ALGEBRAIC GEOMETRY - SEVENTH HOMEWORK (DUE FRIDAY MARCH 14)

Please complete all the questions. (All rings are commutative with 1 , and all ring homomorphisms preserve 1.)

1. Let A be a ring.
(a) If I and J are two ideals of A, prove that the natural map

$$
A /(I \cap J) \rightarrow A / I \times A / J
$$

is an injection, and that it is surjective if and only if $I+J=A$. (Bonus question: give a nice description of the cokernel in general.)
(b) If I and J are ideals of A for which $I+J=A$, prove that $I \cap J=I J$.
(c) If I, J_{1}, and J_{2} are ideals of A, prove that the following are equivalent: (i) $I+J_{1}=I+J_{2}=A$; (ii) $I+J_{1} \cap J_{2}=A$; (iii) $I+J_{1} J_{2}=A$.
(d) If $\mathfrak{m}_{1}, \mathfrak{m}_{2}, \ldots, \mathfrak{m}_{n}$ are mutually distinct maximal ideals of A, prove that $\mathfrak{m}_{1} \cdots \mathfrak{m}_{n}$ (the product of the \mathfrak{m}_{i}) equals $\mathfrak{m}_{1} \cap \cdots \cap \mathfrak{m}_{n}$ (the intersection of the \mathfrak{m}_{i}), and that the natural map

$$
A /\left(\mathfrak{m}_{1} \cap \cdots \cap \mathfrak{m}_{n}\right) \rightarrow A / \mathfrak{m}_{1} \times \cdots \times A / \mathfrak{m}_{n}
$$

is an isomorphism.
2. Let A be a ring, and let I and J be a pair of ideals in A such $I+J=A$ and $I J=0$.
(a) Prove that $I^{2}=I$ and $J^{2}=J$. (So our hypotheses on I and J are ideal-theoretic analogues of asking that they be orthogonal projectors on a Hilbert space.)
(b) If M is an A-module, and if we define

$$
M[I]=\{m \in M \mid a m=0 \text { for all } a \in I\},
$$

and similarly

$$
M[J]=\{m \in M \mid a m=0 \text { for all } a \in I\},
$$

prove that $M=M[I] \oplus M[J]$. (This is analogous to decomposing a Hilbert space using a pair of orthogonal projectors.)
3. If A is a ring and \mathfrak{p} is a prime ideal of A, prove that the localization $A_{\mathfrak{p}}$ is not the zero ring. (This is implicit in Lemma 14.4.3 of the notes,
but prove it directly and explicitly. Lemma 14.3.5 of the notes could be a useful tool.)
4. Compute the following tensor products. [Hint: describe the module being tensored via generators and relations.]
(a) $\mathbb{Z}[i] \otimes_{\mathbb{Z}[2 i]} \mathbb{Z}[i]$.
(b) $\mathbb{C}[t] \otimes_{\mathbb{C}\left[t^{2}, t^{3}\right]}^{\mathbb{C}}[t]$.
5. Let X be a quasi-projective algebraic set, and let Z be a closed subset of X. Let $\iota: Z \hookrightarrow X$ denote the inclusion. If $\varphi: Y \rightarrow Z$ is a morphism from another quasi-projective algebraic set Y, prove (a) that φ is projective if and only if the composite $\iota \varphi$ is projective; (b) that φ is finite if and only if the composite $\iota \varphi$ is finite
6. For each of the following morphisms of algebraic sets, identify whether or not it is a finite morphism. For each question, draw a picture illustrating the geometric situation under discussion.
(a) The inclusion of $\mathbb{A}^{2}(\Omega) \backslash\{0\}$ into $\mathbb{A}^{2}(\Omega)$.
(b) The morphism from $\mathbb{A}^{1}(\Omega)$ to the curve in \mathbb{A}^{2} with equation $y^{2}=x^{3}$, given by $t \mapsto\left(t^{2}, t^{3}\right)$.
(c) The natural projection from the blow up of $\mathbb{A}^{2}(\Omega)$ at the origin to $\mathbb{A}^{2}(\Omega)$ (as discussed in exercise 3 of HW sheet 5).
(d) The morphism from $\mathbb{A}^{2}(\Omega)$ to the cone $X \subset \mathbb{A}^{3}(\Omega)$ with equation $u^{2}=v^{2}+w^{2}$, defined by $u=\left(x^{2}+y^{2}\right) / 2, v=x y, w=\left(x^{2}-y^{2}\right) / 2$.

