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Abstract. We give a detailed account of Deligne’s letter to Drin-
feld dated March 5, 2007 in which he shows that irreducible lisse
Q̄`-sheaves with finite determinant on a normal scheme of finite
type over Fp have local characteristic polynomials in E[t], where
E is a number field, answering thereby his own conjecture [7,
Conj. 1.2.10 (ii)]. The proof relies on Lafforgue’s results for curves.
We also explain the motivic background of Deligne’s conjectures.

1. Deligne’s theorem

1.1. Statement of Deligne’s theorem. Let X be a normal scheme,
separated and of finite type over Fq. For a lisse Q̄`-Weil sheaf V on X
we define a function fV on the set of closed points |X| by

fV : |X| → Q̄`[t], fV (x) = det(1− t Fx, Vx̄).

Let E(V ) be the subfield of Q̄` generated by the coefficients of the
polynomials fV (x) for x ∈ |X|. By [5, Prop. IV.6.4.3] this is also the
field generated by the traces

tnV (x) = Tr(Fx, Vx̄)

for x ∈ X(Fqn), n ≥ 1. Here Fx = F
n/d
x0 if the image x0 of x :

SpecFqn → X has degree d/n.
We use the terminology of lisse Q̄`-Weil sheaves which correspond to

continuous Q̄`-representations of the Weil group [7, Déf. 1.1.10], and of
lisse Q̄`-étale sheaves which correspond to continuous representations
of the fundamental group.

In [7, Conjecture 1.2.10] Deligne conjectured the following.

Theorem 1.1. For an irreducible lisse Q̄`-étale sheaf V on X with
determinant of finite order, E(V ) is a number field.

Remark 1.2. An irreducible lisse Q̄`-Weil sheaf V on X with deter-
minant of finite order is étale, see [7, Prop. 1.3.14].
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We will see that this theorem is equivalent to the following theorem,
the formulation of which is better suited for pullback arguments.

Theorem 1.3. For a lisse Q̄`-Weil sheaf V on X which is pure of
weight 0, E(V ) is a number field.

Notation

Let Fq be the finite field with q elements, q a power of the prime p.
We fix an algebraic closure F of Fq. By ` we denote a prime different
from p. All schemes are separated and of finite type over some specified
field. For a scheme X over a field we denote by |X| for the set of closed
points of X.

By a curve we mean a smooth quasi-projective connected scheme of
dimension 1 over a field. Let x ∈ X(F). Let π1(X, x) be Grothendieck’s
fundamental group based at x. It maps to Gal(F/Fq). Let W (X, x)
be the inverse image in π1(X, x) of Z · F ⊂ Gal(F/Fq), where F is the
Frobenius of F ⊃ Fq. Then W (X, x) = π1(X, x) ×Gal(F/Fq) Z · F . The
Weil group based at x is the group W (X, x) endowed with the product
topology [7, 1.1.7]. We denote by π1 the functor from the category of
connected schemes to the category of pro-finite groups modulo inner
automorphisms and by W the functor W (−) = π1(−)×Gal(F/Fq) Z · F .
It is a functor from the category of connected schemes to the category
of topological groups.

For a connected scheme X we identify the set of isomorphism classes
of lisse Q̄`-Weil sheaves with the set of isomorphism classes of contin-
uous representations of W (X) to finite dimensional Q̄` vector spaces,
and the set of isomorphism classes of lisse Q̄`-étale sheaves with the set
of isomorphism classes of continuous representations of π1(X) to finite
dimensional Q̄` vector spaces.

Let X be a scheme over Fq and V a lisse Q̄`-Weil sheaf on X. We
use the notations fV , t

n
V introduced in Section 1.1.

Let E(V ) be the subfield of Q̄` generated by the coefficients of the
polynomials fV (x) for all x ∈ |X|. Note that by [5, Prop. IV.6.4.3]
E(V ) is also the subfield of Q̄` generated by the tnV (x) for n ≥ 1 and
x ∈ X(Fqn).

2. Motivic dream

We try to explain as well as we can Grothendieck’s programatic
dream about the existence of pure isomotives over general bases as
sketched in his letter of to Illusie dated May 3, 1973, published in [14,
Appendix]. We formulate some precise expectations. Nothing here is
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logically needed for later sections and any inaccuracies are entirely due
to the authors.

Let k be a perfect base field. We assume Grothendieck’s standard
conjectures over all extension fields K ⊃ k, see [2, Sec. 5].

Let Sch/k be the category of normal schemes separated and of finite
type over k. We expect that for any S ∈ Sch/k there is a graded semi-
simple Q-linear rigid abelian ⊗-category M(S,Q), with End(1) = Q if
S is connected.

The following properties should be satisfied.

(1) The categories M(S,Q) form an étale stack over Sch/k, in par-
ticular there are ⊗-functors

f ∗ : M(S,Q)→M(S ′,Q)

for a morphism f : S ′ → S.
(2) For any prime number ` different from char(k), there is a faithful

Q`-linear ⊗-functor

R` : M(−,Q)⊗Q` → Sh(−,Q`),

where S 7→ Sh(S,Q`) is the étale stack of lisse Q`-étale sheaves
over Sch/k.

(3) There is a contravariant functor from the category of smooth
projective schemes f : X → S to motives h(X) ∈M(S,Q) such
that

R` ◦ h(X) ∼=
⊕
n

Rnf∗Q`.

For a field K ⊃ k we define

M(SpecK,Q) = 2- lim−→
U

M(U,Q)

where U runs through all normal connected affine schemes of finite type
over k with k(U) ⊂ K.

(4) For a perfect field K ⊃ k the category M(SpecK,Q) is the
same as Grothendieck’s category, see [2, Sec. 6.1].

(5) For any connected S ∈ Sch/k there is a 2-Cartesian square

M(S,Q) //

R`
��

M(η,Q)

R`
��

Sh(S,Q`) // Sh(η,Q`)

where η is the generic point of S.
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(6) The pullback along the relative Frobenius

F ∗S/k : M(S(p),Q)→M(S,Q)

is an equivalence of categories.

For the rest of this section we assume the existence of M(S,Q) with
the above properties.

For any field F ⊃ Q define M(S, F ) to be the pseudo-abelian enve-
lope of M(S,Q)⊗F . By [15, Lem. 2] M(S, F ) is a semi-simple abelian
category.

For connected S the category M(S, F ) is tannakian. Using the tan-
nakian formalism and a theorem of Deligne [10, Cor. 6.20] one deduces

Lemma 2.1.

(i) For any F ⊃ Q the categories M(S, F ) form an étale stack over
Sch/k.

(ii) For connected S with generic point η ∈ S and for fields Q ⊂
F ⊂ F ′ the square

M(S, F ) //

��

M(η, F )

��

M(S, F ′) // M(η, F ′)

is 2-Cartesian.
(iii) For fields F ⊂ F ′ of characteristic 0 the functor

M(S, F )→M(S, F ′)

induces an injection of isomorphism classes of objects. For al-
gebraically closed F it is bijective on isomorphism classes.

Let k = Fq be a finite field, then the Tate conjecture can be formu-
lated as follows.

Conjecture 2.2. The functors

R` : M(S,Q`)→ Sh(S,Q`)

are fully faithful.

Concerning the image of R`, Deligne suggests:

Conjecture 2.3. The essential image of

R` : M(S, Q̄`)→ Sh(S, Q̄`)

consists of direct sums of irreducible sheaves V which are pure of in-
tegral weight, and such that the eigenvalues of Fx for all closed points
x ∈ |X| are `′-adic units for all prime numbers `′ 6= p.
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Conjecture 2.3 and Lemma 2.1(iii) motivate Deligne’s Theorem 1.1 as
well as the other parts of Deligne’s conjecture [7, Conj. 1.2.10] (except
the p-adic part (vi)).

One can also give a motivic interpretation of the field E(V ) for V in
the essential image of R`.

Definition 2.4. For P ∈M(S, Q̄) let H ⊂ Gal(Q̄/Q) consist of those
h ∈ Gal(Q̄/Q) with h(P ) ∼= P . Define the number field E(P ) to be
Q̄H .

Lemma 2.5. Conjecture 2.2 implies that for P ∈ M(S, Q̄) one has
E(P ) = E(R`(P )).

3. `-adic sheaves

3.1. Implications of Langlands. Lafforgue deduced Deligne’s con-
jecture for curves from the Langlands correspondence for GLr of func-
tion fields [18, Chap. VII]. Let X/Fq be a smooth quasi-projective con-
nected scheme of dimension 1 (we say curves).

For the reader’s convenience we recall Lafforgue’s results here. Let
` 6= p = char(Fq) be a prime number.

Theorem 3.1. For an irreducible lisse Q̄`-Weil sheaf V on X with
determinant of finite order the following holds:

(i) The field E(V ) is a finite extension of Q.
(ii) For a dense open subscheme X ′ ⊂ X we have E(V |X′) = E(V ).

(iii) For an arbitrary, not necessarily continuous, automorphism σ ∈
Aut(Q̄`/Q), there is an irreducible lisse Q̄`-Weil sheaf Vσ on X,
called σ-companion, with determinant of finite order such that

fVσ = σ(fV ),

where σ acts on the polynomial ring Q̄`[t] by σ on Q̄` and by
σ(t) = t.

(iv) V is pure of weight 0.

Proof. Except for (ii) the theorem is contained in [18, Théorème VII.6].
We deduce (ii) from (i) and (iii). Clearly E(V |X′) ⊂ E(V ). For a
σ ∈ Aut(Q̄`/E(V |X′)) we consider Vσ as in (iii). It is sufficient to show
that Vσ ∼= V . As the Weil group of X ′ surjects onto the one of X, this
is equivalent to V |X′ = Vσ|X′ , which follows from

fV ||X′| = σfV ||X′| = fVσ ||X′|
and Cebotarev density theorem. �
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From Lafforgue’s theorem one can deduce certain results on higher
dimensional schemes. Let X be a normal scheme geometrically con-
nected, separated and of finite type over k.

Corollary 3.2. (of Theorem 3.1 (iv)). For an irreducible lisse Q̄`-Weil
sheaf V on X the following are equivalent:

(i) V is pure of weight 0,
(ii) there is a closed point x ∈ X such that Vx̄ is pure of weight 0,
(iii) there is a one-dimensional lisse Q̄`-Weil sheaf W on Spec (Fq)

which is pure of weight 0 such that the determinant det(V ⊗W )
is of finite order.

Proof. (iii) ⇒ (i):
Without loss of generality we can assume that det(V ) is of finite order.
Then by Remark 1.2 V is étale. For a closed point x ∈ X choose a curve
C/k and a morphism ψ : C → X such that x is in the set theoretic
image of ψ and such that ψ∗V is irreducible. A proof of the existence
of such a curve is given in the appendix, Proposition 8.1. Then by
Theorem 3.1(iv) ψ∗V is pure of weight 0 on C, so Vx̄ is also pure of
weight 0.

(i) ⇒ (ii): Trivially.

(ii) ⇒ (iii):
Set r = rank(V ). Choose a one-dimensional lisse Q̄`-Weil sheaf W on
Spec (Fq) such that (W |k(x))

⊗r ∼= det(Vx̄)
∨. By the Katz-Lang finiteness

theorem, see for example [7, Prop. 1.3.4], it follows that the determi-
nant det(V ⊗W ) has finite order.

�

Corollary 3.3. (of Theorem 3.1 (ii)) Assume X/Fq is smooth. For an
irreducible lisse Q̄`-Weil sheaf V on X and for a dense open subscheme
X ′ ⊂ X we have E(V |X′) = E(V ).

Proof. We have to show that fV (x) ∈ E(V |X′)[t] for any x ∈ |X|. By
[16] we can find a smooth curve C/Fq, a morphism C → X and a
scheme theoretic splitting x → C. Furthermore we can assume that
C ×X X ′ 6= ∅. From Theorem 3.1(ii) we get the equality in

fV (x) ∈ E(V |C)[t] = E(V |C×XX′)[t] ⊂ E(V |X′)[t].

�
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Corollary 3.4. (of Theorem 3.1 (iii)) Assume dim(X) = 1. For a
lisse Q̄`-Weil sheaf V on X and an automorphism σ ∈ Aut(Q̄`/Q),
there is a σ-companion to V , i.e. a lisse Q̄`-Weil sheaf Vσ on X such
that

fVσ = σ(fV ).

Proof. Without loss of generality we may assume that V is irreducible.
In the same way as in the proof of Corollary 3.2 we find a one-dimensional
lisse Q̄`-Weil sheaf W on Spec (Fq) such that V ⊗Q̄`W has determinant
of finite order. As the lisse Q̄`-Weil sheaf W of rank 1 over SpecFq is
just given by the image λ say of the Frobenius F of the Galois group
of Fq in Q̄×` , we trivally construct a σ-companion Wσ to it by sending
F to σ(λ). By Theorem 3.1 (iii), we get a σ-companion (V ⊗W )σ to
V ⊗W . Then (V ⊗W )σ ⊗W∨

σ is a σ-companion to V . �

Remark 3.5. Drinfeld has shown [11] that Corollary 3.4 stays true
for higher dimensional X if X is assumed to be smooth. His argument
relies on Deligne’s Theorem 1.3.

Proof that Theorem 1.1 ⇔ Theorem 1.3:
‘⇒’:

Let V be as in Theorem 1.3. We may replace V by its semi-simplifaction
and without loss of generality, we may assume that V is irreducible.
By Corollary 3.2 there is a Q̄`-Weil sheaf W of rank 1 and of weight 0
on SpecFq such that det(V ⊗W ) is of finite order. Since W has weight
0, E(W ) is a number field. By Theorem 1.1 also E(V ⊗W ) is a number
field. It follows that

E(V ) ⊂ E(V ⊗W ) · E(W )

is a number field.
‘⇐’:

Let V be as in Theorem 1.1. By Corollary 3.2 V is of weight 0. So
Theorem 1.3 tells us that E(V ) is a number field. �

3.2. Structure of a lisse Q̄`-sheaf over a scheme over a finite
field. Let X be a geometrically connected normal scheme separated
and of finite type over Fq and let V be a lisse Q̄`-Weil sheaf of rank r
on X.

In case of lisse Q̄`-étale sheaves the following proposition is shown in
[4, Prop. 5.3.9]. The case of Weil sheaves works similarly.

Proposition 3.6. Let V be an irreducible lisse Q̄`-Weil sheaf on X.

(i) Let m be the number of irreducible constituents of VF. There is
an irreducible lisse Q̄`-Weil sheaf V [ on XFqm such that
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– the pullback of V [ to XF is irreducible,
– V ∼= bm,∗V

[, where bm is the natural map X ⊗ Fqm → X.
(ii) V is pure of weight 0 if and only if V [ is pure of weight 0.
(iii) If V ′ is another irreducible Q̄`-Weil sheaf on X with V ′F

∼= VF,
then there is a rank 1 Q̄`-Weil sheaf W on Spec (Fqm) with

V ′ ∼= bm,∗(V
[ ⊗W ).

A special case of the Grothendieck trace formula [19, (1.1.1.3)] says:

Proposition 3.7. Let V and m be as in Proposition 3.6. For n ≥ 1
and x ∈ X(Fqn)

tnV (x) =
∑

y∈XFqm
(Fqn )

y 7→x

tnV [(y).

In concrete terms here, tnV (x) = 0 if m does not divide n and if m
divides n, then

tnV (x) =
∑

y∈XFqm
(Fqn )

y 7→x

tnV [(y).

4. Ramification theory

Because of a lack of a proper reference we review some well known facts
from ramification theory, in particular the relation between different
and discriminant on normal schemes and a semi-continuity for pullback
to curves. The only things from this section that are needed later
on are some definitions and Proposition 4.11, a dimension bound for
cohomology with compact support on curves.

4.1. Different and discriminant. Let X be a normal noetherian in-
tegral scheme. Let X ′ → X be a finite dominant morphism with
X ′ integral. We denote by K ⊂ K ′ the corresponding extension
of the fields of rational functions. Consider the diagonal morphism
φ : X ′ → X ′ ×X X ′. Let I ⊂ OX′×XX′ be the coherent ideal sheaf of
the diagonal.

The following version of the different was introduced in [3].

Definition 4.1 (Different). The homological different of X ′ over X is
defined as the coherent ideal sheaf

DiffX′/X = φ\(AnnOX′×XX′
(I)) ⊂ OX′ .

Here φ\ is the usual pullback of ideal sheaves. Taking the norm we get
the coherent ideal sheaf

DX′/X = OX NmK′/K(DiffX′/X) ⊂ OX .
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Definition 4.2 (Discriminant). If X ′ → X is flat and generically étale
we define the discriminant ∆X′/X to be the invertible ideal sheaf in OX
generated locally by

det(TrK′/K(xi xj))i,j

where x1, . . . , xn form a local basis of OX′ over OX .

Proposition 4.3. If X ′ → X is flat and generically étale, then:

1) In codimension 1, one has an inclusion of the ideal sheaves
DX′/X ⊂ ∆X′/X .

2) If in addition, X ′ is normal, then in codimension 1 one has
DX′/X = ∆X′/X .

Proof. Without loss of generality, we may assume that X, and thus X ′,
have dimension 1.

Auslander-Buchsbaum ([3, Prop. 3.3]) show that for X ′ → X flat
DiffX′/X coincides with the ordinary different DX′/X ⊂ OX′ , which is
defined as follows. One defines

CX′/X = {β ∈ K ′,TrK′/K(β · OX′) ⊂ OX}.
Then

DX′/X = {α ∈ K ′, α · CX′/X ⊂ OX′}.
We prove 1). Let α ∈ DX′/X , thus CX′/X ⊂ α−1 · OX′ . By [21,

Lemma I.5.3], one has

NmK′/K(α) · OX = χOX (OX′/α · OX′) = χOX (α−1 · OX′/OX′).
But one has

CX′/X/OX′ ⊂ α−1 · OX′/OX′ ,
which implies χOX (α−1 · OX′/OX′) ⊂ χOX (CX′/X/OX′). This finishes
the proof of 1).

As for 2), we apply [21, Prop. III.3.6 ].
�

4.2. Tameness. From now on, X is a normal integral scheme, sepa-
rated and of finite type over a perfect field k.

Consider a lisse Q̄`-Weil sheaf V on X.

Definition 4.4. We say that V is tame if its pullback along any curve
C → X is tame in the usual sense.

Remark 4.5. One can show, see [17], that for regular X tameness of
V is a birational invariant and coincides with the Grothendieck-Murre
definition of tameness [13, Def. 2.2.2] for a regular compactification
with simple normal crossings divisor at infinity.
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Let X̄ ⊃ X be an open immersion with X̄ integral, normal, proper
over Fq. Let D ∈ Div+(X̄) be an effective Cartier divisor on X̄ sup-
ported in X̄ \X.

Definition 4.6. We say that the (wild) ramification of V is bounded by
D if there is a connected étale covering φ : X ′ → X such that φ∗(V ) is
tame and such that OX̄(−D) ⊂ DX̄′/X̄ , where X̄ ′ is the normalization

of X̄ in k(X ′).

Remark 4.7. Recall that for any lisse Q̄`-étale sheaf V , there is a
Galois covering φ : X ′ → X such that φ∗(V ) is tame. Indeed, choose a
finite normal extension R of Z` such V descends to a representation on
R⊕r. Define φ to be the Galois covering which trivializes the quotient
representation on (R/mR)⊕r, where mR ⊂ R is the maximal ideal.

4.3. Semi-continuity under pullback. Let Y be a smooth curve,
Y ⊂ Ȳ be the smooth completion and f̄ : Ȳ → X̄ be a morphism with
f̄−1(X) = Y . Write f : Y → X for the restriction of f̄ .

Proposition 4.8. If the ramification of the Q̄`-sheaf V on X is bounded
by D ∈ Div+(X̄) then the ramification of f ∗(V ) is bounded by f̄ ∗(D).

Proof. Let Ŷ be an irreducible component of X̄ ′ ×X̄ Ȳ which is dom-
inant over Ȳ with its reduced subscheme structure and let Ȳ ′ be the
normalization of Ŷ . One can easily show that

f̄ \(DX̄′/X̄) ⊂ DŶ /Ȳ .

As both morphisms Ȳ ′ → Ȳ and Ŷ → Ȳ are flat, Proposition 4.3
implies

DŶ /Ȳ ⊂ ∆Ŷ /Ȳ and DȲ ′/Ȳ = ∆Ȳ ′/Ȳ .

For the discrimimant a short calculation gives

∆Ŷ /Ȳ ⊂ ∆Ȳ ′/Ȳ .

So
OȲ (−f̄ ∗D) = f̄ \(OX̄(−D)) ⊂ f̄ \(DX̄′/X̄) ⊂ DȲ ′/Ȳ .

Finally one observes that the pullback of V to Y ′ = Ȳ ′ ×Ȳ Y is tame.
�

4.4. A conductor discriminant formula. Let now X/k be a smooth
curve over the perfect base field k. Let X ⊂ X̄ be a smooth compact-
ification. Let V be a lisse Q̄`-étale sheaf on X and let φ : X ′ → X
be a connected étale covering. Denote by X̄ ′ the normalization of X̄
in k(X ′). Let D ∈ Div+(X̄) be the effective divisor associated to the
ideal sheaf DX̄′/X̄ . For x ∈ |X̄| let sx(V ) be the Swan conductor of V
at x, see [19, (2.2.1)].
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Lemma 4.9. If φ∗(V ) is tame the inequality of divisors∑
x∈|X̄|

sx(V )[x] ≤ rank(V )D

holds on X̄.

Proof. There is an injective map of sheaves on X

V → φ∗ ◦ φ∗(V )

For any x ∈ |X|
sx(V ) ≤ sx(φ∗ ◦ φ∗(V )) ≤ rank(V ) multx(D).

The second inequality follows from [20, Prop. 1(c)]. �

4.5. Bounding dimensions of cohomology groups. LetD ∈ Div+(X̄)
have support in X̄ \X.

Definition 4.10. Define the complexity of D to be

CD = 2g(X̄) + 2 deg(D) + 1

Let k be an algebraically closed field.

Proposition 4.11. For any lisse Q̄`-étale sheaf V on a connected curve
X/k with ramification bounded by D ∈ Div+(X̄), such that supp(D) =
X̄ \X, the inequality

dimQ̄` H
0
c (X, V ) + dimQ̄` H

1
c (X, V ) ≤ rank(V ) CD

holds.

Proof. Grothendieck-Ogg-Shafarevich theorem says that

χc(X, V ) = (2− 2g(X̄)) rank(V )−
∑

x∈X̄\X

deg(x)(rank(V ) + sx(V )),

see [19, Théorème 2.2.1.2]. Combining this with Lemma 4.9 gives the
proposition. �

5. Trace of Frobenius on curves

5.1. Faithfulness of trace. Let X be a separated normal scheme of
finite type over Fq. It is well known that the trace map

{ semi-simple Q̄`-sheaves on X}/iso
∏
n t
n

7−→
∏
n>0

Q̄X(Fqn )

`

is injective, see [19, Théorème 1.1.2].
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One can ask whether under some restrictions on the sheaves a finite
number of the trace functions tn is sufficient to guarantee injectivity.
Deligne’s conjectures deal with lisse Q̄`-Weil sheaves of weight 0.

For the anlogue question over number fields, with Q`-coefficients and
no weight condition, an important result was obtained by Faltings in
his proof of the Mordell conjecture [9, Theorem 3.1].

In the proof of his theorem, explained below, Deligne relies on weight
arguments from Weil II. Let X/Fq be a smooth quasi-projective con-
nected curve with smooth completion X̄/Fq. Let D ∈ Div+(X̄F) be an
effective divisor with support equal to X̄F \XF.

Theorem 5.1. (Deligne) If two semi-simple lisse Q̄`-Weil sheaves V
and V ′ of rank r, pure of weight 0 on a curve X, such that the ramifi-
cation of (V ⊕ V ′)F is bounded by D, satisfy tnV = tnV ′ for all

n ≤ 4r2dlogq(4r
2 CD)e,

then

V ∼= V ′.

Here for a real number w we let dwe be the smallest integer larger
or equal to w.

Proof. Let J be the set of isomorphism classes of lisse irreducible Q̄`-
Weil sheaves on X which are isomorphic to constituents of V ⊕ V ′.
Consider the set of equivalence classes I = J/ ∼, where for j1, j2 ∈
J , j1 ∼ j2 if and only if the sheaves associated to j1 and j2 become
isomorphic on XF. Choose representative sheaves Si on X for i ∈ I.
By Proposition 3.6 for each i ∈ I we have

Si = bmi,∗S
[
i

for positive integers mi and sheaves S[i on XFqmi .

It follows from Proposition 3.6 that there are semi-simple Q̄`-Weil
representations Wi and W ′

i pure of weight 0 over SpecFqmi such that

V =
⊕
i∈I

bmi,∗(S
[
i ⊗Q̄` Wi)

and

V ′ =
⊕
i∈I

bmi,∗(S
[
i ⊗Q̄` W

′
i ).

For n > 0 set

In = {i ∈ I, mi|n}.
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Lemma 5.2. The functions

tnSi : X(Fqn)→ Q̄` i ∈ In
are linearly independent for n ≥ 2 logq(4r

2CD).

Proof. Fix an isomorphism ι : Q̄`
∼→ C. Assume we have a linear

relation

(5.1)
∑
i∈In

λi t
n
Si

= 0, λi ∈ Q̄`,

such that not all λi are 0. Multiplying by a constant in Q̄×` , we may
assume that |ι(λi◦)| = 1 for one i◦ ∈ In and |ι(λi)| ≤ 1 for all i ∈ In.
Set

〈Si1 , Si2〉n =
∑

x∈X(Fqn )

tnHom(Si1 ,Si2 )(x)

for i1, i2 ∈ In. Observe that

tnHom(Si1 ,Si2 ) = tnS∨i1
· tnSi2 .

Multiplying (5.1) by tnS∨i◦
and summing over all x ∈ X(Fqn) one obtains

(5.2)
∑
i∈In

λi 〈Si◦ , Si〉n = 0.

Claim 5.3. One has

(i)

|ι〈Si◦ , Si〉n| ≤ rank(Si◦)rank(Si) CD qn/2

for i 6= i◦,
(ii)

|mi◦ q
n − ι〈Si◦ , Si◦〉n| ≤ rank(Si◦)

2 CD qn/2.

Proof of (i):
By [7, Théorème 3.3.1] the eigenvalues α of F n onHk

c (XF,Hom(Si◦ , Si))
for k ≤ 1 fulfill

|ια| ≤ qn/2.

On the other hand

dimQ̄`(H
0
c (XF,Hom(Si◦ , Si))) + dimQ̄`(H

1
c (XF,Hom(Si◦ , Si))) ≤
rank(Si◦)rank(Si) CD

by Proposition 4.11. Under the assumption i 6= i◦ one has

H2
c (XF,Hom(Si◦ , Si)) = HomXF(Si, Si◦)⊗ Q̄`(−1) = 0

by Poincaré duality. Putting this together and using Grothendieck’s
trace formula [19, 1.1.1.3] one obtains (i).
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Proof of (ii):
It is similar to (i) but this time we have

dimQ̄` H
2
c (XF,Hom(Si◦ , Si)) = mi◦

and for an eigenvalue α of F n on

H2
c (XF,Hom(Si◦ , Si)) = HomXF(Si, Si◦)⊗ Q̄`(−1)

we have α = qn. This finishes the proof of the claim.

Since under the assumption on n from Lemma 5.2

CD rank(Si◦)
∑
i∈In

rank(Si) < qn/2,

we get a contradiction to the linear dependence (5.1).
�

Remark 5.4. In fact, the proof of Lemma 5.2 shows that we can take
n > logq(2r

2CD), but we will not use this slight sharpening.

By Proposition 3.7 for any n ≥ 0 we have

tnV =
∑
i∈In

tnWi
tnSi

and
tnV ′ =

∑
i∈In

tnW ′i t
n
Si
.

Under the assumption of equality of traces from Theorem 5.1 and using
Lemma 5.2 we get

(5.3) Tr(F n,Wi) = Tr(F n,W ′
i ) i ∈ In

for
2 logq(4r

2CD) ≤ n ≤ 4r2dlogq(4r
2 CD)e.

In particular this means that equality (5.3) holds for

n ∈ {miA,mi (A+ 1), . . . ,mi (A+ 2r − 1)},
whereA = d2 logq(4r

2CD)e. So Lemma 5.5 applied to the set {b1, . . . , bw}
of eigenvalues of Fmi of Wi and W ′

i (so w ≤ 2r) shows that Wi = W ′
i

for all i ∈ I. �

Lemma 5.5. Let k be a field and consider elements a1, . . . , aw ∈
k, b1, · · · bw ∈ k× such that

F (n) :=
∑

1≤j≤w

aj b
n
j = 0

for 1 ≤ n ≤ w. Then F (n) = 0 for all n ∈ Z.
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Proof. Without loss of generality we can assume that the bj are pairwise
different for 1 ≤ j ≤ w. Then the Vandermonde matrix

(bnj )1≤j,n≤w

has non-vanishing determinant, which implies that aj = 0 for all j. �

5.2. Effective determination of E(V ) on curves. The following
theorem is an effective version of Deligne’s conjecture for curves. The
non-effective version was shown by Lafforgue, see Theorem 3.1. Deligne
needs this effective version in order to extend to higher dimension the
relevant part of Lafforgue’s theorem on Q̄`-sheaves on curves.

Let X, X̄ and D be as in Theorem 5.1. In particular the support of
D is equal to (X̄ \X)F.

Theorem 5.6. Let V be a lisse Q̄`-Weil sheaf on X which is pure of
weight 0 and of rank r, such that the ramification of VF is bounded
by D. Let E be the number field generated by the coefficients of the
polynomials fV (x) for x ∈ |X| with

deg(x) ≤ 4r2dlogq(4r
2 CD)e.

Then E = E(V ).

Proof. For a not necessarily continuous automorphism σ ∈ Aut(Q̄`/E)
we can use Corollary 3.4 to find a lisse Q̄`-Weil sheaf Vσ on X such
that σ fV = fVσ . By [8, Théorème 9.8] the ramification of (V ⊕ Vσ)F is
bounded by D. The definition of E implies that for

n ≤ 4r2dlogq(4r
2 CD)e

we have tnV = σ tnV = tnVσ . So by Theorem 5.1 we have tnV = tnVσ for all
n ≥ 1 and therefore tnV = σ tnV . This implies that σ acts trivially on
E(V ), so E = E(V ). �

Remark 5.7. In fact we will apply Theorem 5.6 only in the special
case X̄ = P1

Fq .

6. Proof of main theorems

In this section we prove Theorem 1.3. The idea is to find for each
point x ∈ |X| of degree n over Fq a curve C → X with a splitting x→ C
such that the complexity of C grows linearly in n. As the degree of the
points in Theorem 5.6 necessary to generate E grows logarithmically
in the complexity, this implies that for n = deg(x) large the coefficients
of fV (x) are contained in the number field generated by the coefficients
of fV (y) for y ∈ C with deg(y) < n. By a successive argument on n
we see that we can find a number field which contains all coefficients
of the fV .
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6.1. Projective space. Consider an open subscheme X ⊂ PdFq and an

effective Cartier divisor DF ∈ Div+(PdF) with support equal to (PdFq \
X)F.

Proposition 6.1. Let V be a lisse Q̄`-Weil sheaf on X of rank r which
is pure of weight 0 and with ramification of VF bounded by D. Let E be
the number field generated by the coefficients of fV (x) for x ∈ |X| with

deg(x) ≤ 4r2dlogq(8r
2 deg(x) deg(D) + 4r2)e.

Then E = E(V ). In particular E(V ) is a number field.

Proof. We prove by induction on n that for x ∈ |X| with deg(x) ≤ n
we have fV (x) ∈ E[t]. Consider a point x with deg(x) = n. If

n ≤ 4r2dlogq(8r
2n deg(D) + 4r2)e

there is nothing to show. So assume the contrary.
Let x ∈ Ad

Fq ⊂ PdFq be an open subscheme with

Ad
Fq = Spec (Fq[T1, . . . , Td]).

The point x gives rise to a homomorphism Fq[T1, . . . , Td] → Fqn . We
choose an embedding x ↪→ A1

Fq = Spec (Fq[T ]) and a lifting

φ : Fq[T1, . . . , Td]→ Fq[T ]

with deg(φ(Ti)) < n (1 ≤ i ≤ d). By projective completion we get
a morphism ψ : P1

Fq → PdFq of degree less than n extending the map
x→ X.

Consider the curve C = ψ−1(X) and the divisor DC = ψ∗(D) on P1
F.

By Proposition 4.8 the ramification of the sheaf ψ∗(VF) is bounded by
DC . Clearly CDC ≤ 2n deg(D) + 1. By Theorem 5.6 the coefficients of
fψ∗V (x) are contained in the field generated by the coefficients of the
fψ∗V (z) with z ∈ C and

deg(z) ≤ 4r2dlogq(4r
2 CDC )e.

The latter coefficients are contained in E by induction, using that

4r2dlogq(4r
2 CDC )e < n

by our assumption on x.
�
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6.2. General schemes.

Proof of Theorem 1.3. In case X is an open subscheme of PdFq the the-
orem is shown in Proposition 6.1. We will reduce to this case by in-
duction on dim(X). We can assume X is integral. By noetherian
induction, we may replace X by a dense open subscheme. So we can
assume that there is a closed immersion X ↪→ A1 ×Fq Y with Y an
open subscheme of Ad

Fq such that X → Y is finite étale.

We can think of V as an object of Db
c(A1 ×Fq Y ) concentrated in

degree 0. Fix a nontrivial character ψ : Fp → Q̄×` and let F(V ) ∈
Db
c(A1 ×Fq Y ) be the corresponding Fourier-Deligne transform of V

over the base Y , see [19]. Clearly F(V ) lives in degree −1 and is a lisse
Q̄`-Weil sheaf of weight 0 on A1 ×Fq Y . By Proposition 6.1 the field
E(F(V )) is a number field. By the trace formula [19, Théorème 1.2.1.2]
and the Fourier inversion formula [19, Théorème 1.2.2.1] it follows that

E(F(V ))(ψ(1)) = E(V )(ψ(1)),

so that E(V ) is also a number field. �

7. A Lefschetz type result for E(V )

The Tate conjecture, Conjecture 2.2, motivates to write down the fol-
lowing simple consequence of a theorem of Drinfeld [11], which itself
relies on Deligne’s Theorem 1.3.

Proposition 7.1. For X/Fq a smooth projective geometrically con-
nected scheme and H ↪→ X a smooth hypersurface section with dim(H) >
0 consider a lisse Q̄`-Weil sheaf V on X. Then E(V ) = E(V |H).

Proof. Observe that the Weil group of H surjects onto the Weil group
of X. By [11] Corollary 3.4 stays true for higher dimensional smooth
schemes X/Fq, i.e. for any σ ∈ Aut(Q̄`/Q) there exists a σ-companion
Vσ to V . So one can argue as in the proof of Theorem 3.1(ii). �

8. Appendix

In the proof of Corollary 3.2 we claim the existence of a curve with
certain properties. The Bertini argument given in [18, p. 201] for the
construction of such a curve is, as such, not correct. We give a complete
proof here relying on Hilbert irreducibility instead of Bertini.

Let X be a normal connected scheme of finite type over Fq.

Proposition 8.1. For an irreducible lisse Q̄`-étale sheaf V on X and
a closed point x ∈ X, there is an irreducible smooth curve C/Fq and a
morphism ψ : C → X such that
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• ψ∗(V ) is irreducible,
• x is in the image of ψ.

Lemma 8.2. For an irreducible Q̄`-étale sheaf V on X there is a con-
nected étale covering X ′ → X with the following property:
For a smooth irreducible curve C/Fq and a morphism ψ : C → X the
implication

C ×X X ′ irreducible =⇒ ψ∗(V ) irreducible

holds.

Proof. Choose a finite normal extension R of Z` with maximal ideal
m ⊂ R such that V is induced by a continuous representation

ρ : π1(X)→ GL(R, r).

Let H1 be the kernel of π1(X)→ GL(R/m, r) and let G be the image
of ρ. The subgroup

H2 =
⋂

ν∈Hom(H1,Z/`)

ker(ν)

is open normal in π1(X) according to [1, Th. Finitude]. Indeed observe
that H1/H2 = Hab

1 /` is Pontyagin dual to H1
ét(XH1 ,Z/`), where XH1 is

the étale covering of X associated to H1. Since the image of H1 in G is
pro-`, and therefore pro-nilpotent, any morphism of pro-finite groups
K → π1(X) satisfies:

(K → π1(X)/H2 surjective ) =⇒ (K → G surjective ).

(Use [5, Coro. I.6.3.4].)
Finally, let X ′ → X be the Galois covering corresponding to H2. �

Proof of Proposition 8.1. We can assume that X is affine. Let X ′ be
as in the lemma. By Noether normalization, e.g. [12, Corollary 16.18],
there is a finite generically étale morphism

f : X → Ad.

Let U ⊂ Ad be an open dense subscheme such that f−1(U) → U is
finite étale. Let y ∈ Ad be the image of x. There is a linear projection
π : Ad → A1 such that k(z) = k(y), where z = π(y).

Let F̂ be the complete local field corresponding to the closed point
z ∈ A1 and let F = k(A1). We write UF for the generic fibre of U over

A1. It is easy to see that there is an F̂ -point in UF which specializes
to y. By Hilbert irreducibility, see [11, Cor. A.2], we find an F -point
u ∈ UF (F ) which specializes to y and such that u does not split in X ′.
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Let v ∈ X be the unique point over u. By the going-down theorem
[6, Thm. V.2.4.3] the closure {v} contains x. Finally, we let C be the

normalization of {v}. �

Acknowledgement: We thank Pierre Deligne for his willingness to
read our notes and for his enlightening comments.
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[3] Auslander, M.; Buchsbaum, D. On ramification theory in noetherian rings,
Amer. J. Math. 81 (1959), 749–765.

[4] Beilinson, A. A.; Bernstein, J.; Deligne, P. Faisceaux pervers, Astérisque, 100,
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Nancago, No. VIII. Hermann, Paris, 1968.

Universität Duisburg-Essen, Mathematik, 45117 Essen, Germany
E-mail address: esnault@uni-due.de

Universität Duisburg-Essen, Mathematik, 45117 Essen, Germany
E-mail address: moritz.kerz@uni-due.de


