The first-order part of computational problems

Manlio Valenti
manliovalenti@gmail.com
Joint work with Giovanni Soldà
Midwest Computability Seminar
01 Nov 2022

Motivation

Motivation

$$
(P, \leq)
$$

Motivation

$$
(P, \leq)
$$

a

b

Motivation

$$
(P, \leq)
$$

a

b

Motivation

(P, \leq)

a

VI

c

Motivation

Motivation

$$
(P, \leq)
$$

Motivation

$$
(P, \leq)
$$

Motivation

(P, \leq)

If c and d are maxima (in the resp. lower cones) satisfying some property φ then

$$
c \not \leq d \Rightarrow a \not \leq b
$$

Weihrauch reducibility

Weihrauch reducibility

Computational problem: partial multi-valued function $f: \subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$ input : any $x \in \operatorname{dom}(f)$
output : any $y \in f(x)$

Weihrauch reducibility

Computational problem: partial multi-valued function $f: \subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$ input : any $x \in \operatorname{dom}(f)$
output : any $y \in f(x)$
More general spaces can be considered, but problems on $\mathbb{N}^{\mathbb{N}}$ are enough to study Weihrauch degrees.

Weihrauch reducibility

Computational problem: partial multi-valued function $f: \subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$ input : any $x \in \operatorname{dom}(f)$
output : any $y \in f(x)$
More general spaces can be considered, but problems on $\mathbb{N}^{\mathbb{N}}$ are enough to study Weihrauch degrees.
$g \leq_{\mathrm{W}} f: \Longleftrightarrow$ there are computable $\Phi, \Psi: \subseteq \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}$ s.t.

Weihrauch reducibility

Computational problem: partial multi-valued function $f: \subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$ input : any $x \in \operatorname{dom}(f)$
output : any $y \in f(x)$
More general spaces can be considered, but problems on $\mathbb{N}^{\mathbb{N}}$ are enough to study Weihrauch degrees.
$g \leq_{\mathrm{W}} f: \Longleftrightarrow$ there are computable $\Phi, \Psi: \subseteq \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}$ s.t.

- Given $p \in \operatorname{dom}(g), \Phi(p) \in \operatorname{dom}(f)$
- Given $q \in f(\Phi(p)), \Psi(p, q) \in g(p)$

Weihrauch reducibility

Computational problem: partial multi-valued function $f: \subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$ input : any $x \in \operatorname{dom}(f)$
output : any $y \in f(x)$
More general spaces can be considered, but problems on $\mathbb{N}^{\mathbb{N}}$ are enough to study Weihrauch degrees.
$g \leq_{\mathrm{W}} f: \Longleftrightarrow$ there are computable $\Phi, \Psi: \subseteq \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}$ s.t.

- Given $p \in \operatorname{dom}(g), \Phi(p) \in \operatorname{dom}(f)$
- Given $q \in f(\Phi(p)), \Psi(p, q) \in g(p)$

$g \leq_{\mathrm{sW}} f: \Longleftrightarrow g \leq_{\mathrm{W}} f$ and Ψ does not depend on p.

First-order problems

First-order problems

A computational problem $f: \subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}$ can be identified with the problem $\mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$

$$
\begin{aligned}
& \quad \underset{\oplus}{p} \mapsto\left\{q \in \mathbb{N}^{\mathbb{N}}: q(0) \in f(p)\right\} \\
& \operatorname{dom}(f)
\end{aligned}
$$

First-order problems

A computational problem $f: \subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}$ can be identified with the problem $\mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$

$$
\begin{aligned}
& \quad \underset{\substack{p \\
\operatorname{dom}(f)}}{ } \mapsto\left\{q \in \mathbb{N}^{\mathbb{N}}: q(0) \in f(p)\right\} \\
&
\end{aligned}
$$

If g has codomain Y and there is a computable injection $Y \rightarrow \mathbb{N}$ with computable inverse we say that it is first-order.

The first-order part of a problem

The first-order part of a problem
Theorem (Dzhafarov, Solomon, Yokoyama)
For every $f, \max _{\leq \mathrm{w}}\left\{g: \subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}: g \leq_{\mathrm{w}} f\right\}$ is well-defined.

The first-order part of a problem
Theorem (Dzhafarov, Solomon, Yokoyama)
For every $f, \max _{\leq_{\mathrm{w}}}\left\{g: \subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}: g \leq_{\mathrm{w}} f\right\}$ is well-defined.
Proof.
Assume $g: \subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}$ is s.t. $g \leq_{\mathrm{W}} f$ via Φ, Ψ.

The first-order part of a problem

Theorem (Dzhafarov, Solomon, Yokoyama)
For every $f, \max _{\leq_{\mathrm{w}}}\left\{g: \subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}: g \leq_{\mathrm{w}} f\right\}$ is well-defined.
Proof.
Assume $g: \subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}$ is s.t. $g \leq_{\mathrm{W}} f$ via Φ, Ψ.
Φ maps $p \in \operatorname{dom}(g)$ to an input for f.

The first-order part of a problem

Theorem (Dzhafarov, Solomon, Yokoyama)
For every $f, \max _{\leq_{\mathrm{w}}}\left\{g: \subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}: g \leq_{\mathrm{w}} f\right\}$ is well-defined.
Proof.
Assume $g: \subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}$ is s.t. $g \leq_{\mathrm{W}} f$ via Φ, Ψ.
Φ maps $p \in \operatorname{dom}(g)$ to an input for f.
Given p, we can uniformly compute an index $w \in \mathbb{N}^{\mathbb{N}}$ for the map $q \mapsto \Psi(p, q)$.

The first-order part of a problem

Theorem (Dzhafarov, Solomon, Yokoyama)
For every $f, \max _{\leq \mathrm{w}}\left\{g: \subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}: g \leq_{\mathrm{w}} f\right\}$ is well-defined.
Proof.
Assume $g: \subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}$ is s.t. $g \leq_{\mathrm{W}} f$ via Φ, Ψ.
Φ maps $p \in \operatorname{dom}(g)$ to an input for f.
Given p, we can uniformly compute an index $w \in \mathbb{N}^{\mathbb{N}}$ for the map $q \mapsto \Psi(p, q)$.
$g(p) \subset \mathbb{N}$, hence for every $q \in f(\Phi(p))$,

$$
\Phi_{w}(q)(0)=\Psi(p, q)(0) \downarrow \in g(p)
$$

The first-order part of a problem

Theorem (Dzhafarov, Solomon, Yokoyama)
For every $f, \max _{\leq \mathrm{w}}\left\{g: \subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}: g \leq_{\mathrm{W}} f\right\}$ is well-defined.
Proof.
Define ${ }^{1} f: \subseteq \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}$ as

$$
{ }^{1} f(w, x):=\left\{\Phi_{w}(q)(0): q \in f(x)\right\} .
$$

Intuitively: ${ }^{1} f$ behaves just like f
but stops at the first digit!

The first-order part of a problem

Theorem (Dzhafarov, Solomon, Yokoyama)
For every $f, \max _{\leq_{\mathrm{w}}}\left\{g: \subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}: g \leq_{\mathrm{w}} f\right\}$ is well-defined.
Proof.
Define ${ }^{1} f: \subseteq \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}$ as

$$
{ }^{1} f(w, x):=\left\{\Phi_{w}(q)(0): q \in f(x)\right\} .
$$

Intuitively: ${ }^{1} f$ behaves just like f but stops at the first digit!

It follows that $g \leq_{\mathrm{W}}{ }^{1} f \leq_{\mathrm{W}} f$.

The first-order part of a problem

For $f: \subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$, we define ${ }^{1} f: \subseteq \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}$ as:
input : (w, x) s.t. $x \in \operatorname{dom}(f)$ and, for every solution $q \in f(x), \Phi_{w}(q)(0) \downarrow$
output : any n s.t. $\Phi_{w}(q)(0)=n$ for some $q \in f(x)$

The first-order part of a problem

For $f: \subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$, we define ${ }^{1} f: \subseteq \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}$ as:
input : (w, x) s.t. $x \in \operatorname{dom}(f)$ and, for every solution

$$
q \in f(x), \Phi_{w}(q)(0) \downarrow
$$

output : any n s.t. $\Phi_{w}(q)(0)=n$ for some $q \in f(x)$
${ }^{1}(\cdot)$ is an interior operator:

- ${ }^{1}\left({ }^{1} f\right) \equiv{ }_{\mathrm{W}}{ }^{1} f \leq_{\mathrm{W}} f$
- $f \leq_{\mathrm{W}} g \Rightarrow{ }^{1} f \leq_{\mathrm{W}}{ }^{1} g$

In particular, ${ }^{1} f \not \equiv_{\mathrm{W}}{ }^{1} g \Rightarrow f \not \equiv{ }_{\mathrm{W}} g$.

Computing prefixes

${ }^{1} f$ computes "sufficiently long" prefixes of solutions.

Computing prefixes

${ }^{1} f$ computes "sufficiently long" prefixes of solutions.

Computing prefixes

${ }^{1} f$ computes "sufficiently long" prefixes of solutions.

By the continuity of $\Phi_{w}=\Psi(p, \cdot)$, only a prefix of q is needed to solve g.
$q[n]$ is sufficiently long so that Φ_{w} converges on 0 .

A few benchmarks

A few benchmarks

Choice problems are pivotal in the Weihrauch lattice.
Given $A \neq \emptyset$ (with some properties), find $x \in A$.

A few benchmarks

Choice problems are pivotal in the Weihrauch lattice.
Given $A \neq \emptyset$ (with some properties), find $x \in A$.
C_{k} : given a sequence in $(k+1)^{\mathbb{N}}$, find a number that is not enumerated.

A few benchmarks

Choice problems are pivotal in the Weihrauch lattice.
Given $A \neq \emptyset$ (with some properties), find $x \in A$.
C_{k} : given a sequence in $(k+1)^{\mathbb{N}}$, find a number that is not enumerated.
$\mathrm{C}_{\mathbb{N}}$: same as C_{k} but with no bound.

A few benchmarks

Choice problems are pivotal in the Weihrauch lattice.
Given $A \neq \emptyset$ (with some properties), find $x \in A$.
C_{k} : given a sequence in $(k+1)^{\mathbb{N}}$, find a number that is not enumerated.
$\mathrm{C}_{\mathbb{N}}$: same as C_{k} but with no bound.
$\mathrm{C}_{2^{\mathbb{N}}}$: given a tree $T \subset 2^{<\mathbb{N}}$, find a path $p \in[T](\mathrm{WKL})$.

A few benchmarks

Choice problems are pivotal in the Weihrauch lattice.
Given $A \neq \emptyset$ (with some properties), find $x \in A$.
C_{k} : given a sequence in $(k+1)^{\mathbb{N}}$, find a number that is not enumerated.
$\mathrm{C}_{\mathbb{N}}$: same as C_{k} but with no bound.
$\mathrm{C}_{2^{\mathbb{N}}}$: given a tree $T \subset 2^{<\mathbb{N}}$, find a path $p \in[T](\mathrm{WKL})$.
$\mathcal{C}_{\mathbb{N}^{\mathbb{N}}}$: given a tree $T \subset \mathbb{N}^{<\mathbb{N}}$, find a path $p \in[T]$.

A few benchmarks

Choice problems are pivotal in the Weihrauch lattice.
Given $A \neq \emptyset$ (with some properties), find $x \in A$.
C_{k} : given a sequence in $(k+1)^{\mathbb{N}}$, find a number that is not enumerated.
$\mathrm{C}_{\mathbb{N}}$: same as C_{k} but with no bound.
$\mathrm{C}_{2^{\mathbb{N}}}$: given a tree $T \subset 2^{<\mathbb{N}}$, find a path $p \in[T](\mathrm{WKL})$.
$\mathcal{C}_{\mathbb{N}^{\mathbb{N}}}$: given a tree $T \subset \mathbb{N}^{<\mathbb{N}}$, find a path $p \in[T]$.
$\boldsymbol{\Sigma}_{1}^{1}-\mathrm{C}_{\mathbb{N}}$: given a list of subtrees of $\mathbb{N}<\mathbb{N}$, find the index of an ill-founded one.

Operations on problems

Operations on problems

$f \times g \quad$: solve f and g in parallel

Operations on problems

$f \times g \quad$: \quad solve f and g in parallel
$f^{*} \quad: \quad$ solve finitely many instances of f in parallel

Operations on problems

$f \times g \quad$: \quad solve f and g in parallel
$f^{*} \quad: \quad$ solve finitely many instances of f in parallel
$\widehat{f} \quad$: solve infinitely many instances of f in parallel

Operations on problems

$f \times g \quad$: \quad solve f and g in parallel
$f^{*} \quad$: solve finitely many instances of f in parallel
$\widehat{f} \quad$: solve infinitely many instances of f in parallel
$f * g \quad: \quad$ solve g, apply some computable functional, then solve f

Operations on problems

$f \times g \quad$: \quad solve f and g in parallel
$f^{*} \quad$: solve finitely many instances of f in parallel
$\widehat{f} \quad: \quad$ solve infinitely many instances of f in parallel
$f * g \quad$: solve g, apply some computable functional, then solve f
f^{\prime} : jump in the Weihrauch lattice
name of input: a sequence $\left(p_{n}\right)_{n \in \mathbb{N}}$ in $\mathbb{N}^{\mathbb{N}}$ s.t. $\lim _{n} p_{n}$ is a name for an instance x of f; output: $f(x)$

Examples

- (Brattka, Pauly) if f is densely realized (for every $p, f(p)$ is dense) then ${ }^{1} f \leq_{\mathrm{W}}$ id. Examples: "given p, produce q which is non-computable/non-hyp/ML-random relative to p ".

Examples

- (Brattka, Pauly) if f is densely realized (for every $p, f(p)$ is dense) then ${ }^{1} f \leq_{\mathrm{W}}$ id. Examples: "given p, produce q which is non-computable/non-hyp/ML-random relative to p ".
- (Brattka, Gherardi, Marcone) ${ }^{1} \lim \equiv{ }_{W} C_{\mathbb{N}}$:

Examples

- (Brattka, Pauly) if f is densely realized (for every $p, f(p)$ is dense) then ${ }^{1} f \leq_{\mathrm{W}}$ id. Examples: "given p, produce q which is non-computable/non-hyp/ML-random relative to p ".
- (Brattka, Gherardi, Marcone) ${ }^{1} \lim \equiv{ }_{W} C_{\mathbb{N}}$:

Given $\left(p_{n}\right)_{n \in \mathbb{N}}$, for each i we can compute $\lim _{n} p_{n}(i)$ with finitely many mind changes.

Examples

- (Brattka, Pauly) if f is densely realized (for every $p, f(p)$ is dense) then ${ }^{1} f \leq_{\mathrm{W}}$ id. Examples: "given p, produce q which is non-computable/non-hyp/ML-random relative to p ".
- (Brattka, Gherardi, Marcone) ${ }^{1} \lim \equiv{ }_{W} C_{\mathbb{N}}$:

Given $\left(p_{n}\right)_{n \in \mathbb{N}}$, for each i we can compute $\lim _{n} p_{n}(i)$ with finitely many mind changes.

Being $\leq_{W} C_{\mathbb{N}}$ corresponds to being uniformly computable with finitely many mind changes, hence ${ }^{1} \lim \leq_{W} C_{\mathbb{N}}$. The other reduction follows from $\lim \equiv_{W} \widehat{C_{\mathbb{N}}}$.

Examples

Examples

- (Dzhafarov, Solomon, Yokoyama) ${ }^{1} \mathrm{WWKL} \equiv{ }_{\mathrm{W}}{ }^{1} \mathrm{WKL} \equiv \mathrm{W}_{\mathrm{W}} \mathrm{C}_{2}^{*}$: exploits the compactness of $2^{\mathbb{N}}$.

Examples

- (Dzhafarov, Solomon, Yokoyama) ${ }^{1} \mathrm{WWKL} \equiv{ }_{\mathrm{W}}{ }^{1} \mathrm{WKL} \equiv \mathrm{W}_{2}^{*}$: exploits the compactness of $2^{\mathbb{N}}$.
- (Goh, Pauly, V.) ${ }^{1} \mathrm{C}_{\mathbb{N}^{\mathbb{N}}} \equiv{ }_{\mathrm{W}} \boldsymbol{\Sigma}_{1}^{1} \mathrm{C}_{\mathbb{N}}$:

Given a tree $T \subset \mathbb{N}^{<\mathbb{N}}$, we look for a sufficiently long σ that extends to a path in T ($\Sigma_{1}^{1, T}$ condition).

Examples

- (Dzhafarov, Solomon, Yokoyama) ${ }^{1} \mathrm{WWKL} \equiv{ }_{\mathrm{W}}{ }^{1} \mathrm{WKL} \equiv \mathrm{W}_{2}^{*}$: exploits the compactness of $2^{\mathbb{N}}$.
- (Goh, Pauly, V.) ${ }^{1} \mathrm{C}_{\mathbb{N}^{\mathbb{N}}} \equiv{ }_{\mathrm{W}} \boldsymbol{\Sigma}_{1}^{1} \mathrm{C}_{\mathbb{N}}$:

Given a tree $T \subset \mathbb{N}^{<\mathbb{N}}$, we look for a sufficiently long σ that extends to a path in T ($\Sigma_{1}^{1, T}$ condition).

How about $\boldsymbol{\Pi}_{1}^{1}-\mathrm{CA} \equiv_{\mathrm{W}} \widehat{W F}$?

Examples

- (Dzhafarov, Solomon, Yokoyama) ${ }^{1} \mathrm{WWKL} \equiv{ }_{\mathrm{W}}{ }^{1} \mathrm{WKL} \equiv \mathrm{W}_{2}^{*}$: exploits the compactness of $2^{\mathbb{N}}$.
- (Goh, Pauly, V.) ${ }^{1} \mathrm{C}_{\mathbb{N}^{\mathbb{N}}} \equiv{ }_{\mathrm{W}} \boldsymbol{\Sigma}_{1}^{1} \mathrm{C}_{\mathbb{N}}$:

Given a tree $T \subset \mathbb{N}^{<\mathbb{N}}$, we look for a sufficiently long σ that extends to a path in T ($\Sigma_{1}^{1, T}$ condition).

How about $\boldsymbol{\Pi}_{1}^{1}-\mathrm{CA} \equiv_{\mathrm{W}} \widehat{\mathrm{WF}}$?
Is there a general rule?

FOP and parallelization

Assume $f=\widehat{g}$ for some first-order g.
Can we characterize ${ }^{1} f$ in terms of g ?

FOP and parallelization

Assume $f=\widehat{g}$ for some first-order g.
Can we characterize ${ }^{1} f$ in terms of g ?

$$
\begin{gathered}
\lim \equiv{ }_{\mathrm{W}} \widehat{\mathrm{C}_{\mathbb{N}}} \longrightarrow{ }^{1} \lim \equiv{ }_{\mathrm{W}} \mathrm{C}_{\mathbb{N}} \equiv{ }_{\mathrm{W}} \mathrm{C}_{\mathbb{N}}^{*} \\
\mathrm{WKL} \equiv_{\mathrm{W}} \widehat{\mathrm{C}_{2}} \longrightarrow{ }^{1} \mathrm{WKL} \equiv{ }_{\mathrm{W}} \mathrm{C}_{2}^{*}
\end{gathered}
$$

FOP and parallelization

Assume $f=\widehat{g}$ for some first-order g.
Can we characterize ${ }^{1} f$ in terms of g ?

$$
\begin{gathered}
\lim \equiv{ }_{\mathrm{W}} \widehat{\mathrm{C}_{\mathbb{N}}} \longrightarrow{ }^{1} \lim \equiv{ }_{\mathrm{W}} \mathrm{C}_{\mathbb{N}} \equiv{ }_{\mathrm{W}} \mathrm{C}_{\mathbb{N}}^{*} \\
\mathrm{WKL} \equiv_{\mathrm{W}} \widehat{\mathrm{C}_{2}} \longrightarrow{ }^{1} \mathrm{WKL} \equiv{ }_{\mathrm{W}} \mathrm{C}_{2}^{*}
\end{gathered}
$$

Guess: ${ }^{1} f \equiv \mathrm{w} g^{*}$

FOP and parallelization

Assume $f=\widehat{g}$ for some first-order g.
Can we characterize ${ }^{1} f$ in terms of g ?

$$
\begin{gathered}
\lim \equiv{ }_{\mathrm{W}} \widehat{\mathrm{C}_{\mathbb{N}}} \longrightarrow{ }^{1} \lim \equiv{ }_{\mathrm{W}} \mathrm{C}_{\mathbb{N}} \equiv{ }_{\mathrm{W}} \mathrm{C}_{\mathbb{N}}^{*} \\
\mathrm{WKL} \equiv_{\mathrm{W}} \widehat{\mathrm{C}_{2}} \longrightarrow{ }^{1} \mathrm{WKL} \equiv_{\mathrm{W}} \mathrm{C}_{2}^{*}
\end{gathered}
$$

Guess: ${ }^{1} f \equiv \mathrm{w} g^{*}$
This doesn't quite work: consider
"Given a sequence of trees in $\mathbb{N}<\mathbb{N}$, return 0 if they are all well-founded, or return $i+1$ s.t. the i-th tree is ill-founded"

FOP and parallelization

Assume $f=\widehat{g}$ for some first-order g.
Can we characterize ${ }^{1} f$ in terms of g ?

$$
\begin{gathered}
\lim \equiv{ }_{\mathrm{W}} \widehat{\mathrm{C}_{\mathbb{N}}} \longrightarrow{ }^{1} \lim \equiv{ }_{\mathrm{W}} \mathrm{C}_{\mathbb{N}} \equiv{ }_{\mathrm{W}} \mathrm{C}_{\mathbb{N}}^{*} \\
\mathrm{WKL} \equiv_{\mathrm{W}} \widehat{\mathrm{C}_{2}} \longrightarrow{ }^{1} \mathrm{WKL} \equiv_{\mathrm{W}} \mathrm{C}_{2}^{*}
\end{gathered}
$$

Guess: ${ }^{1} f \equiv \mathrm{w} g^{*}$
This doesn't quite work: consider
"Given a sequence of trees in $\mathbb{N}<\mathbb{N}$, return 0 if they are all well-founded, or return $i+1$ s.t. the i-th tree is ill-founded"
Π_{1}^{1}-CA can solve it, but WF* cannot.

The unbounded-* operator

We define the unbounded finite parallelization. Intuitively: just like $(\cdot)^{*}$, but with no commitment to the number of instances.

The unbounded-* operator

We define the unbounded finite parallelization. Intuitively: just like $(\cdot)^{*}$, but with no commitment to the number of instances.

For $f: \subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$
$f^{u *}: \subseteq \mathbb{N}^{\mathbb{N}} \times\left(\mathbb{N}^{\mathbb{N}}\right)^{\mathbb{N}} \rightrightarrows\left(\mathbb{N}^{\mathbb{N}}\right)^{<\mathbb{N}}$ is the following problem:

$$
\begin{aligned}
\left(w,\left(x_{n}\right)_{n \in \mathbb{N}}\right) \mapsto\left\{\left(y_{n}\right)_{n<k}:\right. & (\forall n<k)\left(y_{n} \in f\left(x_{n}\right)\right) \text { and } \\
& \left.\Phi_{w}\left(\left\langle y_{n}\right\rangle_{n<k}\right)(0) \downarrow\right\}
\end{aligned}
$$

The unbounded-* operator

We define the unbounded finite parallelization. Intuitively: just like $(\cdot)^{*}$, but with no commitment to the number of instances.

For $f: \subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$
$f^{u *}: \subseteq \mathbb{N}^{\mathbb{N}} \times\left(\mathbb{N}^{\mathbb{N}}\right)^{\mathbb{N}} \rightrightarrows\left(\mathbb{N}^{\mathbb{N}}\right)^{<\mathbb{N}}$ is the following problem:

$$
\begin{aligned}
\left(w,\left(x_{n}\right)_{n \in \mathbb{N}}\right) \mapsto\left\{\left(y_{n}\right)_{n<k}:\right. & (\forall n<k)\left(y_{n} \in f\left(x_{n}\right)\right) \text { and } \\
& \left.\Phi_{w}\left(\left\langle y_{n}\right\rangle_{n<k}\right)(0) \downarrow\right\}
\end{aligned}
$$

$(\cdot)^{u *}$ is a closure operator:

- $f \leq_{\mathrm{w}} f^{u *} \equiv_{\mathrm{W}}\left(f^{u *}\right)^{u *}$
- $f \leq_{\mathrm{w}} g \Rightarrow f^{u *} \leq_{\mathrm{w}} g^{u *}$

Moreover $f^{*} \leq_{\mathrm{W}} f^{u *} \leq_{\mathrm{W}} \widehat{f}$

FOP and parallelization

Theorem (Soldà, V.)
For every $f,{ }^{1}(\widehat{f}) \equiv{ }_{\mathrm{W}}{ }^{1}\left(f^{u *}\right)$.

FOP and parallelization

Theorem (Soldà, V.)
For every $f,{ }^{1}(\widehat{f}) \equiv \mathrm{W}^{1}\left(f^{u *}\right)$.
Proof (Sketch):

FOP and parallelization

Theorem (Soldà, V.)
For every $f,{ }^{1}(\widehat{f}) \equiv{ }_{\mathrm{W}}{ }^{1}\left(f^{u *}\right)$.
Proof (Sketch): ${ }^{1}\left(f^{u *}\right) \leq \mathrm{W}^{1}(\widehat{f})$ is easy as $f^{u *} \leq_{\mathrm{W}} \widehat{f}$.

FOP and parallelization

Theorem (Soldà, V.)
For every $f,{ }^{1}(\widehat{f}) \equiv \mathrm{W}^{1}\left(f^{u *}\right)$.
Proof (Sketch): ${ }^{1}\left(f^{u *}\right) \leq \mathrm{W}^{1}(\widehat{f})$ is easy as $f^{u *} \leq \mathrm{W} \widehat{f}$.
${ }^{1}(\widehat{f}) \leq{ }_{\mathrm{W}}{ }^{1}\left(f^{u *}\right)$: let $\left(w,\left(x_{n}\right)_{n}\right)$ be an input for ${ }^{1}(\widehat{f})$.

FOP and parallelization

Theorem (Soldà, V.)
For every $f,{ }^{1}(\widehat{f}) \equiv{ }_{\mathrm{W}}{ }^{1}\left(f^{u *}\right)$.
Proof (Sketch): ${ }^{1}\left(f^{u *}\right) \leq_{\mathrm{W}}{ }^{1}(\widehat{f})$ is easy as $f^{u *} \leq_{\mathrm{W}} \widehat{f}$.
${ }^{1}(\widehat{f}) \leq \mathrm{w}^{1}\left(f^{u *}\right):$ let $\left(w,\left(x_{n}\right)_{n}\right)$ be an input for ${ }^{1}(\widehat{f})$.

$$
f\left(x_{0}\right) \quad f\left(x_{1}\right) \quad f\left(x_{2}\right) \quad f\left(x_{3}\right) \quad f\left(x_{4}\right) \quad \ldots
$$

FOP and parallelization

Theorem (Soldà, V.)
For every $f,{ }^{1}(\widehat{f}) \equiv \mathrm{W}^{1}\left(f^{u *}\right)$.
Proof (Sketch): ${ }^{1}\left(f^{u *}\right) \leq \mathrm{W}^{1}(\widehat{f})$ is easy as $f^{u *} \leq \mathrm{W} \widehat{f}$.
${ }^{1}(\widehat{f}) \leq{ }_{\mathrm{W}}{ }^{1}\left(f^{u *}\right)$: let $\left(w,\left(x_{n}\right)_{n}\right)$ be an input for ${ }^{1}(\widehat{f})$.

$$
f\left(x_{0}\right) \quad f\left(x_{1}\right) \quad f\left(x_{2}\right) \quad f\left(x_{3}\right) \quad f\left(x_{4}\right) \quad \ldots
$$

FOP and parallelization

Theorem (Soldà, V.)
For every $f,{ }^{1}(\widehat{f}) \equiv \mathrm{W}^{1}\left(f^{u *}\right)$.
Proof (Sketch): ${ }^{1}\left(f^{u *}\right) \leq_{\mathrm{W}}{ }^{1}(\widehat{f})$ is easy as $f^{u *} \leq_{\mathrm{W}} \widehat{f}$.
${ }^{1}(\widehat{f}) \leq{ }_{\mathrm{W}}{ }^{1}\left(f^{u *}\right)$: let $\left(w,\left(x_{n}\right)_{n}\right)$ be an input for ${ }^{1}(\widehat{f})$.

$$
f\left(x_{0}\right) \quad f\left(x_{1}\right) \quad f\left(x_{2}\right) \quad f\left(x_{3}\right) \quad f\left(x_{4}\right) \quad \ldots
$$

Φ_{w} selects a prefix of a solution.

This corresponds to selecting finitely many columns.

FOP and parallelization

Theorem (Soldà, V.)
For every f, if $f \equiv_{\mathrm{W}} \widehat{g}$ for some first-order g, then

$$
{ }^{1} f \equiv{ }_{\mathrm{W}}{ }^{1}\left(g^{u *}\right) \equiv_{\mathrm{W}}\left({ }^{1} g\right)^{u *} \equiv_{\mathrm{W}} g^{u *}
$$

If $\mathrm{id} \leq_{\mathrm{sW}} f$ then this lifts to jumps: for every n

$$
{ }^{1}\left(f^{(n)}\right) \equiv_{\mathrm{sW}}\left(g^{u *}\right)^{(n)}
$$

FOP and parallelization

Theorem (Soldà, V.)
For every f, if $f \equiv_{\mathrm{W}} \widehat{g}$ for some first-order g, then

$$
{ }^{1} f \equiv{ }_{\mathrm{W}}{ }^{1}\left(g^{u *}\right) \equiv_{\mathrm{W}}\left({ }^{1} g\right)^{u *} \equiv_{\mathrm{W}} g^{u *}
$$

If $\mathrm{id} \leq_{\mathrm{sW}} f$ then this lifts to jumps: for every n

$$
{ }^{1}\left(f^{(n)}\right) \equiv_{\mathrm{sW}}\left(g^{u *}\right)^{(n)}
$$

In other words: ${ }^{1}(\cdot)$ and $(\cdot)^{u *}$ commute for first-order problems.

FOP and parallelization

Theorem (Soldà, V.)
For every f, if $f \equiv \mathrm{~W} \widehat{g}$ for some first-order g, then

$$
{ }^{1} f \equiv_{\mathrm{W}}{ }^{1}\left(g^{u *}\right) \equiv_{\mathrm{W}}\left({ }^{1} g\right)^{u *} \equiv_{\mathrm{W}} g^{u *}
$$

If id $\leq_{\mathrm{sw}} f$ then this lifts to jumps: for every n

$$
{ }^{1}\left(f^{(n)}\right) \equiv_{\mathrm{sW}}\left(g^{u *}\right)^{(n)}
$$

In other words: ${ }^{1}(\cdot)$ and $(\cdot)^{u *}$ commute for first-order problems. Is this peculiar of first-order problems?

FOP and unbounded-*

Remark: let $\left(w,\left(x_{n}\right)_{n}\right)$ be an input for ${ }^{1}(\widehat{f})$.

FOP and unbounded-*

Remark: let $\left(w,\left(x_{n}\right)_{n}\right)$ be an input for ${ }^{1}(\widehat{f})$.

$$
f\left(x_{0}\right) \quad f\left(x_{1}\right) \quad f\left(x_{2}\right) \quad f\left(x_{3}\right) \quad f\left(x_{4}\right) \quad \ldots
$$

Φ_{w} selects a prefix of a solution.

FOP and unbounded-*

Remark: let $\left(w,\left(x_{n}\right)_{n}\right)$ be an input for ${ }^{1}(\widehat{f})$.

$$
f\left(x_{0}\right) \quad f\left(x_{1}\right) \quad f\left(x_{2}\right) \quad f\left(x_{3}\right) \quad f\left(x_{4}\right) \quad \ldots
$$

Φ_{w} selects a prefix of a solution.
The prefix of $f\left(x_{i}\right)$ may depend on the solution to x_{j}.

FOP and unbounded-*

On the other hand, an input for $\left({ }^{1} f\right)^{u *}$ is $\left(w,\left(w_{n}, x_{n}\right)_{n}\right)$ s.t.

$$
f\left(x_{0}\right) \quad f\left(x_{1}\right) \quad f\left(x_{2}\right) \quad f\left(x_{3}\right) \quad f\left(x_{4}\right) \quad \ldots
$$

FOP and unbounded-*

On the other hand, an input for $\left({ }^{1} f\right)^{u *}$ is $\left(w,\left(w_{n}, x_{n}\right)_{n}\right)$ s.t.

- for every $n, \Phi_{w_{n}}$ selects a prefix of $f\left(x_{n}\right)$

$$
f\left(x_{0}\right) \quad f\left(x_{1}\right) \quad f\left(x_{2}\right) \quad f\left(x_{3}\right) \quad f\left(x_{4}\right)
$$

FOP and unbounded-*

On the other hand, an input for $\left({ }^{1} f\right)^{u *}$ is $\left(w,\left(w_{n}, x_{n}\right)_{n}\right)$ s.t.

- for every $n, \Phi_{w_{n}}$ selects a prefix of $f\left(x_{n}\right)$
- Φ_{w} selects "finitely many prefixes"

FOP and unbounded-*

On the other hand, an input for $\left({ }^{1} f\right)^{u *}$ is $\left(w,\left(w_{n}, x_{n}\right)_{n}\right)$ s.t.

- for every $n, \Phi_{w_{n}}$ selects a prefix of $f\left(x_{n}\right)$
- Φ_{w} selects "finitely many prefixes"

The prefix of $f\left(x_{i}\right)$ is independent of the solution of x_{j}.

FOP and unbounded-*

In some cases, we have a work around. E.g. if $f: \subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$ is finitely valued (for every $p \in \operatorname{dom}(f),|f(p)|<\infty$) then

$$
{ }^{1}(\widehat{f}) \equiv \equiv_{\mathrm{W}}\left({ }^{1} f\right)^{u *}
$$

FOP and unbounded-*

In some cases, we have a work around. E.g. if $f: \subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$ is finitely valued (for every $p \in \operatorname{dom}(f),|f(p)|<\infty)$ then

$$
{ }^{1}(\widehat{f}) \equiv \equiv_{\mathrm{W}}\left({ }^{1} f\right)^{u *}
$$

Proposition (Soldà, V.)
There is f s.t. ${ }^{1}(\widehat{f}) \not \mathbf{L W}_{\mathrm{W}}\left({ }^{1} f\right)^{u *}$.

FOP and unbounded-*

In some cases, we have a work around. E.g. if $f: \subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$ is finitely valued (for every $p \in \operatorname{dom}(f),|f(p)|<\infty)$ then

$$
{ }^{1}(\widehat{f}) \equiv{ }_{\mathrm{W}}\left({ }^{1} f\right)^{u *}
$$

Proposition (Soldà, V.)
There is f s.t. ${ }^{1}(\widehat{f}) \not \mathbf{Z W}_{\mathrm{W}}\left({ }^{1} f\right)^{u *}$.

Lemma

There are two sequences $\left(A_{n}\right)_{n \in \mathbb{N}}$ and $\left(B_{n}\right)_{n \in \mathbb{N}}$ of subsets of \mathbb{N} s.t.

- for every n, $\emptyset^{\prime} \not \mathbb{Z}_{T} A_{n}$, $\emptyset^{\prime} \not \mathbb{Z}_{T} B_{n}$, but $\emptyset^{\prime} \leq_{T} A_{n} \oplus B_{n}$;
- for every n and every computable functional Ψ s.t. $\emptyset^{\prime}=$ $\Psi\left(\left\langle A_{i}\right\rangle, B_{n}\right)$, the map sending x to the prefix of B_{n} used in the computation of $\emptyset^{\prime}(x)$ is not B_{n}-computable.

Applications

Applications

- $\lim \equiv_{W} \widehat{C_{\mathbb{N}}} \equiv{ }_{W} \widehat{L P O}$.

Applications

- $\lim \equiv{ }_{W} \widehat{C_{\mathbb{N}}} \equiv_{W} \widehat{\mathrm{LPO}}$. Since $\mathrm{C}_{\mathbb{N}} \equiv_{\mathrm{W}} \mathrm{C}_{\mathbb{N}}^{u *}$ (Neumann, Pauly)

$$
{ }^{1}(\lim) \equiv{ }_{W} \mathrm{C}_{\mathbb{N}} \equiv_{\mathrm{W}} \mathrm{LPO}^{u *}
$$

Applications

- $\lim \equiv{ }_{W} \widehat{C_{\mathbb{N}}} \equiv_{W} \widehat{\text { LPO }}$. Since $C_{\mathbb{N}} \equiv{ }_{W} C_{\mathbb{N}}^{u *}$ (Neumann, Pauly)

$$
{ }^{1}(\lim) \equiv_{\mathrm{W}} \mathrm{C}_{\mathbb{N}} \equiv_{\mathrm{W}} \mathrm{LPO}^{u *}
$$

This lifts to jumps: for every n

$$
{ }^{1}\left(\lim ^{(n)}\right) \equiv \mathrm{W}_{\mathbb{N}}^{(n)} \equiv \mathrm{W}\left(\mathrm{LPO}^{(n)}\right)^{u *}
$$

Applications

- $\lim \equiv_{W} \widehat{C_{\mathbb{N}}} \equiv_{W} \widehat{\text { LPO. }}$. Since $C_{\mathbb{N}} \equiv_{W} C_{\mathbb{N}}^{u *}$ (Neumann, Pauly)

$$
{ }^{1}(\lim) \equiv_{\mathrm{W}} \mathrm{C}_{\mathbb{N}} \equiv_{\mathrm{W}} \mathrm{LPO}^{u *}
$$

This lifts to jumps: for every n

$$
{ }^{1}\left(\lim ^{(n)}\right) \equiv \mathrm{W}_{\mathbb{N}}^{(n)} \equiv \mathrm{W}\left(\mathrm{LPO}^{(n)}\right)^{u *}
$$

- $\Pi_{1}^{1}-\mathrm{CA} \equiv_{\mathrm{W}} \widehat{\mathrm{WF}}$, hence ${ }^{1} \Pi_{1}^{1}-C A \equiv_{\mathrm{W}} W \mathrm{FF}^{u *}$.

The diamond operator

(Neumann, Pauly) f^{\diamond} (roughly): "computation using f as oracle"

The diamond operator

(Neumann, Pauly) f^{\diamond} (roughly): "computation using f as oracle"
(Hirschfeldt, Jockusch): define the game $G(f \rightarrow g)$

$$
\text { Player } 1 \quad \text { Player } 2
$$

The diamond operator

(Neumann, Pauly) f^{\diamond} (roughly): "computation using f as oracle"
(Hirschfeldt, Jockusch): define the game $G(f \rightarrow g)$

$$
\begin{array}{ll}
\text { Player } 1 & \text { Player 2 } \\
p \in \operatorname{dom}(g) &
\end{array}
$$

The diamond operator

(Neumann, Pauly) f^{\diamond} (roughly): "computation using f as oracle"
(Hirschfeldt, Jockusch): define the game $G(f \rightarrow g)$

$$
\begin{array}{lc}
\text { Player } 1 & \text { Player } 2 \\
p \in \operatorname{dom}(g) & \\
& p \text {-computable } q \in g(p) \text { and wins }
\end{array}
$$

The diamond operator

(Neumann, Pauly) f^{\diamond} (roughly): "computation using f as oracle"
(Hirschfeldt, Jockusch): define the game $G(f \rightarrow g)$

$$
\begin{array}{lc}
\begin{array}{l}
\text { Player } 1 \\
p \in \operatorname{dom}(g)
\end{array} & \text { Player } 2 \\
& p \text {-computable } q \in g(p) \text { and } \\
p \text {-computable } x_{1} \in \operatorname{dom}(f)
\end{array}
$$

The diamond operator

(Neumann, Pauly) f^{\diamond} (roughly): "computation using f as oracle"
(Hirschfeldt, Jockusch): define the game $G(f \rightarrow g)$

$$
\begin{array}{lc}
\text { Player } 1 & \text { Player } 2 \\
p \in \operatorname{dom}(g) & p \text {-computable } q \in g(p) \text { and wins OR } \\
p \text {-computable } x_{1} \in \operatorname{dom}(f)
\end{array}
$$

The diamond operator

(Neumann, Pauly) f^{\diamond} (roughly): "computation using f as oracle"
(Hirschfeldt, Jockusch): define the game $G(f \rightarrow g)$

$$
\begin{array}{cc}
\text { Player } 1 & \text { Player 2 } \\
p \in \operatorname{dom}(g) & p \text {-computable } q \in g(p) \text { and wins OR } \\
p \text {-computable } x_{1} \in \operatorname{dom}(f)
\end{array}
$$

The diamond operator

(Neumann, Pauly) f^{\diamond} (roughly): "computation using f as oracle"
(Hirschfeldt, Jockusch): define the game $G(f \rightarrow g)$

$$
\begin{array}{cc}
\text { Player } 1 & \text { Player } 2 \\
p \in \operatorname{dom}(g) & p \text {-computable } q \in g(p) \text { and wins OR } \\
p \text {-computable } x_{1} \in \operatorname{dom}(f)
\end{array} \substack{\left\langle p, y_{1}\right\rangle \text {-computable } q \in g(p) \text { and wins } \\
\left\langle p, y_{1}\right\rangle \text {-computable } x_{2} \in \operatorname{dom}(f)}
$$

The diamond operator

(Neumann, Pauly) f^{\diamond} (roughly): "computation using f as oracle"
(Hirschfeldt, Jockusch): define the game $G(f \rightarrow g)$

$$
\begin{aligned}
& \text { Player } 1 \quad \text { Player } 2 \\
& p \in \operatorname{dom}(g) \longrightarrow p \text {-computable } q \in g(p) \text { and wins OR } \\
& \left.y_{1} \in f\left(x_{1}\right) \lll d p, y_{1}\right\rangle \text {-computable } x_{1} \in \operatorname{dom}(f)
\end{aligned}
$$

The diamond operator

(Neumann, Pauly) f^{\diamond} (roughly): "computation using f as oracle"
(Hirschfeldt, Jockusch): define the game $G(f \rightarrow g)$

$$
\begin{array}{lc}
\text { Player } 1 & \text { Player } 2 \\
p \in \operatorname{dom}(g) & p \text {-computable } q \in g(p) \text { and wins OR } \\
p \text {-computable } x_{1} \in \operatorname{dom}(f)
\end{array}
$$

Player 2 wins if he declares victory. Otherwise Player 1 wins.

The diamond operator

(Neumann, Pauly) f^{\diamond} (roughly): "computation using f as oracle"
(Hirschfeldt, Jockusch): define the game $G(f \rightarrow g)$

$$
\begin{array}{lc}
\text { Player } 1 & \text { Player } 2 \\
p \in \operatorname{dom}(g) & \\
& p \text {-computable } q \in g(p) \text { and wins OR }
\end{array}
$$

Player 2 wins if he declares victory. Otherwise Player 1 wins.
$g \leq_{\mathrm{W}} f^{\diamond}$ iff Player 2 has a computable winning strategy for $G(f \rightarrow g)$

unbounded-* and diamond

The diamond is essentially an "unbounded compositional product".
What is the relation between $f^{u *}$ and f^{\diamond} ?

unbounded-* and diamond

The diamond is essentially an "unbounded compositional product".
What is the relation between $f^{u *}$ and f^{\diamond} ?
Observation: for every f we have $f^{u *} \leq_{\mathrm{W}} f^{\diamond}$
Can we have $f^{u *} \equiv_{\mathrm{W}} f^{\diamond}$?

unbounded-* and diamond

The diamond is essentially an "unbounded compositional product".
What is the relation between $f^{u *}$ and f^{\star} ?
Observation: for every f we have $f^{u *} \leq_{\mathrm{W}} f^{\diamond}$
Can we have $f^{u *} \equiv_{\mathrm{W}} f^{\diamond}$?

Theorem (Soldà, V.)
If $f: \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}$ is s.t. $\{(x, n): n \in f(x)\} \in \Pi_{1}^{0}$ then $f^{u *} \equiv_{\mathrm{W}} f^{\diamond}$.
Besides, if $\operatorname{ran}(f)=k$ then $f^{*} \equiv_{\mathrm{W}} f^{\diamond}$.

unbounded-* and diamond

The diamond is essentially an "unbounded compositional product".
What is the relation between $f^{u *}$ and f^{\star} ?
Observation: for every f we have $f^{u *} \leq \mathrm{w} f^{\diamond}$
Can we have $f^{u *} \equiv_{\mathrm{W}} f^{\diamond}$?

Theorem (Soldà, V.)
If $f: \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}$ is s.t. $\{(x, n): n \in f(x)\} \in \Pi_{1}^{0}$ then $f^{u *} \equiv_{\mathrm{W}} f^{\diamond}$.
Besides, if $\operatorname{ran}(f)=k$ then $f^{*} \equiv_{\mathrm{W}} f^{\diamond}$.
Idea: we guess the possible answers to the oracle calls and use the effective closedness of $\operatorname{Graph}(f)$ to discard wrong guesses.

Examples: C_{k} for every $k \in \mathbb{N}$.

unbounded-* and diamond

(Brattka, Gherardi) The completion of a represented space X is

$$
\bar{X}:=X \cup\{\perp\}
$$

Intuitively, we have the possibility to postponing information about $x \in X$. Doing so indefinitely results in a name of \perp.

unbounded-* and diamond

(Brattka, Gherardi) The completion of a represented space X is

$$
\bar{X}:=X \cup\{\perp\}
$$

Intuitively, we have the possibility to postponing information about $x \in X$. Doing so indefinitely results in a name of \perp.

Using the completion $\bar{f}: \bar{X} \rightrightarrows \bar{Y}$ of f :
Theorem (Soldà, V.)
For every complete $f: \subseteq X \rightrightarrows \mathbb{N}$, $f^{u *} \equiv_{\mathrm{W}} f^{\diamond}$

unbounded-* and diamond

(Brattka, Gherardi) The completion of a represented space X is

$$
\bar{X}:=X \cup\{\perp\}
$$

Intuitively, we have the possibility to postponing information about $x \in X$. Doing so indefinitely results in a name of \perp.

Using the completion $\bar{f}: \bar{X} \rightrightarrows \bar{Y}$ of f :
Theorem (Soldà, V.)
For every complete $f: \subseteq X \rightrightarrows \mathbb{N}$, $f^{u *} \equiv_{\mathrm{W}} f^{\diamond}$
Examples: LPO, WF.

unbounded-* and diamond

(Brattka, Gherardi) The completion of a represented space X is

$$
\bar{X}:=X \cup\{\perp\}
$$

Intuitively, we have the possibility to postponing information about $x \in X$. Doing so indefinitely results in a name of \perp.

Using the completion $\bar{f}: \bar{X} \rightrightarrows \bar{Y}$ of f :
Theorem (Soldà, V.)
For every complete $f: \subseteq X \rightrightarrows \mathbb{N}, f^{u *} \equiv_{\mathrm{W}} f^{\diamond}$
Examples: LPO, WF.
Question: can we do better?

Applications

- $W K L \equiv{ }_{W} \widehat{\mathrm{C}_{2}}$:

Applications

- $W K L \equiv{ }_{W} \widehat{\mathrm{C}_{2}}$:

$$
{ }^{1}(\mathrm{WKL}) \equiv_{\mathrm{W}}\left(\mathrm{C}_{2}\right)^{u *} \equiv_{\mathrm{W}} \mathrm{C}_{2}^{*}
$$

Applications

- $\mathrm{WKL} \equiv_{\mathrm{W}} \widehat{\mathrm{C}_{2}}$:

$$
{ }^{1}(\mathrm{WKL}) \equiv_{\mathrm{W}}\left(\mathrm{C}_{2}\right)^{u *} \equiv_{\mathrm{W}} \mathrm{C}_{2}^{*}
$$

- This lifts to jumps: $\mathrm{WKL}^{(n)} \equiv \mathrm{W}_{\mathrm{C}} \widehat{\mathrm{C}_{2}^{(n)}}$

$$
{ }^{1}\left(\mathrm{WKL}^{(n)}\right) \equiv{ }_{\mathrm{W}}\left(\mathrm{C}_{2}^{(n)}\right)^{u *} \equiv \equiv_{\mathrm{W}}\left(\mathrm{C}_{2}^{*}\right)^{(n)}
$$

- $\Pi_{1}^{1}-C A \equiv_{W} \widehat{W F}:$

$$
\mathrm{WF}^{*}<_{\mathrm{W}} \mathrm{WF}^{u *} \equiv_{\mathrm{W}} \mathrm{WF}^{\diamond} \equiv_{\mathrm{W}}{ }^{1} \boldsymbol{\Pi}_{1}^{1}-\mathrm{CA}
$$

Ramsey's theorem

Theorem (Brattka, Rakotoniaina)
For every $n>1$ and $k \geq 2, \mathrm{C}_{k}^{(n)} \leq_{\mathrm{W}} \widehat{\mathrm{SRT}_{k}^{n}} \leq_{\mathrm{W}} \widehat{\mathrm{RT}_{k}^{n}} \equiv_{\mathrm{W}} \mathrm{WKL}^{(n)}$

Ramsey's theorem

Theorem (Brattka, Rakotoniaina)
For every $n>1$ and $k \geq 2, \mathrm{C}_{k}^{(n)} \leq_{\mathrm{W}} \widehat{\mathrm{SRT}_{k}^{n}} \leq_{\mathrm{W}} \widehat{\mathrm{RT}_{k}^{n}} \equiv_{\mathrm{W}} \mathrm{WKL}^{(n)}$

Corollary (Soldà, V.)
For every $n>1$ and $k \geq 2, \mathrm{C}_{k}^{(n)}<_{\mathrm{W}}{ }^{1} \mathrm{SRT}_{k}^{n} \leq{ }_{\mathrm{W}}{ }^{1} \mathrm{RT}_{k}^{n} \leq_{\mathrm{W}}\left(\mathrm{C}_{2}^{*}\right)^{(n)}$
The first reduction is strict as witnessed by $\mathrm{C}_{\mathbb{N}}$.

Ramsey's theorem

Theorem (Brattka, Rakotoniaina)
For every $n>1$ and $k \geq 2, \mathrm{C}_{k}^{(n)} \leq_{\mathrm{W}} \widehat{\mathrm{SRT}_{k}^{n}} \leq_{\mathrm{W}} \widehat{\mathrm{RT}_{k}^{n}} \equiv_{\mathrm{W}} \mathrm{WKL}^{(n)}$

Corollary (Soldà, V.)
For every $n>1$ and $k \geq 2, \mathrm{C}_{k}^{(n)}<_{\mathrm{W}}{ }^{1} \mathrm{SRT}_{k}^{n} \leq{ }_{\mathrm{W}}{ }^{1} \mathrm{RT}_{k}^{n} \leq_{\mathrm{W}}\left(\mathrm{C}_{2}^{*}\right)^{(n)}$
The first reduction is strict as witnessed by $\mathrm{C}_{\mathbb{N}}$.
Are the last two reductions strict?

Ramsey's theorem

Open question (Brattka, Rakotoniaina): $\mathrm{C}_{\mathbb{N}}^{\prime} \leq_{\mathrm{w}} \mathrm{RT}_{2}^{2}$?

Theorem (Soldà, V.)
For every n and $k>1, \mathrm{C}_{\mathbb{N}}^{(n)} \not \mathbb{W}_{\mathrm{W}} \mathrm{RT}_{k}^{n+1}$.

Ramsey's theorem

Open question (Brattka, Rakotoniaina): $\mathrm{C}_{\mathrm{N}}^{\prime} \leq_{\mathrm{w}} \mathrm{RT}_{2}^{2}$?

Theorem (Soldà, V.)
For every n and $k>1, \mathrm{C}_{\mathbb{N}}^{(n)} \not \mathbb{W}_{\mathrm{W}} \mathrm{RT}_{k}^{n+1}$.

In particular, for $n=2,{ }^{1} \mathrm{SRT}_{2}^{2}<\mathrm{W}^{1} \mathrm{RT}_{2}^{2}$ (Brattka, Rakotoniaina), hence

Theorem (Soldà, V.)
$\mathrm{C}_{2}^{\prime \prime}<\mathrm{W}{ }^{1} \mathrm{SRT}_{2}^{2}<\mathrm{W}^{1} \mathrm{RT}_{2}^{2}<\mathrm{W}\left(\mathrm{C}_{2}^{*}\right)^{\prime \prime} \equiv_{\mathrm{W}}{ }^{1}\left(\mathrm{WKL}{ }^{\prime \prime}\right)$

Ramsey's theorem

Open question (Brattka, Rakotoniaina): $\mathrm{C}_{\mathrm{N}}^{\prime} \leq_{\mathrm{w}} \mathrm{RT}_{2}^{2}$?

Theorem (Soldà, V.)
For every n and $k>1, \mathrm{C}_{\mathbb{N}}^{(n)} \leq_{\mathrm{W}} \mathrm{RT}_{k}^{n+1}$.

In particular, for $n=2,{ }^{1} \mathrm{SRT}_{2}^{2}<\mathrm{W}^{1} \mathrm{RT}_{2}^{2}$ (Brattka, Rakotoniaina), hence

Theorem (Soldà, V.)
$\mathrm{C}_{2}^{\prime \prime}<\mathrm{W}{ }^{1} \mathrm{SRT}_{2}^{2}<\mathrm{W}^{1} \mathrm{RT}_{2}^{2}<\mathrm{W}\left(\mathrm{C}_{2}^{*}\right)^{\prime \prime} \equiv_{\mathrm{W}}{ }^{1}\left(\mathrm{WKL}{ }^{\prime \prime}\right)$

Can we fully characterize ${ }^{1} \mathrm{R} \mathrm{T}_{k}^{n}$?

References

：Brattka，V．and Gherardi，G．，Completion of Choice，Annals of Pure and Applied Logic 172 （2021），no．3， 102914.
n Dzhafarov，D．，Solomon，R．，and Yokoyama，K．，On the first－order parts of Weihrauch degrees，In preparation， 2019.

围 Goh，J．L．，Pauly，A．，and Valenti，M．，Finding descending sequences through ill－founded linear orders，The Journal of Symbolic Logic 86 （2021），no．2，817－854．
嗇 Hirschfeldt，D．and Jockusch，C．，On notions of computability－theoretic reduction between Π_{2}^{1} principles，Journal of Mathematical Logic 16 （2016），no． 01.

固 Neumann，E．and Pauly，A．，A topological view on algebraic computation models，Journal of Complexity 44 （2018），1－22．

囯 Soldà，G．and Valenti，M．，Algebraic properties of the first－order part of a problem，available at arxiv．org／abs／2203．16298．

