1 = 1/u1, v2 = u2/u1, . . . , vn = un/u1.

Then in the new coordinates, ϕ will be given by the formula

ϕ(x1, . . . , xm)

=
(g1(x1, . . . , xm)
f1(x1, . . . , xm)

,
f2(x1, . . . , xm)g1(x1, . . . , xm)
f1(x1, . . . , xm)g2(x1, . . . , xm)

,

. . . ,
fn(x1, . . . , xm)g1(x1, . . . , xm)
f1(x1, . . . , xm)gn(x1, . . . , xm)

)
.

Our assumption that V is not contained in the hyperplane u1 = 0, together with
the assumption that ϕ(U) ⊂ V , ensures that f1 is nowhere vanishing on U . Thus
this is again an expression for ϕ in terms of rational functions whose denominators
are nowhere vanishing on U .

The preceding remark will be useful in proving part (2) of our next result, which
records some basic properties of morphisms.

9.2.4. Proposition. (1) If ϕ : X → Y is a morphism of quasi-projective vari-
eties, then ϕ is continuous.

(2) If ϕ : X → Y and ψ : Y → Z are morphisms of quasi-projective varieties,
then the composite ψϕ : X → Z is again a morphism of quasi-projective
varieties.

Proof. �

The following result follows essentially by definition. It expresses the fact that
being a morphism is a local property.

9.2.5. Lemma. If ϕ : X → Y is a function between quasi-projective algebraic sets,
and each point P ∈ X has an open neighbourhood U such that ϕ|U is a morphism,
then ϕ itself is a morphism.

To motivate our next lemma, recall first the following easy fact from topology:
if S and T are topological spaces, and T ′ is a subset of T endowed with the induced
topology, and ϕ : S → T ′ is a function, then ϕ is continuous if and only if the
composite ιϕ is continuous, where ι : T ′ ↪→ T is the inclusion. Less formally, the
function ϕ is continuous as a map to T ′ if and only if it is continuous when regarded
as a map to T . (This is immediately verified just from the definition of the induced
topology.)

In general, an arbitrary subset of a quasi-projective algebraic set is not a quasi-
projective algebraic set, and we won’t be able to prove a perfect analogue of the
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preceding result. However, we have observed that a locally closed subset of a quasi-
projective algebraic set is again a quasi-algebraic set, and the following result then
gives an analogue of the preceding topological result in the context of such locally
closed subsets.

9.2.6. Lemma. Let X be a quasi-projective algebraic set, let Y be a locally closed
subset of X (so that Y is also a quasi-projective algebraic set), and let ι : Y → X
denote the inclusion.

(1) ι is a morphism.
(2) If Z is any quasi-projective algebraic set and ϕ : Z → Y is a function, then

ϕ is a morphism if and only if the composite ιϕ : Z → X is a morphism.

Proof. Claim (1) is immediate, since if P is any point of Y , and U is any neighbour-
hood of P contained in an affine space of Pn(Ω) (this being the projetive space con-
taining X and Y ), then ι is given on U by the formula ι(x1, . . . , xn) = (x1, . . . , xn).

If ϕ : Z → Y is a morphism, we then see that ιϕ is a composite of morphisms,
hence is a morphism by the preceding lemma, and so one direction of claim (2)
is also proved. Finally, suppose that ϕ : Z → Y is a function for which the
composite ιϕ is a morphism. Then, by definition, for any point P ∈ Z there are
open neighbourhoods U of P and V of ιϕ(P ) = ϕ(P ) in Z and X, each which is
contained in an affine space, so that ιϕ(P ) is given by a formula

ιϕ(x1, . . . , xm) =
(f1(x1, . . . , xm)
g1(x1, . . . , xm)

, . . . ,
fn(x1, . . . , xm)
gn(x1, . . . , xn)

)
,

as in Definition 9.2.1.
But if we now define V ′ = V ∩Y , then V ′ is a neighbourhood of P in Y which is

contained in an affine space, and ϕ is of course given by exactly the same formula
as ιϕ. Thus ϕ is itself a morphism. �

10. Products of algebraic sets

There is an obvious identification Am(Ω)× An(Ω) ∼−→ Am+n(Ω), and it is clear
that via this identification, the product of two affine algebraic sets becomes iden-
tified with an affine algeraic set in Am+n(Ω). For more general quasi-projective
algebraic sets, it is less obvious how to regard their product as an algebraic set.

In Subsection 8.5 we considered the products Am(Ω) × Pn(Ω), and described
how to cut out algebraic subsets of these products: namely, via polynomials (or
ideasl) that were arbitrary in the coordinates on Am, but homogeneous in the
coordinates on Pn. It is easy to see, then, that the product of an affine algebraic
set and a projective algebraic set forms an algebraic set in Am(Ω)×Pn(Ω) (for the
appropriate choice of m and n).

We could use the same idea to cut out algebraic subsets of Pm(Ω)×Pn(Ω), namely
via polynomials (or ideals) that are bihomogeneous in the two sets of homogeneous
coordinates. A product of two projective algebraic sets could then be regarded as
an algebraic set in Pm(Ω)×Pn(Ω) (again, for the appropriate choices of m and n).

However, this is not a very convenient way to think about products, for example
because it means that we leave the worlds of quasi-projective algebraic sets; to get
a complete theory that allowed us to form arbitrary products we would have to
consider locally subsets of Pm(Ω) × Pn(Ω), and then (to form products of those
with quasi-projective algebraic sets) Pm(Ω)× Pn(Ω)× Pp(Ω), and so on.
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To avoid having to work with this proliferation of products of projective spaces,
it is convenient to once and for all identify the product Pm(Ω) × Pn(Ω) with a
projective algebraic set in Pmn+n+n(Ω), via the so-called Segre embedding. We
discuss this next.

10.1. Products of projective spaces and the Segre embedding.

10.1.1. Definition. Let x0, . . . , xm denote homogeneous coordinates on Pm, and
let y0, . . . , yn denote homogeneous coordinates on Pn. The Segre embedding

Pm(Ω)× Pn(Ω) ↪→ Pmn+m+n(Ω)

is defined via(
[x0 : . . . : xm], [y0 : y1 : . . . : yn]

)
7→ [x0y0 : x0y1 : . . . : x0yn : x1y0 : . . . : x1yn : . . . : xmy0 : . . . : xmyn].

10.1.2. Remark. A little more abstractly (and a little more canonically), if V is
an m+ 1-dimensional vector space, with associated projective space P(V ), and W
is an n+ 1-dimensional vector space, with associated projective space P(W ), then
the Segre embedding is the morphism

P(V )× P(W ) → P(V ⊗W )

associated to the universal bilinear map

V ×W → V ⊗W.

The following lemma records the basic properties of the Segre embedding.

10.1.3. Lemma. The Segre embedding is well-defined and injective (jusitfying its de-
scription as an embedding), and its image is a Zariski closed subset of Pmn+m+n(Ω).

Proof. We consider just the case m = n = 1, leaving the general case as an exercise.
Suppose that ([x0 : x1], [y0 : y1]) is a point of P1(Ω). Then at least one of

x0, x1 and at least one of y0, y1 is non-zero. and we may as well assume (after
relabelling if necessary) that x0 and y0 are non-zero. The product x0y0 is then
non-zero, and hence [x0y0 : x0y1 : x1y0 : x1y1] is a well-defined point of P3(Ω).
Note that if we multiply either (x0, x1) or (y0, y1) by a non-zero scalar, then all
the products xiyj are multiplied by this same non-zero scalar, so that the point
[x0y0 : x0y1 : x1y0 : x1y1] only depends on the points [x0 : x1] and [y0 : y1] of
P1(Ω), and the Segre embedding is well-defined.

Suppose now that
(
[x0 : x1], [y0 : y1]

)
and

(
[x′0 : x′1], [y

′
0 : y′1]

)
are two points in

P1(Ω) × P1(Ω) with the same image in P3(Ω). Then, again, at least one of x0, x1

and at least one of y0, y1 is non-zero. and as before we may as well assume (after
relabelling if necessary) that x0 and y0 are non-zero.

By assumption the points [x0y0 : x0y1 : x1y0 : x1y1] and [x′0y
′
0 : x′0y

′
1 : x′1y

′
0 :

x′1y
′
1] coincide, meaning that there is a non-zero scalar λ ∈ Ω such that

(10.1.4) (x′0y
′
0, x

′
0y
′
1, x

′
1y
′
0, x

′
1y
′
1) = λ(x0y0, x0y1, x1y0, x1y1).

In particular, we see that x′0y
′
0 = λx0y0 is non-zero, so that both x′0 and y′0 are also

non-zero. Then, we find that

x′1/x
′
0 = x′1y

′
1/x

′
0y
′
1 = x1y1/x0y1 = x1/x0,
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and hence [x0 : x1] and [x′0 : x′1] are the same point of P1(Ω). A similar calculation
shows that [y0 : y1] and [y′0 : y′1] are the same point of P1(Ω). Thus the Segre
embedding is injective, as claimed.

(Another way to phrase this last computation, which makes it even more trans-
parent — and which can help when extending it to the general case — is to note
that since x0, y0, x′0, and y′0 are all non-zero, we may as well assume — by rescaling
— that they are all equal to 1, so that our points have the form ([1 : x1], [1 : y1])
and ([1 : x′1], [1 : y′1]). In this case the equation (10.1.4) simplifies to

(1, x′1, y
′
1, x

′
1y
′
1) = λ(1, x1, y1, x1y1).

Obviously, then, we must have λ = 1, yielding x′1 = x1, y
′
1 = y1, as required.)

Let x, y, z, w denote the homogeneous coordinates on P3(Ω). Then one immedi-
ately verifies that the image of the Segre embedding is contained in the zero locus
of xw − yz. Conversely, suppose that [x : y : z : w] ∈ P3(Ω) satisfies xw = yz; we
will show that this point lies in the image of the Segre embedding. At least one of
x, y, z, or w is non-zero; an obvious consideration of the symmetry of the situation
shows that it suffices to treat the case where x 6= 0. Then one checks that(

[x : z], [x : y]
)
7→ [x2 : xy : xz : yz] = [x2 : xy : xz : xw] = [x : y : z : w]

(the second-to-last equality using our assumption that xw = yz, and the final
equality applying a rescaling of the homogeneous coordinates by x−1) under the
Segre embedding. Thus the image of the Segre embedding precisely the zero locus
of xw − yz, and so we’ve proved that the image of the Segre embedding is Zariski
closed, as required. �

Our next lemma confirms that we have achieved our goal, namely that we can
take products of quasi-projective algebraic sets without leaving the category of
quasi-projective algebraic sets.

10.1.5. Lemma. If X and Y are (quasi-)projective algbraic sets, say contained as
(locally) closed subsets in Pm(Ω) and Pn(Ω), then the image of X × Y under the
Segre embedding Pm(Ω) × Pn(Ω) ↪→ Pmn+m+n(Ω) is a (locally) closed subset of
Pmn+m+n(Ω).

Proof. We first reduce the quasi-projective case to the projective case. If X is
locally closed, and we let Z denote its closure, than the complement W of X in Z
is closed, and so X = Z \W is expressed as a difference of closed subsets of Pm(Ω).
Similarly, we may write Y = S \ T as the difference of closed subsets of Pn(Ω).
The product X × Y is then equal to the difference Z × S \ (Z × T ∪W × S). If we
have proved that the product of closed sets maps to a closed set under the Segre
embedding, then we see that this does indeed express X×Y as a difference of closed
sets, and hence that X × Y has locally closed image under the Segre embedding.

Since X×Y =
(
X×Pn(Ω)

)
∩

(
Pm(Ω)×Y

)
, we further reduce to the case where

one of X or Y is all of projective space. It obviously suffices to consider the case
when Y = Pn(Ω), since the other case will be handled identically. Now we may write
X = ZI(Ω) for some homogeneous ideal I. Since then X = ∩F∈IZ(F )(Ω), where
F runs over all the homogeneous ideals in I, and since a product of intersections
is equal to the intersection of the products, we reduce to the case where X is the
zero locus of a single homogeneous polynomial F (x0, . . . , xm).

As before, we now restrict to the case m = n = 1 (basically so as to simplifty
the indices), leaving the general case as an exercise. As in the proof of the previous
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lemma, let x, y, z, w denote the homogeneous coordinates on P3(Ω), so that the
Segre embedding is defined by

x = x0y0, y = x0y1, z = x1y0, w = x1y1.

Let d denote the degree of F . Then we can find homogeneous polynomials of
degree d, say F0(x, z) and F1(y, w), so that F0(x0y0, x1y0) = yd

0F (x0, x1), and
F1(x0y1, x1y1) = yd

1F (x0, x1). Since at least one of y0 and y1 is non-zero at any
point of P1(Ω), we then see that the image of X × P1(Ω) is equal to the inter-
section of the image of P1(Ω) × P1(Ω) with zero locus of the homogeneous ideal(
F0(x, z), F1(y, w)

)
; in particular, it is Zariski closed. �

The following definition records the key application of the Segre embedding that
is provided by the preceding lemma.

10.1.6. Definition. If X and Y are two quasi-projective algebraic sets, then we
regard X×Y as a quasi-projective algebraic set by identifying with its image under
the Segre embedding.

The next result follows directly from what we have proved, but it is important,
and so is worth recording.

10.1.7. Lemma. If X and Y are quasi-projective algebraic sets.
(1) If Z and W are closed subsets of X and Y respectively, then Z ×W is a

closed subset of X × Y .
(2) If U and V are open subsets of X and Y respectively, then U × V is an

open subset of X × Y .

Proof. Suppose that X is locally closed in Pm(Ω), and that Y is locally closed in
Pn(Ω). We may write Z = X ∩Z ′ for some closed subset Z ′ of Pm(Ω) (by definition
of the induced topology), and may similarly write W = Y ∩W ′ for some closed
subset W ′ of Pn(Ω).

Then Z×W = (X×Y )∩ (Z ′×W ′). Lemma 10.1.5 shows that Z ′×W ′ is closed
in Pmn+m+n, and thus that Z ×W is closed in X × Y .

Note that claim (2) follows formally from claim (1), since

U × V = X × Y \
(
X × (Y \ V ) ∪ (X \ V )× Y

)
.

�

One way to state the preceding result is that the Zariski topology on X × Y is
stronger than the product topology. (Note that typically it is genuinely stronger
than the product topology; indeed it will be so unless one of X or Y is a finite set.)

10.2. Products of affine spaces. We now have two ways to think about a product
of affine spaces Am(Ω) × An(Ω) as a quasi-projective variety: there is the obvious
identification Am(Ω) × An(Ω) ∼−→ Am+n(Ω), and there is the quasi-projective al-
gebraic set struture it obtains via our general construction in terms of the Segre
embedding. The next lemma shows that these coincide.

10.2.1. Lemma. The natural identification Am(Ω) × An(Ω) ∼−→ Am+n(Ω) is an
isomorphism of quasi-projective varieties, if we endow the source with its quasi-
projective algebraic set structure via Definition 10.1.6 and we endow the target with
its natural affine algebraic set structure.
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Proof. This is just a matter of showing that this identification, and its inverse, are
both morphisms. As usual, we treat the case m = n = 1 here, leaving the general
case an an exercise.

We use the coordiantes [x0 : x1] and [y0 : y1] on our two copies of P1(Ω), and
corresponding affine coordinates x1/x0 and y1/y0 on our two copies of A1(Ω). We
use the coordinates x, y, z, w on P3(Ω), and we recall that the Segre embedding is
given by

x = x0y0, y = x0y1, z = x1y0, w = x1y1.

The image of A1(Ω) × A1(Ω) lies in the copy of A3(Ω) ⊂ P3(Ω) given by x 6= 0,
whose affine coordinates are y/x, z/x,w/x.

In terms of these coordiantes, the map A1(Ω)× A1(Ω) → A2(Ω) is given by the
formula

(
y

x
,
z

x
,
w

x
) 7→ (

z

x
,
y

x
),

and its inverse is given by

(
x1

x0
,
y1
y0

) 7→ (
y1
y0
,
x1

x0
,
x1

x0

y1
y0

).

These are polynomial formulas in the various affine coordiantes, and so are indeed
morphisms. �

10.3. Products of algebraic sets as categorical products. If X and Y are
quasi-projective algebraic sets, then we have seen that X × Y is again a quasi-
projective algebraic set. Our goal in this subsection is to show that X × Y is equal
to the categorical product of X and Y .

We begin with the following lemma, showing that the projections from a product
to its factors are morphisms.

10.3.1. Lemma. If X and Y are quasi-projective algebraic sets (so that X × Y is
also a quasi-projective algebraic set), then the projection morphisms X × Y → X
and X × Y → Y (defined by (P,Q) 7→ P and (P,Q) 7→ Q) are morphisms

Proof. Obviously it suffices to prove the lemma for the projection onto X; the case
of the projection onto Y will proceed in a completely analogous manner.

Suppose that X is locally closed in Pm(Ω) and that Y is locally closed in Pn(Ω),
so that X × Y is locally closed in Pm(Ω)× Pn(Ω). Then applying Lemma 9.2.6 to
these various locally closed embeddings, we see that it suffices to prove the lemma
in the particular case when X = Pm(Ω) and Y = Pn(Ω).

Let (P,Q) be a point of Pm(Ω) × Pn(Ω). Choosing coordinates appropriately,
we may assume that (P,Q) ∈ Am(Ω) × An(Ω). Lemma 10.2.1 then allows us to
identify Am(Ω)×An(Ω) with Am+n(Ω), and it suffices to show that the projection
Am+n(Ω) → Am(Ω) given by mapping to the first m coordinates is a morphism.
But this is obvious. �

The following lemma now shows that the product of quasi-projective varieties,
as we have defined it, serves as a categorical product.

10.3.2. Lemma. Let X,Y, and Z be quasi-projective algebraic sets, and let ϕ : Z →
X and ψ : Z → Y be functions. Then ϕ and ψ are morphisms if and only if their
product (ϕ,ψ) : Z → X × Y, defined by P 7→ (ϕ(P ), ψ(P )), is a morphism.
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Proof. If (ϕ,ψ) is a morphism, then so are of ϕ and ψ, since these are obtained by
composing (ϕ,ψ) with the projections ontoX and Y respectively, and Lemma 10.3.1
shows that each of these projections is a morphism (and the composite of morphisms
is a morphism).

Conversely, suppose that each of ϕ and ψ is a morphism. Suppose that X
is locally closed in Pm(Ω) and Y is locally closed in Pn(Ω). Let PN (Ω) be the
projective space containing Z. Let P be a point of Z, and consider ϕ(P ). Since
ϕ is a morphism, we may find a neighbourhood of U of P , contained in a copy of
AN (Ω) contained in PN (Ω), and a neighbourhood V of ϕ(P ), contained in a copy of
Am(Ω) inside Pn(Ω), so that ϕ|U is given by a formula involving rational functions
in the coordinates u1, . . . , uN on AN (Ω). We may find neighbourhoods U ′ of P and
V ′ of ψ(P ) satisfying the analogous condition for ψ.

Now replacing U and U ′ by U∩U ′, and taking into account Remark 9.2.3, we may
assume that U = U ′, both contained in AN (Ω). We will show that (ϕ|U , ψ|U ) : U →
X×Y is a morphism. It will follow by Lemma 9.2.5 that (ϕ,ψ) itself is a morphism.
Now ϕ|U factors through V and ψ|U factors through V ′, and V ×V ′ is open in X×Y
and locally closed in Am(Ω) × An(Ω) (by Lemma 10.1.7). Thus by Lemma 9.2.6,
it suffices to prove that the function U → Am(Ω) × An(Ω) induced by (ϕ|U , ψ|U )
is a morphism. By Lemma 10.2.1, it in fact suffices to show that this function is
a morphism, when regarded as taking values in Am+n(Ω). But since each of ϕ|U
and ψ|U is given by a formula in terms of rational functions whose denominators
are nowhere vanishing on U , the same is true of this map U → Am+n(Ω), and thus
it is also a morphism, as required. �

As one consequence of the preceding results, we can show that a product of
morphisms is a morphism. (This is just a specialization to our particular context
of a general argument about categorical products.)

10.3.3. Lemma. Suppose that X,Y, Z, and W are algebraic sets, and that ϕ : X →
Y and ψ : Z →W are morphisms. Then the product map ϕ×ψ : X ×Z → Y ×W
is a morphism.

Proof. To check this, it suffices, by the preceding lemma, to check that each of the
momorphisms X × Z → Y (given by projecting to X, and then applying ϕ) and
X × Z → W (given by projecting to Z, and then applying ψ) is a morphism. But
Lemma 10.3.1 shows that each of these maps is a composite of morphisms, and
hence is indeed a morphism. �

10.4. Diagonals and graphs. Let ϕ : X → Y be a morphism of quasi-projective
algebraic sets. Applying Lemma 10.3.2 to the pair of morphisms consisting of
idX : X → X and ϕ : X → Y, we obtain a morphism X → X × Y given by
P 7→

(
P,ϕ(P )

)
. For obvious reasons, we refer to this morphism as the graph of ϕ,

and denote it by Γϕ.
A special case is given by taking ϕ = idX as well. In this case, we write ∆X :

X → X ×X rather than ΓidX
, since this is simply the diagonal map P 7→ (P, P ).

10.4.1. Lemma. If ϕ : X → Y is a morphism, then Γϕ : X → X × Y has closed
image, and induces an isomorphism from X to its image.

Proof. Lemma 10.3.1 shows that X → X × Y is a morphism, and obviously, when
restricted to the image Γf (X), it provides an inverse to Γf . Thus all that remains
to show is that Γf (X) is closed.
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Morally, this is true because

Γf (X) = {(P,Q) ∈ X × Y |ϕ(P ) = Q},
and since ϕ is a morphism, this equation cuts out a Zariski closed set. However,
writing this out directly is slightly messy, and we can argue in a slightly less direct
way.

Namely, observe that Γf (X) is the preimage under the morphism ϕ × idY of
∆Y (Y ) ⊂ Y ×Y. Since ϕ×idY is a morphism (by Lemma 10.3.3) is it continuous for
the Zariski topologies on its source and target, and so it suffices to show that ∆Y (Y )
is a closed subset of Y ×Y . If Y is locally closed in Pn(Ω), then ∆Y (Y ) = ∆Pn(Ω)∩
(Y ×Y ), and so it suffices to show that ∆Pn(Ω)

(
Pn(Ω)

)
is closed in Pn(Ω)×Pn(Ω).

We check this in the case n = 1, leaving the case of general n as an exercise. In
this case, we recall that P1(Ω)× P1(Ω) is identified with the zero locus of xw − yz
in P3(Ω) via the embedding

x = x0y0, y = x0y1, z = x1y0, w = x1y1,

We then see that ∆P1(Ω)

(
P1(Ω)

)
is cut out by the additional equation y = z; in

particular, it is Zariski closed. �

By construction, we may factor any morphism ϕ : X → Y through its graph: ϕ
is given as the composite

X
Γϕ

↪→ X × Y → Y.

This is is often useful, since it factors the arbitrary morphism ϕ as the composite
of a closed embedding and a projection.

10.5. Elimination theory, revisited. There is one more important detail that
we have to check with regard to the Segre embedding. Namely, we may restrict
the Segre embedding to Am(Ω) × Pn(Ω), and we now have two ways to impose
a Zariski topology on this product: using the approach of Subsection 8.5 above,
or by regarding it as a subset of Pmn+m+n(Ω) via the (restriction of) the Segre
embedding.

10.5.1. Lemma. The restriction of the Segre embedding to Am(Ω)× Pn(Ω) embeds
it as a locally closed subset of Pmn+m+n(Ω), and the Zariski topology defined on
Am(Ω)× Pn(Ω) in Subsection 8.5 coincides with the Zariski topology induced on it
by regarding it as a locally closed subset of Pmn+m+n(Ω) via the Segre embedding.

Proof. Again, we treat just the case m = n = 1, leaving the general case as an
exercise. We may identify A1(Ω) × P1(Ω) as the subset of points of the form(
[x0 : x1], [y0 : y1])

)
in P1(Ω) for which x0 6= 0.

Since A1(Ω)× P1(Ω) is a product of quasi-projective varieties, the first claim of
the lemma is a special case of the Lemma 10.1.5. However, it won’t hurt to prove
this special case explicitly. As in the proof of Lemma 10.1.3, let x, y, z, w be the
homogeneous coordiantes on P3(Ω). The Segre embedding is defined by

x = x0y0, y = x0y1, z = x1y0, w = x1y1.

Since x0 6= 0, and at least one of y0 or y1 is non-zero, we see that the image of
A1(Ω)×P1(Ω) coincides precisely with the complement in the zero locus of xw−yz
(which we recall from the proof of Lemma 10.1.3 coincides with the image of the
Segre embedding on P1(Ω) × P1(Ω)) of the zero locus of the homogeneous ideal
(x, y). Thus this image is locally closed in P3(Ω), as claimed.
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If we write t = x1/x0, so that t is a coordinate on A1(Ω), then we see that
for any homogeneous polynomial F (x, y, z, w), the intersection of the zero locus of
F with the image of A1(Ω) × P1(Ω) is equal to the zero locus of the polynomial
F (y0, y1, ty0, ty1), which is then homogeneous in the y variables. This shows that
the preimage, under the Segre embedding, of any Zariski closed subset of P3(Ω) is
a Zariski closed subset of A1(Ω)× P1(Ω), in the sense of Subsection 8.5.

Conversely, suppose that f(t, y0, y1) is a polynomial that is homogeneous in the
y variables. We wish to show that the image of its zero locus in A1(Ω) × P1(Ω)
under the Segre embedding is the intersection of the image of A1(Ω)× P1(Ω) with
a Zariski closed subset of P3(Ω).

Let d denote the degree of f(t, y0, y1) with respect to t (i.e. the largest power
of t appearing in f), and define f0(t, y0, y1) = yd

0f0(t, y0, y1) and f1(t, y0, y1) =
yd
1f(t, y0, y1). Note that since at any point of P1(Ω) at least one of y0 or y1 is non-

zero, the zero locus of f in A1(Ω)×P1(Ω) coincides with the common zero locus of
f0 and f1. Note also that we may then find homogeneous polynomials F0(x, y, z)
and F1(x, y, w) such that f0 = F0(y0, y1, y0t) and f1 = F1(y0, y1, y1t). Thus we see
that the image of the zero locus of f in A1(Ω)× P1(Ω) under the Segre embedding
is equal to the intersection of the image of A1(Ω) × P1(Ω) with the zero locus of
the ideal (F0, F1). This completes the proof of the lemma. �

With the previous lemma in hand, we are now able to extend Theomem 8.6.1
(the main theorem of elimination theory) in the following manner.

10.5.2. Theorem. Suppose that Ω satisfies the Nullstellensatz. If X is any quasi-
projective algebraic set, and Y is any projective algebraic set, then the projection
morphism X × Y → X is a closed map.

Proof. If we choose n so that Y is a closed subset of Pn(Ω), then X ×Y is a closed
subset of X×Pn(Ω) (by Lemma 10.1.7), and so it suffices to consider the case when
Y = Pn(Ω).

A simple topological argument shows that it suffices to find a cover of X by open
sets U such that the projection U × Pn → U is closed. (This uses the fact that the
sets U × Pn then provide an open cover of X × Pn, by Lemma 10.1.7.)

As already noted in Remark 9.1.3, if X is locally closed in Pm(Ω), then each
point P ∈ X has an open neighbourhood U contained in a copy of Am(Ω) inside
Pm(Ω).

Now the morphism Am(Ω) → Pn(Ω) → Am(Ω) is closed, by Theorem 8.6.1 (and
here we apply Lemma 10.5.1 to see that there is no ambiguity in the topology on
Am(Ω)× Pn(Ω) for which this holds), and hence its restriction U × Pn(Ω) → U is
closed as well. This proves the theorem. �

We have the following important corollary.

10.5.3. Corollary. Suppose that Ω satisfies the Nullstellensatz. If X is a projective
algebraic set, then any morphism ϕ : X → Y to a quasi-projective algebraic set is
closed.

Proof. We factor ϕ as

X
Γϕ

↪→ X × Y → Y.

The first morphism is a closed embedding, and the second morphism is closed, by
the preceding theorem. Thus the composite of these two morphisms, which is to
say ϕ, is closed. �
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11. The Nullstellensatz

11.1. The Nullstellensatz for algebraically closed fields. Let k be an alge-
braic closure of k.

11.1.1. Theorem. If I ⊆ k[x1, . . . , xn] is an ideal, and if ZI(Ω) 6= ∅ for some field
extension Ω of k, then ZI(k) 6= ∅.

Proof. Evidently, replacing I by the ideal it generates in k[x1, . . . , xn], we may sup-
pose that k = k. Also, replacing Ω by a universal domain which contains it, we may
assume that Ω is a universal domain, and hence satisfies the Nullstellensatz. (This
will allow us to apply the main theorem of elimination theory, and its corollaries.)

We proceed by induction on n, the result being clear if n = 0. If I is zero,
then there is nothing to prove. Thus we may assume that I 6= 0, and hence that
ZI(Ω) 6= An(Ω). Write Z := ZI(Ω), and consider the projective closure Z of Z
in Pn. Since Z 6= An(Ω), we have that Z does not contain the entire hyperplane
H at infinity, and thus by Lemma 6.3.3 we may find a k-valued point P of H (the
hyperplane at infinity) that does not lie in Z.

Let H ′ be a hyperplane in Pn(Ω) defined over k which does not contain P .
Consider the “projection from a point” Pn(Ω) \ {P} → H ′. This is a morphism
(check!), and so its restriction to Z is a morphism.

Corollary 10.5.3 implies that the image of Z in H ′ (which is a copy of Pn−1(Ω))
is closed. Since P lies in the hyperplane at infinity, a point in the image of Z lies
at infinity if and only if it is the image of a point at infinity in Z if and only if its
entire preimage in Z lies at infinity. Thus the image of Z under projection from
P consists precisely of those points in the image of Z which do not lie at infinity;
thus this image is a closed subspace of H ′ \H (which is a copy of An−1(Ω)). It is
non-empty, since Z is, and hence by induction we may assume that it contains a
k-valued point Q.

Now consider the line ` joining P and Q. This line is defined over k (since it joins
two points with coordinates in k), and its intersection with Z is a Zariski closed
subset. It is non-empty (since Q is in the image of Z under the projection from P
to H ′). Now a Zariksi closed subset of a line over k consists of either the entire line
(in fact, this is not the case in our situation, since P 6∈ Z) or of a finite number of
points defined over k (since it is obtained by solving a polynomial in one variable
with coefficients in k, and k is algebraically closed). Thus ` ∩ Z contains a point
defined over k. Since Q does not lie on H, neither does this point, and so in fact
we have constructed a point of Z defined over k, as required. �

11.1.2. Corollary. If I ⊆ k[x1, . . . , xn] is an ideal, then ZI(k) = ∅ if and only if
I = k[x1, . . . , xn].

Proof. Since k can be embedded into a universal domain Ω, this follows immediately
from Theorems 6.6.1 and 11.1.1. �

11.1.3. Corollary. A field satisfies the Nullstellensatz (in the sense of Subsec-
tion 6.7) if and only if it is algebraically closed.

Proof. The preceding corollary precisely shows that algebraically closed fields sat-
isfy the Nullstellensatz. Conversely, if a field satisfies the Nullstellensatz, then any
non-constant element of k[x] must have a zero in k, and thus k must be algebraically
closed. �
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Thus all our results on fields that satisfy the Nullstellensatz apply to arbitrary
algebraically closed fields.

12. Regular functions on affine algebraic sets

12.1. Affine neighbourhoods. As we noted in Remark 9.1.3, if X is a quasi-
projective algebraic set, contained in Pn(Ω), then each point P ∈ X has an open
neighbourhood U which is contained in An(Ω) (for an appropriate choice of coor-
dinates on Pn(Ω)).

In this section we record a much more precise result, which is a consequence of
the Rabinowitz trick, and is extremely useful in many situations.

12.1.1. Proposition. If X is a quasi-projective algebraic set, then each point of X
has a neighbourhood basis consisting of open subsets that are isomorphic to affine
algebraic sets.

Proof. Let P ∈ X ⊂ Pn(Ω), and (as in Remark 9.1.3) choose coordinates on Pn(Ω)
so that P ∈ An(Ω). Replacing X by U := X∩An(Ω) (which is an open subset of X
containing P ), we may assume that X is in fact locally closed in An(Ω). We may
thus write X = Z \W , for some closed subsets Z and W of An(Ω) (with P ∈ Z
and P 6∈W ).

Now any open neighbourhood V of P is (by definition of the induced topology)
of the form X \ Y , for some closed subset Y of An(Ω). We may thus write V =
Z\(W∪Y ). Now the closed setW∪Y is the zero locus of some ideal I ∈ k[x1, . . . , xn]
(where the xi are coordinates on An(Ω)). Since P ∈ V , there is some element f ∈ I
such that f(P ) 6= 0, and so if we let T denote the zero locus of f , then P 6∈ T , while
T ⊃W ∪ Y , and so Z \ T is an open neighbourhood of P in X which is contained
in V .

The Rabinowitz trick shows that An(Ω) \ T is isomorphic to a closed subset of
An+1(Ω), and so Z \ T , which is a closed subset of An(Ω) \ T , is also isomorphic to
a closed subset of An+1(Ω). Thus we have shown that V , which was an arbitrary
neighbourhood of P , contains an open neighbourhood of P which is isomorphic to
an affine algebraic set. �

12.1.2. Remark. We will frequently engage in a common abuse of language, and
say that a quasi-projective algebraic set is affine provided that it is isomorphic to
an affine algebraic set. Admitting this abuse of language, the preceding theorem is
usually stated in the form “each point of a quasi-projective algebraic set admits a
basis of open affine neighbourhoods”.

12.2. Rings of regular functions, and an equivalence of categories.

12.2.1. Definition. If X is an affine algebraic set, then we let k[X] denote the set
of morphisms from X to A1. The set k[X] is naturally a k-algebra under pointwise
addition and multiplication, and we refer to it as the ring of regular functions on
X, or sometimes as the affine ring of X.

12.2.2. Theorem. If X = ZI(Ω) ⊂ An(Ω), for an ideal I ⊂ k[x1, . . . , xn], then
there is a natural isomorphism k[x1, . . . , xn]/rad(I) ∼−→ k[X].

12.2.3. Theorem. The passage from X to k[X] induces an anti-equivalence of
categories between the category of affine algebraic sets and the category of reduced,
finitely generated k-algebras.
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13. Proper, projective, and finite morphisms, and Chevalley’s
theorem

13.1. Projective and proper morphisms.

13.1.1. Definition. A morphism ϕ : X → Y of quasi-projective algebraic sets is
called projective if it may be factored as

X ↪→ Y × Pn(Ω) → Y,

where the first morphism is a closed embedding (i.e. has closed image, and induces
an isomorphism of X onto its image), and the second morphism is simply the
projection onto Y .

13.1.2. Definition. A morphism ϕ : X → Y of quasi-projective algebraic sets
is called proper if for any quasi-projective algebraic set Z, the induced morphism
ϕ× idZ : X × Z → Y × Z is closed.

13.1.3. Theorem. A morphism is projective if and only if it is proper.

Proof. Suppose first that ϕ is projective, and choose a corresponding factorization

X ↪→ Y × Pn(Ω) → Y

of ϕ. Taking the product with Z, we obtain a corresponding factorization of ϕ×idZ ,
namely

X × Z ↪→ Y × Z × Pn(Ω) → Y × Z.

The first arrow comes from taking the product with a closed embedding, and so
(by Lemma 10.1.7) is again a closed embedding, while the second arrow is simply
the projection onto Y × Z, and so is closed by Theorem 10.5.2. Thus ϕ × idZ is
closed, and so ϕ is proper.

Conversely, suppose that ϕ is proper. Since X is a quasi-projective variety, it is
a locally closed subset of Pn(Ω) for some n; let ι : X → Pn(Ω) denote the inclusion.
Then ϕ admits the factorization

X
(ϕ,ι)
↪→ Y × Pn(Ω) → Y.

We will show that the first of these maps is a closed embedding, and thus that ϕ is
projective.

Firstly, consider the factorization

X
Γι
↪→ X × Pn(Ω)

ϕ×idPn(Ω)−→ Y × Pn(Ω)

of (ϕ, ι). The first arrow is the graph of ι, and so is closed by Lemma 10.4.1. The
second arrow is the product of ϕ with Pn(Ω), and so is closed, since by assumption
ϕ is proper. Thus the composite of these morphisms (i.e. (ϕ, ι)) is closed.

The morphism (ϕ, ι) admits an alternate factorization, namely as

X
Γϕ

↪→ X × Y
ι×idY−→ Pn(Ω)× Y ∼= Y × Pn(Ω)

(where the last isomorphism just switches the two factors). The first of these arrows
is a graph, hence is a closed embedding (by Lemma 10.4.1), and the second arrow is
the product of the locally closed embedding ι with Pn(Ω), and so is again a locally
closed embedding (by Lemma 10.1.7); thus their composite (i.e. (ϕ, ι)) is a locally
closed embedding. We have already seen that (ϕ, ι) is closed, and so in fact it is a
closed embedding, as required. �
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13.2. Finite morphisms and Chevalley’s theorem.

13.2.1. Definition. A morphism of rings A → B is said to be finite if it makes B
a finitely generated A-module.

13.2.2. Remark. The condition that B be finitely generated over A as a module is
much stronger than the condition that it be finitely generated over A as an algebra.
For example, if A = k is a field, then k[x1, . . . , xn] is certainly finitely generated as
a k-algebra, but it is infinite-dimensional as a k-vector space.

13.2.3. Definition. We say that a morphism ϕ : X → Y of quasi-projective al-
gebraic sets is finite if each point P ∈ Y admits an open affine neighbourhood U
whose preimage V := ϕ−1(U) is again affine (in the sense that it is isomorphic to
an affine algebraic set), and such that the induced morphism ϕ∗ : k[U ] → k[V ] on
affine rings (given by pull-back via ϕ) is a finite morphism.

13.2.4. Example. If X is the zero locus of y2 − x in A2(Ω), and Y = A1(Ω), then
the morphism ϕ given by (x, y) 7→ x is finite. Indeed, we take U = Y and V = X.
The morphism ϕ∗ is then the inclusion k[x] ↪→ k[x, y]/(y2 − x), and we note that

k[x, y]/(y2 − x) = k[x]〈1, y〉
is free of rank two (and in particular finitely generated) as a k[x]-module.

13.2.5. Example. If X is the zero locus of xy − 1 in A2(Ω), and Y = A1(Ω), then
the morphism ϕ given by (x, y) 7→ x is not finite.

Indeed, take P to be the point 0 ∈ A1(Ω). The open neighbourhood U of P
are given by taking the complement of the zeroes of a polynomial f(x) with non-
constant term. (This last condition ensures that 0 is not a root of f(x).) Such a
neighbourhood U is affine, with affine ring given by k[x, 1/f ]. (This is a special
case of the Rabinowitz trick.) The preimage of U is then again affine, with affine
ring given by k[x, 1/f, y]/(xy − 1) = k[x, x−1, 1/f ]. Since f has non-zero constant
term, it is easy to verify that k[x, x−1, 1/f ] is not finitely generated as a module
over k[x, 1/f ].

The preceding counterexample involves our favourite, and standard, illustration
of the incompleteness of affine space, namely a hyperbola. Thus it will likely come
as no surprise that finiteness of a morphism is related to projectivity of a morphism.
The precise statement is given in the following theorem, which is due to Chevalley.
It connects the algebraic concept of finiteness to the more geometric concepts of
projectivity and finiteness of fibres.

13.2.6. Theorem. A morphism of quasi-projective algebraic sets is finite if and
only if it is projective with finite fibres.

Proof. Suppose, to begin with, that ϕ : X → Y is a projective morphism of quasi-
projective algebraic sets with finite fibres. We will show that ϕ is finite.

By definition of projectivity, we may factor ϕ as

X ↪→ Y × Pn(Ω) → Y,

where the first arrow is a closed embedding, and the second arrow is the projection.
Let P be a point of Y . By assumption ϕ−1(P ) is finite, and so we may find a

hyperplane H ⊂ Pn(Ω) disjoint from ϕ−1(P ).8 Since H is closed in Pn(Ω), we see

8We want this hyperplane to be defined over k, so that we can choose coordinates on Pn so
that it becomes the hyperplane at infinity, and so at this point we are tacitly assuming that k is
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that Y ×H is closed in Y × Pn(Ω) (Lemma 10.1.7), and hence so is X ∩ (Y ×H).
Theorem 10.5.2 then shows that the image of X ∩ (Y × H) under the projection
Y × Pn(Ω) → Y is closed; denote its complement by U ′. Our choise of H ensures
that P ∈ U ′, and by construction we have that

ϕ−1(U ′) ⊂ Y × (Pn(Ω) \H).

Let U be an affine open neighbourhood of P contained in U ′. (We can find such a
neighbourhood, by Proposition 12.1.1.) Then

ϕ−1(U) = X ∩
(
U × Pn(Ω)

)
,

and so ϕ−1(U) is closed in U × Pn(Ω). On the other hand, since U ⊂ U ′, we have
that

ϕ−1(U) ⊂ U ×
(
Pn(Ω) \H

)
,

and so in fact ϕ−1(U) is closed in U × (Pn(Ω) \ H
)
. This latter set is a product

of affine algebraic sets, and so is itself an affine algebraic set. Thus ϕ−1(U), being
closed in an affine algebraic set, is itself an affine algebraic set.

Writing V := ϕ−1(U), it suffices to show that the morphism k[U ] → k[V ],
induced by pull-back via ϕ, is a finite morphism of rings. To do this, we use the
description of closed subsets of affine times projective space given in Subsection 8.5.
We see that V , being a closed subset of U×Pn(Ω), is the zero locus of a homogeneous
ideal I ⊂ k[U ][y0, . . . , yn], where the yi are homogeneous coordinates on Pn(Ω).

Let’s choose coordinates so that H is cut out by y0 = 0. Then, since in fact

(13.2.7) V ⊂ U ×
(
Pn(Ω) \H

)
,

we find that the zero locus of the homogeneous ideal (I, y0) is empty. We deduce
from Proposition 8.3.3 that (I, y0)d = k[U ][y0, . . . , yn]d for some d. Thus, if md is
monomial of degree d in the yi, we may write

(13.2.8) md = y0fd−1 + fd,

where fd ∈ I and fd−1 is homogeneous of degree d− 1.
Now, again taking into account (13.2.7), we see that the affine ring k[V ] is

obtained as the quotient k[U ][y1/y0, . . . , yn/y0]/Ĩ, where Ĩ is the ideal obtained
by “dehomogenizing” I with respect to y0; i.e., it is the ideal generated by the
polynomials y−i

0 fi, where fi is a(n arbitrary) homogeneous element of I of degree
i.

Dehomogenizing the relation (13.2.8) in this way, we find that

y−d
0 md = y

−(d−1)
0 fd−1 + y−d

0 fd ≡ y
−(d−1)
0 fd−1 mod Ĩ .

Thus any element of k[U ][y1/y0, . . . , yn/y0] of degree ≥ d in the variables yi/y0 is
congruent modulo Ĩ to an element of degree ≤ d−1. Thus k[U ][y1/y0, . . . , yn/y0]/Ĩ
(which, as we have already noted, is just k[V ]) is generated as a k[U ]-module by the
images of the monomials of degree ≤ d−1 in the variables yi/y0. In particular, it is
finitely generated as a k[U ]-module. This completes the proof of the “if” direction
of the theorem. �To be continued . . .

infinite. The theorem remains true when k is finite, but a little extra argument is required, which
we omit.
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14. Localization

Localization is the process in commutative algebra that corresponds to the geo-
metric/topological idea of restricting attention to an open subset of some given
algebraic set.

14.1. Distinguished open subsets of an affine algebraic set. We begin with
a recapitulation and slight reformulation of the results we have already deduced
from the Rabinowitz trick.

If V is an affine algebraic set, let A := k[V ] denote the ring of regular functions
on V . If f ∈ A, and Z := {P ∈ V | f(P ) = 0}, then Z is a closed subset of f
(e.g. because f is Zariski continuous, and Z is the preimage of the closed subset
{0} ⊂ A1), and so D(f) := V \ Z is an open subset of V .

14.1.1. Proposition. The quasi-projective algebraic set D(f) is isomorphic to an
affine algebraic set, and its ring of regular functions is naturally isomorphic to
A[y]/(1−fy). Furthermore, the open sets D(f) (for f ∈ k[V ]) form a basis of open
sets for the Zariski topology of V .

Proof. The first claim is a restatement of the Rabinowitz trick, namely: the map
P 7→

(
P, f(P )−1

)
induces an isomorphism between D(f) and the closed subset

{(P, y) ∈ V × A1 | 1− f(P )y = 0}.

Theorem 12.2.2 then shows that k[D(f)] ∼= A[y]/I, where I denotes the radical of
(1− fy). We will see in Corollary 14.3.7 below (since A is reduced, being the ring
of regular functions on V ) that (1−fy) is already a radical ideal, and hence indeed
k[D(f)] ∼= A[y]/(1− fy).

The fact that every point of V has a neighbourhood basis consisting of open
sets of the form D(f) was proved in the course of proving Proposition 12.1.1. The
following lemma shows that the intersection of two sets of the form D(f) is again
of this form, �

14.1.2. Lemma. If f1, f2 ∈ k[V ], then D(f1) ∩D(f2) = D(f1f2).

Proof. This is just a restatement of the fact that (f1f2)(P ) 6= 0 if and only if both
f1(P ) 6= 0 and f2(P ) 6= 0. �

14.1.3. Definition. For an affine algebraic set V , the open subsets of the form
D(f) (for some f ∈ k[V ]) are called distinguished open subsets of V .

Slightly informally, in the above context one might write A[1/f ] rather than
A[y]/(1− fy), since adjoining an element y for which fy = 1 amounts precisely to
adjoining a multiplicative inverse for f to A.

The algebraic process of passing from A to A[1/f ] is called localization.

14.2. Localizing rings. Let A be a ring, and let S be any subset of A.

14.2.1. Definition. We write

AS := A[{xa}a∈A]/({1− axa}a∈S).

In words: we adjoin one variable, which we’ve denoted xa, to A for each element
a ∈ S, and for each such element we impose the relation axa = 1. We refer to AS

as the localization of A at S.
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Slightly informally, one could write A[{a−1}]a∈S for AS , since we form AS pre-
cisely by adjoining an inverse for each a ∈ S. One way that this can be expressed
more formally is by the following universal property of AS .

14.2.2. Proposition. If B is an A-algebra, say with structural morphism ϕ : A→
B, then HomA−alg(AS , B) is either empty or consists of a single element, and it is
non-empty precisely if the element ϕ(a) ∈ B is invertible for each a ∈ S.

Proof. To give a ring homomorphism ψ : AS → B compatible with ϕ, we have to
give elements ψ(xa) ∈ B for each a ∈ S, and these have to satisfy the relations
ϕ(a)ψ(xa) = 1. Thus we can define such a ψ precisely if ϕ(a) is invertible for
each a ∈ S, in which case the value of ψ(xa) is uniquely determined, namely as
ϕ(a)−1. �

Sometimes it is convenient to suppose that the set S is closed under multiplica-
tion.

14.2.3. Definition. We say that a subset S of A is multiplicative if it is closed
under multiplication.

14.2.4. Lemma. If S is a subset of A, and T is the multiplicative subset of A that
S generates (i.e. T consists of all finite products of elements of S), then there is a
natural (indeed, a unique) isomorphism of A-algebras AS

∼= AT .

Proof. Since the set of units of a ring is closed under multiplication, one sees from
Proposition 14.2.2 that AS and AT satisfy the same universal property, and hence
are naturally isomorphic.

Concretely, taking B to be AT in that proposition, we find that there is an (in-
deed, a unique) A-algebra homomorphism AS → AT , and similarly, taking B to be
AS and applying the proposition to AT (and noting that since all the elements of
S map to units in AS , so do all the elements of T ), we obtain an A-algebra homo-
morphism AT → AS (which is again unique). These homomorphisms are mutually
inverse, and so induce the required isomorphism. (To see that they are inverse, one
can work with the explicit description given in the proof of Proposition 14.2.2, or
one can note that the composite AS → AT → AS is an A-algebra endomorphism
of AS , and similarly AT → AS → AT is an A-algebra endomorphism of AT , and
Proposition 14.2.2 shows that the only endomorphism of either AS or AT is the
identity.) �

14.2.5. Remark. If S consists of a single element a ∈ A, then we usually write Aa

rather than A{a} for the localization of A at the singleton set a.

14.2.6. Lemma. If S is a finite set, and a denotes the product of the finitely many
elements of S, then there is a natural (indeed, a unique) isomorphism of A-algebras
AS

∼= Aa.

Proof. This is proved similarly to Lemma 14.2.4, noting for any finite set of elements
of a ring, each element of the set is invertible if and only if their product is (and
hence, all the elements of S have invertible images in a given A-algebra B if and
only if the image of their product a is invertible in B). �
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14.3. Localizing modules.

14.3.1. Definition. If A is a ring, S is a subset of A, and M is an A-module, then
we write

MS := AS ⊗A M,

and refer to MS as the localization of M at S.

The following lemma shows that localization at S is an exact functor (for any
set S), or equivalently, that AS is a flat A-algebra.

14.3.2. Lemma. The functor M 7→ MS is exact, i.e. if 0 → M → N → P → 0 is
an exact sequence of A-modules, then the induced exact sequence 0 →MS → NS →
PS → 0 is again exact.

Proof. Since tensoring is always right exact, the only thing we have to check is
that if M ↪→ N is an injective homomorphism of A-modules, then the induced
homomorphism MS → NS is again injective.

Going back to the definition of AS as A[{xa}a∈S ]/({1 − axa)a∈S), we see that
we may write

MS = M [{xa}a∈S ]/
∑
a∈S

(1− axa)M [{xa}a∈S ],

and similarly
NS = N [{xa}a∈S ]/

∑
a∈S

(1− axa)N [{xa}a∈S ].

(Here we write M [{xa}a∈S ] to denote the module over A[{xa}a∈S ] consisting of
polynomials with coefficients in M , and similarly for N [{xa}a∈S ].)

Suppose that m ∈MS lies in the kernel of MS → NS . Let m′ ∈M [{xa}a∈S ] be
a polynomial (with coefficients in M) that maps to m′ in MS . The assumption that
m′ lies in the kernel of MS → NS implies that the image of m′ in N [{xa}a∈S ] lies
in

∑
a∈S(1− axa)N [{xa}a∈S ]. Now m′ is a polynomial, so it only actually involves

finitely many of the variables xa. (Put another way, the coefficient in m′ of all but
finitely many of the monomials in the xa’s are zero.) Similarly, if its image lies in∑

a∈S(1−axa)N [{xa}a∈S ], then in fact its image lies in
∑

a∈S′(1−axa)N [{xa}a∈S′ ]
for some finite subset S′ of S.

In other words, we may find a finite subset S′ of S so that m′ ∈ M [{xa}a∈S′ ],
and such that its image in N [{xa}a∈S′ ] lies in

∑
a∈S′(1 − axa)N [{xa}a∈S′ ]. If we

can show that m′ then lies in
∑

a∈S′(1 − axa)M [{xa}a∈S′ ], then in particular we
will know that it lies in

∑
a∈S(1 − axa)M [{xa}a∈S ], and thus that its image m in

MS vanishes. Thus we will have proved that MS → NS is injective, as required.
To summarize: the discussion of the preceding paragraph shows (replacing S

with S′) that we may assume that S is finite. Lemma 14.2.6 then shows that we
may assume that S = {a} is a singleton. Thus we are reduced to showing that if
M ↪→ N is injective, then the induced homomorphism

M [x]/(1− ax)M [x] → N [x]/(1− ax)N [x]

is injective.
Suppose that m′ is a polynomial in M [x] whose image in N [x] is divisible by

(1 − ax), say m′ = (1 − ax)n′, for some n′ ∈ N [x]. (Since M [x] → N [x] is an
embedding, we use the same notation to denote m′ and its image in N [x].) Note
that N [x] embeds into N [[x]] (power-series in x with coefficients in M) and that
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1− ax is invertible in A[[x]] (its inverse is 1 + ax+ a2x2 + · · · ). Thus, working in
N [[x]], we find that n′ = (1− ax)−1m′ ∈M [[x]]. Thus n′ ∈ N [x] ∩M [[x]] = M [x],
and so in fact (1−ax) divides m′ in M [x]. This implies that M [x]/(1−ax)M [x] →
N [x]/(1− ax)N [x] is injective, as required. �

14.3.3. Remark. (1) The part of the preceding proof in which we reduce to a finite
set S′ may be expressed more succinctly in terms of direct limits. More precisely,
we have a natural isomorphism

A[{xa}S ] ∼−→ lim−→
S′

A[{xa}a∈S′ ]

(where S′ runs over the finite subsets of S), and thus a natural isomorphism

AS
∼−→ lim−→

S′

AS′ ,

where S′ runs over all the finite subsets of S. Since tensor products commute with
direct limits, we then obtain a natural isomorphism

MS
∼−→ lim−→

S′

MS′ .

Finally, since passing to direct limits is exact, we find that the kernel of MS → NS

is the direct limit of the kernels of the homomorphisms MS′ → NS′ .
(2) The proof of exactness in the case S = {a} may also be expressed more

succinctly, via the snake lemma. Namely, from the exact sequence 0 →M → N →
P → 0 we obtain an exact sequence 0 → M [x] → N [x] → P [x] → 0, and we may
then form the morphism of exact sequences

0 // M [x] //

1−ax

��

N [x] //

1−ax

��

P [x] //

1−ax

��

0

0 // M [x] // N [x] // P [x] // 0

Now multiplication by (1−ax) is invertible on M [[x]], N [[x]], and P [[x]], and hence
injective on M [x], N [x], and P [x]. The snake lemma thus implies that we obtain a
short exact sequence

0 →M [x]/(1− ax)M [x] → N [x]/(1− ax)N [x] → P [x]/(1− ax)P [x] → 0,

as required.

The preceding lemma implies in particular that if M is a submodule of an A-
module N , then we MS embeds as a submodule of NS . The next lemma gives a
kind of converse to this fact.

14.3.4. Lemma. If N is an A-modules, and if M ′ is an AS-submodule of NS, then
there is an A-submodule M of N so that M ′ is the image of MS under its natural
embedding into NS. More precisely, if ϕ : N → NS denotes the natural map, and
if we write M := ϕ−1(M ′), then the embedding MS ↪→ NS identifies MS with M ′.

Proof. By Lemma 14.2.4, it is no loss of generality to assume that S is multiplica-
tive, and we do so. Now, if a′ ∈ AS , then we may find a′′ ∈ S so that a′a′′ lies in
the image of the natural map A→ AS . (Just “clear denominators”; it is to simplify
the statement of this step that we assume S multiplicative.)
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Let m′ ∈ M ′ ⊂ NS . Since NS := AS ⊗ N , we may write m′ as a finite sum
m′ =

∑
i a

′
i⊗ni, for some a′i ∈ AS and ni ∈ N . Choose a′′i ∈ S so that a′ia

′′
i ∈ A for

each i, and write a :=
∏

i a
′′
i . Then aa′i ∈ A for all i, and so am′ =

∑
i aa

′
i ⊗ ni is

the image in NS of the element
∑

i(aa
′
i)ni of N . It is also an element of M ′ (since

M ′ is an AS-submodule of NS).
Thus, if we let ϕ : N → NS denote the natural map, we find that am′ ∈

ϕ
(
ϕ−1(M ′)

)
. Since a ∈ S, it is invertible in AS , and thus we find that m′ ∈

ASϕ
(
ϕ−1(M ′)

)
. Thus, if we write M = ϕ−1(M ′), then M is an A-submodule of N ,

and M ′ is the image of MS := AS ⊗M in NS . �

The following lemma describes the kernel of the natural map M →MS .

14.3.5. Lemma. If T denotes the multiplicative set generated by S, then the kernel
of M →MS consists precisely of those m ∈M such that tm = 0 for some t ∈ T .

Proof. As in the proof of Lemma 14.3.2, we write

MS = M [{xa}a∈S ]/
∑
a∈S

(1− axa)M [{xa}a∈S ].

If m ∈ M lies in the kernel of the map M → MS , then we see that m (thought of
as a constant polynomial) lies in

∑
a∈S(1− axa)M [{xa}a∈S ]. Thus in fact

m ∈
∑
a∈S′

(1− axa)M [{xa}a∈S′ ]

for some finite subset S′ of S, and so m lies in the kernel of the natural homomor-
phism M → MS′ . Thus, replacing S by S′, we may assume that S′ is finite, and
then, by applying Lemma 14.2.6, that S′ = {a} is a singleton.

Suppose now that m = (1 − ax)m′ for some m′ ∈ M [x]. Working in M [[x]], we
find that

m′ = (1+ax+a2x2 + · · ·+anxn + · · · )m = m+amx+a2mx2 + · · ·+anmxn + · · · .
Since m′ is a polynomial by assumption, we find that necessarily anm = 0 for
some n, and thus that the lemma holds when S = {a}. As we already observed,
this implies the lemma in general. �

14.3.6. Remark. (1) As with the proof of Lemma 14.3.2, the first part of the proof
of the preceding lemma could be rephrased in the language of direct limits.

(2) Note the similarity of the second part of the argument with the proof of
Lemma 6.7.3. Indeed, that lemma is a special case of the preding lemma; namely,
it treats the case when Aa = 0, i.e. the case when all of A is in the kernel of the
natural homomorphism A→ Aa, or equivalently, the case when 1 lies in this kernel.
The previous lemma shows that this is the case precisely when an = 0 for some n,
and this is also precisely the conclusion of Lemma 6.7.3.

We note the following consequence of the preceding lemma.

14.3.7. Corollary. If A is reduced, then so is AS, for any subset S of A.

Proof. By Lemma 14.2.4, it is no loss of generality to assume that S is multiplica-
tive, and we do so.

If I ′ denotes the nilradical of AS (i.e. the ideal of nilpotent elements in AS), and
I denotes its preimage under the natural map A→ AS , then Lemma 14.3.4 shows
that I ′ is generated by the image of I in AS . Thus, in order to show that AS is



44 MATTHEW EMERTON

reduced, it suffices to show that if an element of A has nilpotent image in AS , then
it actually has zero image in AS .

Suppose that a ∈ A has nilpotent image in AS , so that an lies in the kernel
of A → AS . Then the preceding lemma shows that a′′′an = 0 for some a′′′ ∈ S.
Thus a′′′a is a nilpotent element of A, and so a′′′a = 0. The preceding lemma then
applies again to show that the image of a in AS vanishes, as required. �

14.4. Localization at a prime ideal.

14.4.1. Definition. If p is a prime ideal in the ring A, then we write Ap to denote
the localization of A at the multiplicative subset S = A \ p.

14.4.2. Remark. (1) The fact that A\p is multiplicative is a rephrasing of the fact
that p is a prime ideal.

(2) The notation Ap is completely at odds with our general notation AS for
localizations, since it does not mean that we take S to be the set p! (Rather, we
take S to be the complement of p in A.) This is an unfortunate but completely
standard convention, which doesn’t cause confusion in practice (once you get used to
it), since prime ideals will always have fairly distinctive notation, usually involving
the letter ‘p’ in some way (such as p), which will alert you to which convention is
being used at any given moment.

The key feature of Ap is that it has only one maximal ideal, the ideal generated
by p.

14.4.3. Proposition. If p is a prime ideal in A, then the ideal pAp of Ap is maximal,
and is in fact the unique maximal ideal of Ap. The quotient field Ap/pAp is naturally
isomorphic to the fraction field of the integral domain A/p.

Proof. If I ′ is an ideal in Ap, then Lemma 14.3.4 shows that I ′ is generated as an
ideal by the image (under the natural map A→ Ap) of an ideal I ⊂ A. Now if I is
not contained in p, then it contains some element a ∈ A \ p, whose image in Ap is
a unit. Thus I ′ contains a unit, and hence is the unit ideal.

Thus any proper ideal of Ap is generated by the image of an ideal in Ap that is
contained in p, and hence any proper ideal of Ap is contained in pAp. This shows
that pAp is a maximal ideal in Ap, and is the unique such maximal ideal.

Proposition 14.2.2 shows that Ap is universal for morphisms to A-algebras in
which the image of A\p consists of units. Thus Ap/pAp is universal for morphisms
to A-algebras in which p maps to zero, and the image of A \ p consists of units.
We can reformulate this to say that Ap/pAp is universal for morphisms to A/p-
algebras in which the image of the non-zero elements of A/p consists of units. But
these latter algebras are precisely the algebras over the fraction field κ(p) of A/p.
Thus Ap/pAp is universal for morphisms to κ(p)-algebras. But obviously κ(p) is
universal for morphisms to κ(p)-algebras, and so there is a natural isomorphism
Ap/pAp

∼= κ(p), as claimed. �
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