The first-order part of computational problems

Manlio Valenti manliovalenti@gmail.com Joint work with Giovanni Soldà

Midwest Computability Seminar 01 Nov 2022

Manlio Valenti

 (P,\leq)

h

(P, \leq) a

 (P, \leq) $a \not\leq b$

Manlio Valenti

 \mathcal{C}

Manlio Valenti

Manlio Valenti

Manlio Valenti

Manlio Valenti

Motivation (P, \leq) a \mathcal{C}

If c and d are maxima (in the resp. lower cones) satisfying some property φ then

$$c \not\leq d \Rightarrow a \not\leq b$$

Manlio Valenti

Manlio Valenti

Computational problem: partial multi-valued function $f :\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$ **input** : any $x \in \text{dom}(f)$ **output** : any $y \in f(x)$

Computational problem: partial multi-valued function $f :\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$ **input** : any $x \in \text{dom}(f)$ **output** : any $y \in f(x)$

More general spaces can be considered, but problems on $\mathbb{N}^{\mathbb{N}}$ are enough to study Weihrauch degrees.

Computational problem: partial multi-valued function $f :\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$ **input** : any $x \in \text{dom}(f)$ **output** : any $y \in f(x)$

More general spaces can be considered, but problems on $\mathbb{N}^{\mathbb{N}}$ are enough to study Weihrauch degrees.

 $g \leq_{\mathrm{W}} f :\iff$ there are computable $\Phi, \Psi :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ s.t.

Manlio Valenti

Computational problem: partial multi-valued function $f :\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$ **input** : any $x \in \text{dom}(f)$ **output** : any $y \in f(x)$

More general spaces can be considered, but problems on $\mathbb{N}^{\mathbb{N}}$ are enough to study Weihrauch degrees.

 $g \leq_{\mathrm{W}} f :\iff$ there are computable $\Phi, \Psi :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ s.t.

- Given $p \in \operatorname{dom}(g), \Phi(p) \in \operatorname{dom}(f)$
- Given $q \in f(\Phi(p)), \Psi(p,q) \in g(p)$

Computational problem: partial multi-valued function $f :\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$ **input** : any $x \in \text{dom}(f)$ **output** : any $y \in f(x)$

More general spaces can be considered, but problems on $\mathbb{N}^{\mathbb{N}}$ are enough to study Weihrauch degrees.

 $g \leq_{\mathrm{W}} f :\iff$ there are computable $\Phi, \Psi :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ s.t.

 $g \leq_{\mathrm{sW}} f :\iff g \leq_{\mathrm{W}} f$ and Ψ does not depend on p.

Manlio Valenti

First-order problems

Manlio Valenti

First-order problems

A computational problem $f:\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}$ can be identified with the problem $\mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$

$$\begin{array}{c} p \\ & \cap \\ & \cap \\ & \text{dom}(f) \end{array} \mapsto \{q \in \mathbb{N}^{\mathbb{N}} \ : \ q(0) \in f(p)\} \end{array}$$

First-order problems

A computational problem $f:\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}$ can be identified with the problem $\mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$

$$\begin{array}{c} p \\ \cap \\ dom(f) \end{array} \mapsto \{ q \in \mathbb{N}^{\mathbb{N}} \ : \ q(0) \in f(p) \} \end{array}$$

If g has codomain Y and there is a computable injection $Y \to \mathbb{N}$ with computable inverse we say that it is *first-order*.

Manlio Valenti

Manlio Valenti

Theorem (Dzhafarov, Solomon, Yokoyama)

For every f, $\max_{\leq_{\mathrm{W}}} \{ g : \subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N} : g \leq_{\mathrm{W}} f \}$ is well-defined.

Theorem (Dzhafarov, Solomon, Yokoyama)

For every f, $\max_{\leq_{\mathrm{W}}} \{ g :\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N} : g \leq_{\mathrm{W}} f \}$ is well-defined.

Proof. Assume $g :\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}$ is s.t. $g \leq_{\mathrm{W}} f$ via Φ, Ψ .

Theorem (Dzhafarov, Solomon, Yokoyama) For every f, $\max_{\leq_{W}} \{g : \subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N} : g \leq_{W} f\}$ is well-defined.

Proof. Assume $g :\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}$ is s.t. $g \leq_{\mathrm{W}} f$ via Φ, Ψ .

 Φ maps $p \in \text{dom}(g)$ to an input for f.

Theorem (Dzhafarov, Solomon, Yokoyama) For every f, $\max_{\leq_{\mathrm{W}}} \{g : \subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N} : g \leq_{\mathrm{W}} f\}$ is well-defined.

Proof. Assume $g :\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}$ is s.t. $g \leq_{\mathrm{W}} f$ via Φ, Ψ .

 Φ maps $p \in \text{dom}(g)$ to an input for f.

Given p, we can uniformly compute an index $w \in \mathbb{N}^{\mathbb{N}}$ for the map $q \mapsto \Psi(p, q)$.

Theorem (Dzhafarov, Solomon, Yokoyama) For every f, $\max_{\leq_{\mathrm{W}}} \{g : \subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N} : g \leq_{\mathrm{W}} f\}$ is well-defined.

Proof. Assume $g :\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}$ is s.t. $g \leq_{\mathrm{W}} f$ via Φ, Ψ .

 Φ maps $p \in \text{dom}(g)$ to an input for f.

Given p, we can uniformly compute an index $w \in \mathbb{N}^{\mathbb{N}}$ for the map $q \mapsto \Psi(p, q)$.

$$g(p) \subset \mathbb{N}$$
, hence for every $q \in f(\Phi(p))$,
 $\Phi_w(q)(0) = \Psi(p,q)(0) \downarrow \in g(p)$

Theorem (Dzhafarov, Solomon, Yokoyama)

For every f, $\max_{\leq_{\mathrm{W}}} \{g : \subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N} : g \leq_{\mathrm{W}} f\}$ is well-defined.

Proof.

Define ${}^{1}f :\subseteq \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}$ as

¹
$$f(w, x) := \{ \Phi_w(q)(0) : q \in f(x) \}.$$

Intuitively: ${}^{1}f$ behaves just like f but stops at the first digit!

Theorem (Dzhafarov, Solomon, Yokoyama)

For every f, $\max_{\leq_{\mathrm{W}}} \{ g : \subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N} : g \leq_{\mathrm{W}} f \}$ is well-defined.

Proof. Define ${}^{1}f :\subseteq \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}$ as ${}^{1}f(w, x) := \{\Phi_{w}(q)(0) : q \in f(x)\}.$ Intuitively: ${}^{1}f$ behaves just like fbut stops at the first digit! It follows that $g \leq_{W} {}^{1}f \leq_{W} f.$ $g(p) \longleftarrow \Phi_{w}(q)(0)$

Manlio Valenti

For $f :\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$, we define ${}^{1}f :\subseteq \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}$ as: **input** : (w, x) s.t. $x \in \text{dom}(f)$ and, for every solution $q \in f(x), \Phi_{w}(q)(0) \downarrow$ **output** : any n s.t. $\Phi_{w}(q)(0) = n$ for some $q \in f(x)$

For
$$f :\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$$
, we define ${}^{1}f :\subseteq \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}$ as:
input : (w, x) s.t. $x \in \text{dom}(f)$ and, for every solution
 $q \in f(x), \Phi_w(q)(0) \downarrow$
output : any n s.t. $\Phi_w(q)(0) = n$ for some $q \in f(x)$

 $^{1}(\cdot)$ is an interior operator:

•
$${}^1({}^1f) \equiv_{\mathrm{W}} {}^1f \leq_{\mathrm{W}} f$$

•
$$f \leq_{\mathrm{W}} g \Rightarrow {}^{1}f \leq_{\mathrm{W}} {}^{1}g$$

In particular, ${}^{1}f \not\equiv_{W} {}^{1}g \Rightarrow f \not\equiv_{W} g$.

Manlio Valenti

Computing prefixes

 ^{1}f computes "sufficiently long" prefixes of solutions.

Computing prefixes

 ^{1}f computes "sufficiently long" prefixes of solutions.

Computing prefixes

 ^{1}f computes "sufficiently long" prefixes of solutions.

$$\begin{array}{c}p & \longrightarrow & (w, \Phi(p))\\g & \downarrow & \downarrow \\g(p) & & \downarrow \\g(p) & \longleftarrow & \Phi_w(q)(0)\end{array}$$

By the continuity of $\Phi_w = \Psi(p, \cdot)$, only a prefix of q is needed to solve g.

q[n] is sufficiently long so that Φ_w converges on 0.

Manlio Valenti

Manlio Valenti

Choice problems are pivotal in the Weihrauch lattice.

Given $A \neq \emptyset$ (with some properties), find $x \in A$.

Choice problems are pivotal in the Weihrauch lattice.

Given $A \neq \emptyset$ (with some properties), find $x \in A$.

 $\mathsf{C}_k:$ given a sequence in $(k+1)^{\mathbb{N}},$ find a number that is not enumerated.

Choice problems are pivotal in the Weihrauch lattice.

Given $A \neq \emptyset$ (with some properties), find $x \in A$.

 $\mathsf{C}_k:$ given a sequence in $(k+1)^{\mathbb{N}},$ find a number that is not enumerated.

 $\mathsf{C}_{\mathbb{N}}:$ same as C_k but with no bound.

A few benchmarks

Choice problems are pivotal in the Weihrauch lattice.

Given $A \neq \emptyset$ (with some properties), find $x \in A$.

 $\mathsf{C}_k:$ given a sequence in $(k+1)^{\mathbb{N}},$ find a number that is not enumerated.

 $\mathsf{C}_{\mathbb{N}}$: same as C_k but with no bound. $\mathsf{C}_{2^{\mathbb{N}}}$: given a tree $T \subset 2^{<\mathbb{N}}$, find a path $p \in [T]$ (WKL).

A few benchmarks

Choice problems are pivotal in the Weihrauch lattice.

Given $A \neq \emptyset$ (with some properties), find $x \in A$.

 $\mathsf{C}_k:$ given a sequence in $(k+1)^{\mathbb{N}},$ find a number that is not enumerated.

 $C_{\mathbb{N}}$: same as C_k but with no bound. $C_{2^{\mathbb{N}}}$: given a tree $T \subset 2^{<\mathbb{N}}$, find a path $p \in [T]$ (WKL). $C_{\mathbb{N}^{\mathbb{N}}}$: given a tree $T \subset \mathbb{N}^{<\mathbb{N}}$, find a path $p \in [T]$.

A few benchmarks

Choice problems are pivotal in the Weihrauch lattice.

Given $A \neq \emptyset$ (with some properties), find $x \in A$.

 $\mathsf{C}_k:$ given a sequence in $(k+1)^{\mathbb{N}},$ find a number that is not enumerated.

 $C_{\mathbb{N}}$: same as C_k but with no bound. $C_{2^{\mathbb{N}}}$: given a tree $T \subset 2^{<\mathbb{N}}$, find a path $p \in [T]$ (WKL). $C_{\mathbb{N}^{\mathbb{N}}}$: given a tree $T \subset \mathbb{N}^{<\mathbb{N}}$, find a path $p \in [T]$. $\Sigma_1^1 - C_{\mathbb{N}}$: given a list of subtrees of $\mathbb{N}^{<\mathbb{N}}$, find the index of an ill-founded one.

Manlio Valenti

Manlio Valenti

 $f \times g$: solve f and g in parallel

- $f \times g$: solve f and g in parallel
 - f^* : solve finitely many instances of f in parallel

- $f \times g$: solve f and g in parallel
 - f^* : solve finitely many instances of f in parallel
 - \widehat{f} : solve infinitely many instances of f in parallel

- $f \times g$: solve f and g in parallel
 - f^* : solve finitely many instances of f in parallel
 - \widehat{f} : solve infinitely many instances of f in parallel
- f * g : solve g, apply some computable functional, then solve f

- $f \times g$: solve f and g in parallel
 - f^* : solve finitely many instances of f in parallel
 - \widehat{f} : solve infinitely many instances of f in parallel
- f * g : solve g, apply some computable functional, then solve f
 - f' : jump in the Weihrauch lattice

name of input: a sequence $(p_n)_{n \in \mathbb{N}}$ in $\mathbb{N}^{\mathbb{N}}$ s.t. lim_n p_n is a name for an instance x of f; output : f(x)

:

• (Brattka, Pauly) if f is densely realized (for every p, f(p) is dense) then ${}^{1}f \leq_{\mathrm{W}} \mathrm{id}$. Examples: "given p, produce q which is non-computable/non-hyp/ML-random relative to p".

- (Brattka, Pauly) if f is densely realized (for every p, f(p) is dense) then ${}^{1}f \leq_{\mathrm{W}} \mathrm{id}$. Examples: "given p, produce q which is non-computable/non-hyp/ML-random relative to p".
- (Brattka, Gherardi, Marcone) ¹lim $\equiv_W C_{\mathbb{N}}$:

- (Brattka, Pauly) if f is densely realized (for every p, f(p) is dense) then ${}^{1}f \leq_{\mathrm{W}} \mathrm{id}$. Examples: "given p, produce q which is non-computable/non-hyp/ML-random relative to p".
- (Brattka, Gherardi, Marcone) ¹lim $\equiv_W C_{\mathbb{N}}$:

Given $(p_n)_{n \in \mathbb{N}}$, for each *i* we can compute $\lim_n p_n(i)$ with finitely many mind changes.

- (Brattka, Pauly) if f is densely realized (for every p, f(p) is dense) then ${}^{1}f \leq_{\mathrm{W}} \mathrm{id}$. Examples: "given p, produce q which is non-computable/non-hyp/ML-random relative to p".
- (Brattka, Gherardi, Marcone) ¹lim $\equiv_{W} C_{\mathbb{N}}$:

Given $(p_n)_{n \in \mathbb{N}}$, for each *i* we can compute $\lim_{n \to \infty} p_n(i)$ with finitely many mind changes.

Being $\leq_W C_{\mathbb{N}}$ corresponds to being uniformly computable with finitely many mind changes, hence ${}^1\text{lim} \leq_W C_{\mathbb{N}}$. The other reduction follows from $\text{lim} \equiv_W \widehat{C_{\mathbb{N}}}$.

Manlio Valenti

• (Dzhafarov, Solomon, Yokoyama) ¹WWKL \equiv_W ¹WKL \equiv_W C₂^{*}: exploits the compactness of 2^N.

- (Dzhafarov, Solomon, Yokoyama) ¹WWKL \equiv_W ¹WKL \equiv_W C₂^{*}: exploits the compactness of 2^N.
- (Goh, Pauly, V.) ${}^{1}\mathsf{C}_{\mathbb{N}^{\mathbb{N}}} \equiv_{\mathrm{W}} \Sigma_{1}^{1} \cdot \mathsf{C}_{\mathbb{N}}$:

Given a tree $T \subset \mathbb{N}^{<\mathbb{N}}$, we look for a sufficiently long σ that extends to a path in T ($\Sigma_1^{1,T}$ condition).

- (Dzhafarov, Solomon, Yokoyama) ¹WWKL \equiv_W ¹WKL \equiv_W C₂^{*}: exploits the compactness of 2^N.
- (Goh, Pauly, V.) ${}^{1}\mathsf{C}_{\mathbb{N}^{\mathbb{N}}} \equiv_{\mathrm{W}} \Sigma_{1}^{1} \cdot \mathsf{C}_{\mathbb{N}}^{:}$

Given a tree $T \subset \mathbb{N}^{<\mathbb{N}}$, we look for a sufficiently long σ that extends to a path in T ($\Sigma_1^{1,T}$ condition).

How about Π_1^1 -CA $\equiv_W \widehat{\mathsf{WF}}$?

- (Dzhafarov, Solomon, Yokoyama) ¹WWKL \equiv_W ¹WKL \equiv_W C₂^{*}: exploits the compactness of 2^N.
- (Goh, Pauly, V.) ${}^{1}\mathsf{C}_{\mathbb{N}^{\mathbb{N}}} \equiv_{\mathrm{W}} \Sigma_{1}^{1} \cdot \mathsf{C}_{\mathbb{N}}$:

Given a tree $T \subset \mathbb{N}^{<\mathbb{N}}$, we look for a sufficiently long σ that extends to a path in T ($\Sigma_1^{1,T}$ condition).

How about Π_1^1 -CA $\equiv_W \widehat{WF}$? Is there a general rule?

Manlio Valenti

Assume $f = \hat{g}$ for some first-order g.

Can we characterize ${}^{1}f$ in terms of g?

Assume $f = \hat{g}$ for some first-order g.

Can we characterize ${}^{1}f$ in terms of g?

$$\begin{split} & \mathsf{lim} \equiv_{\mathrm{W}} \widehat{\mathsf{C}_{\mathbb{N}}} \longrightarrow {}^{1}\mathsf{lim} \equiv_{\mathrm{W}} \mathsf{C}_{\mathbb{N}} \equiv_{\mathrm{W}} \mathsf{C}_{\mathbb{N}}^{*} \\ & \mathsf{WKL} \equiv_{\mathrm{W}} \widehat{\mathsf{C}_{2}} \longrightarrow {}^{1}\mathsf{WKL} \equiv_{\mathrm{W}} \mathsf{C}_{2}^{*} \end{split}$$

Assume $f = \hat{g}$ for some first-order g.

Can we characterize ${}^{1}f$ in terms of g?

$$\begin{split} & \lim \equiv_{\mathrm{W}} \widehat{\mathsf{C}_{\mathbb{N}}} \longrightarrow {}^{1} \mathsf{lim} \equiv_{\mathrm{W}} \mathsf{C}_{\mathbb{N}} \equiv_{\mathrm{W}} \mathsf{C}_{\mathbb{N}}^{*} \\ & \mathsf{WKL} \equiv_{\mathrm{W}} \widehat{\mathsf{C}_{2}} \longrightarrow {}^{1} \mathsf{WKL} \equiv_{\mathrm{W}} \mathsf{C}_{2}^{*} \end{split}$$

Guess: ${}^{1}f \equiv_{\mathrm{W}} g^{*}$

Manlio Valenti

Assume $f = \hat{g}$ for some first-order g.

Can we characterize ${}^{1}f$ in terms of g?

$$\begin{split} & \mathsf{lim} \equiv_{\mathrm{W}} \widehat{\mathsf{C}_{\mathbb{N}}} \longrightarrow {}^{1}\mathsf{lim} \equiv_{\mathrm{W}} \mathsf{C}_{\mathbb{N}} \equiv_{\mathrm{W}} \mathsf{C}_{\mathbb{N}}^{*} \\ & \mathsf{WKL} \equiv_{\mathrm{W}} \widehat{\mathsf{C}_{2}} \longrightarrow {}^{1}\mathsf{WKL} \equiv_{\mathrm{W}} \mathsf{C}_{2}^{*} \end{split}$$

Guess: ${}^{1}f \equiv_{\mathrm{W}} g^{*}$

This doesn't quite work: consider

"Given a sequence of trees in $\mathbb{N}^{<\mathbb{N}}$, return 0 if they are all well-founded, or return i + 1 s.t. the *i*-th tree is ill-founded"

Manlio Valenti

Assume $f = \hat{g}$ for some first-order g.

Can we characterize ${}^{1}f$ in terms of g?

$$\begin{split} & \mathsf{lim} \equiv_{\mathrm{W}} \widehat{\mathsf{C}_{\mathbb{N}}} \longrightarrow {}^{1}\mathsf{lim} \equiv_{\mathrm{W}} \mathsf{C}_{\mathbb{N}} \equiv_{\mathrm{W}} \mathsf{C}_{\mathbb{N}}^{*} \\ & \mathsf{WKL} \equiv_{\mathrm{W}} \widehat{\mathsf{C}_{2}} \longrightarrow {}^{1}\mathsf{WKL} \equiv_{\mathrm{W}} \mathsf{C}_{2}^{*} \end{split}$$

Guess: ${}^{1}f \equiv_{\mathrm{W}} g^{*}$

This doesn't quite work: consider

"Given a sequence of trees in $\mathbb{N}^{<\mathbb{N}}$, return 0 if they are all well-founded, or return i + 1 s.t. the *i*-th tree is ill-founded"

 Π_1^1 -CA can solve it, but WF^{*} cannot.

Manlio Valenti

The unbounded-* operator

We define the *unbounded finite parallelization*. Intuitively: just like $(\cdot)^*$, but with no commitment to the number of instances.

The unbounded-* operator

We define the *unbounded finite parallelization*. Intuitively: just like $(\cdot)^*$, but with no commitment to the number of instances.

For $f :\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$ $f^{u*} :\subseteq \mathbb{N}^{\mathbb{N}} \times (\mathbb{N}^{\mathbb{N}})^{\mathbb{N}} \rightrightarrows (\mathbb{N}^{\mathbb{N}})^{<\mathbb{N}}$ is the following problem: $(w, (x_n)_{n \in \mathbb{N}}) \mapsto \{(y_n)_{n < k} : (\forall n < k)(y_n \in f(x_n)) \text{ and}$ $\Phi_w(\langle y_n \rangle_{n < k})(0) \downarrow \}$

Manlio Valenti

The unbounded-* operator

We define the *unbounded finite parallelization*. Intuitively: just like $(\cdot)^*$, but with no commitment to the number of instances.

For
$$f :\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$$

 $f^{u*} :\subseteq \mathbb{N}^{\mathbb{N}} \times (\mathbb{N}^{\mathbb{N}})^{\mathbb{N}} \rightrightarrows (\mathbb{N}^{\mathbb{N}})^{<\mathbb{N}}$ is the following problem:
 $(w, (x_n)_{n \in \mathbb{N}}) \mapsto \{(y_n)_{n < k} : (\forall n < k)(y_n \in f(x_n)) \text{ and}$
 $\Phi_w(\langle y_n \rangle_{n < k})(0) \downarrow\}$

 $(\cdot)^{u*}$ is a closure operator:

• $f \leq_{\mathrm{W}} f^{u*} \equiv_{\mathrm{W}} (f^{u*})^{u*}$

•
$$f \leq_{\mathrm{W}} g \Rightarrow f^{u*} \leq_{\mathrm{W}} g^{u*}$$

Moreover $f^* \leq_{\mathcal{W}} f^{u*} \leq_{\mathcal{W}} \widehat{f}$

Manlio Valenti

Theorem (Soldà, V.) For every f, ${}^{1}(\widehat{f}) \equiv_{W} {}^{1}(f^{u*})$.

Theorem (Soldà, V.) For every f, ${}^{1}(\widehat{f}) \equiv_{W} {}^{1}(f^{u*})$.

Proof (Sketch):

Theorem (Soldà, V.)

For every f, ${}^{1}(\widehat{f}) \equiv_{W} {}^{1}(f^{u*})$.

Proof (Sketch): ${}^{1}(f^{u*}) \leq_{\mathrm{W}} {}^{1}(\widehat{f})$ is easy as $f^{u*} \leq_{\mathrm{W}} \widehat{f}$.

Theorem (Soldà, V.) For every f, ${}^{1}(\widehat{f}) \equiv_{W} {}^{1}(f^{u*})$.

Proof (Sketch): ${}^{1}(f^{u*}) \leq_{\mathrm{W}} {}^{1}(\widehat{f})$ is easy as $f^{u*} \leq_{\mathrm{W}} \widehat{f}$. ${}^{1}(\widehat{f}) \leq_{\mathrm{W}} {}^{1}(f^{u*})$: let $(w, (x_{n})_{n})$ be an input for ${}^{1}(\widehat{f})$.

Theorem (Soldà, V.) For every f, ${}^{1}(\widehat{f}) \equiv_{W} {}^{1}(f^{u*})$. Proof (Sketch): ${}^{1}(f^{u*}) \leq_{W} {}^{1}(\widehat{f})$ is easy as $f^{u*} \leq_{W} \widehat{f}$. ${}^{1}(\widehat{f}) \leq_{\mathrm{W}} {}^{1}(f^{u*})$: let $(w, (x_n)_n)$ be an input for ${}^{1}(\widehat{f})$. $f(x_0) \quad f(x_1) \quad f(x_2) \quad f(x_3) \quad f(x_4)$

Manlio Valenti

Theorem (Soldà, V.) For every f, ${}^{1}(\widehat{f}) \equiv_{W} {}^{1}(f^{u*})$. Proof (Sketch): ${}^{1}(f^{u*}) \leq_{W} {}^{1}(\widehat{f})$ is easy as $f^{u*} \leq_{W} \widehat{f}$. ${}^{1}(\widehat{f}) \leq_{\mathrm{W}} {}^{1}(f^{u*})$: let $(w, (x_n)_n)$ be an input for ${}^{1}(\widehat{f})$. $f(x_0) \quad f(x_1) \quad f(x_2) \quad f(x_3) \quad f(x_4)$ Φ_m selects a prefix of a solution. This corresponds to selecting finitely many columns.

Theorem (Soldà, V.)

For every $f, \ if f \equiv_W \widehat{g}$ for some first-order $g, \ then$

$${}^{1}f \equiv_{\mathcal{W}} {}^{1}(g^{u*}) \equiv_{\mathcal{W}} ({}^{1}g)^{u*} \equiv_{\mathcal{W}} g^{u*}$$

If id $\leq_{sW} f$ then this lifts to jumps: for every n

$${}^{1}(f^{(n)}) \equiv_{\mathrm{sW}} (g^{u*})^{(n)}$$

Manlio Valenti

Theorem (Soldà, V.)

For every $f, \ if f \equiv_W \widehat{g}$ for some first-order $g, \ then$

$${}^{1}f \equiv_{\mathcal{W}} {}^{1}(g^{u*}) \equiv_{\mathcal{W}} ({}^{1}g)^{u*} \equiv_{\mathcal{W}} g^{u*}$$

If $\operatorname{id} \leq_{\mathrm{sW}} f$ then this lifts to jumps: for every n

$${}^{1}(f^{(n)}) \equiv_{\mathrm{sW}} (g^{u*})^{(n)}$$

In other words: ${}^{1}(\cdot)$ and $(\cdot)^{u*}$ commute for first-order problems.

Manlio Valenti

Theorem (Soldà, V.)

For every $f, \ if f \equiv_W \widehat{g}$ for some first-order $g, \ then$

$${}^{1}f \equiv_{\mathcal{W}} {}^{1}(g^{u*}) \equiv_{\mathcal{W}} ({}^{1}g)^{u*} \equiv_{\mathcal{W}} g^{u*}$$

If id $\leq_{sW} f$ then this lifts to jumps: for every n

$${}^{1}(f^{(n)}) \equiv_{\mathrm{sW}} (g^{u*})^{(n)}$$

In other words: ${}^{1}(\cdot)$ and $(\cdot)^{u*}$ commute for first-order problems. Is this peculiar of first-order problems?

Manlio Valenti

Remark: let $(w, (x_n)_n)$ be an input for ${}^1(\widehat{f})$.

Remark: let $(w, (x_n)_n)$ be an input for ${}^1(\widehat{f})$.

 Φ_w selects a prefix of a solution.

Manlio Valenti

Remark: let $(w, (x_n)_n)$ be an input for ${}^1(\widehat{f})$.

 Φ_w selects a prefix of a solution.

The prefix of $f(x_i)$ may depend on the solution to x_j .

Manlio Valenti

On the other hand, an input for $({}^{1}f)^{u*}$ is $(w, (w_n, x_n)_n)$ s.t.

On the other hand, an input for $({}^{1}f)^{u*}$ is $(w, (w_n, x_n)_n)$ s.t.

• for every n, Φ_{w_n} selects a prefix of $f(x_n)$

On the other hand, an input for $({}^{1}f)^{u*}$ is $(w, (w_n, x_n)_n)$ s.t.

- for every n, Φ_{w_n} selects a prefix of $f(x_n)$
- Φ_w selects "finitely many prefixes"

On the other hand, an input for $({}^{1}f)^{u*}$ is $(w, (w_n, x_n)_n)$ s.t.

- for every n, Φ_{w_n} selects a prefix of $f(x_n)$
- Φ_w selects "finitely many prefixes"

The prefix of $f(x_i)$ is independent of the solution of x_j .

Manlio Valenti

In some cases, we have a work around. E.g. if $f :\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$ is finitely valued (for every $p \in \operatorname{dom}(f)$, $|f(p)| < \infty$) then

 ${}^1(\widehat{f}) \equiv_{\mathbf{W}} ({}^1f)^{u*}.$

In some cases, we have a work around. E.g. if $f :\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$ is finitely valued (for every $p \in \text{dom}(f)$, $|f(p)| < \infty$) then

$${}^{1}(\widehat{f}) \equiv_{\mathrm{W}} ({}^{1}f)^{u*}.$$

Proposition (Soldà, V.)

There is f s.t. ${}^1(\widehat{f}) \not\leq_{\mathrm{W}} ({}^1f)^{u*}$.

Manlio Valenti

In some cases, we have a work around. E.g. if $f :\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$ is finitely valued (for every $p \in \text{dom}(f)$, $|f(p)| < \infty$) then

$${}^{1}(\widehat{f}) \equiv_{\mathrm{W}} ({}^{1}f)^{u*}.$$

Proposition (Soldà, V.)

There is f s.t. ${}^1(\widehat{f}) \not\leq_{\mathrm{W}} ({}^1f)^{u*}$.

Lemma

There are two sequences $(A_n)_{n \in \mathbb{N}}$ and $(B_n)_{n \in \mathbb{N}}$ of subsets of \mathbb{N} s.t.

- for every $n, \emptyset' \not\leq_T A_n, \emptyset' \not\leq_T B_n, but \emptyset' \leq_T A_n \oplus B_n;$
- for every n and every computable functional Ψ s.t. $\emptyset' = \Psi(\langle A_i \rangle, B_n)$, the map sending x to the prefix of B_n used in the computation of $\emptyset'(x)$ is not B_n -computable.

Manlio Valenti

Manlio Valenti

• $\lim \equiv_{\mathrm{W}} \widehat{C_{\mathbb{N}}} \equiv_{\mathrm{W}} \widehat{LPO}.$

• $\lim \equiv_{W} \widehat{C_{\mathbb{N}}} \equiv_{W} \widehat{LPO}$. Since $C_{\mathbb{N}} \equiv_{W} C_{\mathbb{N}}^{u*}$ (Neumann, Pauly) ${}^{1}(\lim) \equiv_{W} C_{\mathbb{N}} \equiv_{W} LPO^{u*}$

• $\lim \equiv_{W} \widehat{C_{\mathbb{N}}} \equiv_{W} \widehat{LPO}$. Since $C_{\mathbb{N}} \equiv_{W} C_{\mathbb{N}}^{u*}$ (Neumann, Pauly) ${}^{1}(\lim) \equiv_{W} C_{\mathbb{N}} \equiv_{W} LPO^{u*}$

This lifts to jumps: for every n

$${}^{1}(\mathsf{lim}^{(n)}) \equiv_{\mathrm{W}} \mathsf{C}^{(n)}_{\mathbb{N}} \equiv_{\mathrm{W}} (\mathsf{LPO}^{(n)})^{u*}$$

Manlio Valenti

• $\lim \equiv_{W} \widehat{C_{\mathbb{N}}} \equiv_{W} \widehat{LPO}$. Since $C_{\mathbb{N}} \equiv_{W} C_{\mathbb{N}}^{u*}$ (Neumann, Pauly) ${}^{1}(\lim) \equiv_{W} C_{\mathbb{N}} \equiv_{W} LPO^{u*}$

This lifts to jumps: for every n

$${}^{1}(\mathsf{lim}^{(n)}) \equiv_{\mathrm{W}} \mathsf{C}^{(n)}_{\mathbb{N}} \equiv_{\mathrm{W}} (\mathsf{LPO}^{(n)})^{u*}$$

• Π_1^1 -CA $\equiv_W \widehat{WF}$, hence ${}^1\Pi_1^1$ -CA $\equiv_W WF^{u*}$.

Manlio Valenti

(Neumann, Pauly) f^{\diamond} (roughly): "computation using f as oracle"

(Neumann, Pauly) f^{\diamond} (roughly): "computation using f as oracle"

(Hirschfeldt, Jockusch): define the game $G(f \to g)$

Player 1 Player 2

(Neumann, Pauly) f^{\diamond} (roughly): "computation using f as oracle"

(Hirschfeldt, Jockusch): define the game $G(f \rightarrow g)$

Player 1 Player 2

 $p\in \operatorname{dom}(g)$

(Neumann, Pauly) f^{\diamond} (roughly): "computation using f as oracle"

(Hirschfeldt, Jockusch): define the game $G(f \to g)$

Player 1 Player 2 $p \in \operatorname{dom}(g)$ \longrightarrow p-computable $q \in g(p)$ and wins

(Neumann, Pauly) f^{\diamond} (roughly): "computation using f as oracle"

(Hirschfeldt, Jockusch): define the game $G(f \to g)$

Player 1 Player 2 $p \in \operatorname{dom}(g)$ \longrightarrow p-computable $q \in g(p)$ and wins OR p-computable $x_1 \in \operatorname{dom}(f)$

(Neumann, Pauly) f^{\diamond} (roughly): "computation using f as oracle"

(Hirschfeldt, Jockusch): define the game $G(f \to g)$

Player 1 Player 2 $p \in \operatorname{dom}(g)$ \rightarrow p-computable $q \in g(p)$ and wins OR $y_1 \in f(x_1)$ \rightarrow p-computable $x_1 \in \operatorname{dom}(f)$

(Neumann, Pauly) f^{\diamond} (roughly): "computation using f as oracle"

(Hirschfeldt, Jockusch): define the game $G(f \rightarrow g)$

Player 1 Player 2 $p \in \operatorname{dom}(g)$ \rightarrow p-computable $q \in g(p)$ and wins OR $y_1 \in f(x_1)$ $\langle p, y_1 \rangle$ -computable $q \in g(p)$ and wins

Manlio Valenti

(Neumann, Pauly) f^{\diamond} (roughly): "computation using f as oracle"

(Hirschfeldt, Jockusch): define the game $G(f \rightarrow g)$

Player 1 Player 2 $p \in \operatorname{dom}(g)$ \rightarrow p-computable $q \in g(p)$ and wins OR $y_1 \in f(x_1)$ \rightarrow $\langle p, y_1 \rangle$ -computable $q \in g(p)$ and wins OR $\langle p, y_1 \rangle$ -computable $q \in g(p)$ and wins OR $\langle p, y_1 \rangle$ -computable $x_2 \in \operatorname{dom}(f)$

Manlio Valenti

(Neumann, Pauly) f^{\diamond} (roughly): "computation using f as oracle"

(Hirschfeldt, Jockusch): define the game $G(f \rightarrow g)$

(Neumann, Pauly) f^{\diamond} (roughly): "computation using f as oracle"

(Hirschfeldt, Jockusch): define the game $G(f \rightarrow g)$

Player 1 Player 2 $p \in \operatorname{dom}(g)$ \rightarrow p-computable $q \in g(p)$ and wins OR $y_1 \in f(x_1)$ $\langle p, y_1 \rangle$ -computable $q \in g(p)$ and wins OR $\langle p, y_1 \rangle$ -computable $x_2 \in \operatorname{dom}(f)$:

Player 2 wins if he declares victory. Otherwise Player 1 wins.

Manlio Valenti

(Neumann, Pauly) f^{\diamond} (roughly): "computation using f as oracle"

(Hirschfeldt, Jockusch): define the game $G(f \rightarrow g)$

Player 1 Player 2 $p \in \operatorname{dom}(g)$ p-computable $q \in g(p)$ and wins OR $y_1 \in f(x_1)$ $\langle p, y_1 \rangle$ -computable $q \in g(p)$ and wins OR $\langle p, y_1 \rangle$ -computable $q \in g(p)$ and wins OR $\langle p, y_1 \rangle$ -computable $x_2 \in \operatorname{dom}(f)$:

Player 2 wins if he declares victory. Otherwise Player 1 wins. $g \leq_W f^{\diamond}$ iff Player 2 has a computable winning strategy for $G(f \rightarrow g)$

Manlio Valenti

The diamond is essentially an "unbounded compositional product". What is the relation between f^{u*} and f^{\diamond} ?

The diamond is essentially an "unbounded compositional product". What is the relation between f^{u*} and f^{\diamond} ?

Observation: for every f we have $f^{u*} \leq_{\mathrm{W}} f^\diamond$

Can we have $f^{u*} \equiv_{\mathbf{W}} f^{\diamond}$?

The diamond is essentially an "unbounded compositional product". What is the relation between f^{u*} and f^{\diamond} ?

Observation: for every f we have $f^{u*} \leq_{\mathrm{W}} f^\diamond$

Can we have $f^{u*} \equiv_{\mathrm{W}} f^{\diamond}$?

Theorem (Soldà, V.) If $f: \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}$ is s.t. $\{(x, n) : n \in f(x)\} \in \Pi_1^0$ then $f^{u*} \equiv_{\mathrm{W}} f^{\diamond}$. Besides, if $\operatorname{ran}(f) = k$ then $f^* \equiv_{\mathrm{W}} f^{\diamond}$.

Manlio Valenti

The diamond is essentially an "unbounded compositional product". What is the relation between f^{u*} and f^{\diamond} ?

Observation: for every f we have $f^{u*} \leq_{\mathrm{W}} f^\diamond$

Can we have $f^{u*} \equiv_{\mathrm{W}} f^{\diamond}$?

Theorem (Soldà, V.) If $f: \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}$ is s.t. $\{(x, n) : n \in f(x)\} \in \Pi_1^0$ then $f^{u*} \equiv_{\mathrm{W}} f^{\diamond}$. Besides, if $\operatorname{ran}(f) = k$ then $f^* \equiv_{\mathrm{W}} f^{\diamond}$.

Idea: we guess the possible answers to the oracle calls and use the effective closedness of $\operatorname{Graph}(f)$ to discard wrong guesses.

Examples: C_k for every $k \in \mathbb{N}$.

Manlio Valenti

(Brattka, Gherardi) The completion of a represented space X is $\overline{X}:=X\cup\{\bot\}$

Intuitively, we have the possibility to postponing information about $x \in X$. Doing so indefinitely results in a name of \perp .

(Brattka, Gherardi) The completion of a represented space X is $\overline{X}:=X\cup\{\bot\}$

Intuitively, we have the possibility to postponing information about $x \in X$. Doing so indefinitely results in a name of \perp .

Using the completion $\overline{f} \colon \overline{X} \Longrightarrow \overline{Y}$ of $f \colon$

Theorem (Soldà, V.)

For every complete $f :\subseteq X \rightrightarrows \mathbb{N}, f^{u*} \equiv_{\mathrm{W}} f^{\diamond}$

Manlio Valenti

(Brattka, Gherardi) The completion of a represented space X is $\overline{X}:=X\cup\{\bot\}$

Intuitively, we have the possibility to postponing information about $x \in X$. Doing so indefinitely results in a name of \perp .

Using the completion $\overline{f} \colon \overline{X} \rightrightarrows \overline{Y}$ of $f \colon$

Theorem (Soldà, V.)

For every complete $f :\subseteq X \rightrightarrows \mathbb{N}, f^{u*} \equiv_{\mathrm{W}} f^{\diamond}$

Examples: LPO, WF.

Manlio Valenti

(Brattka, Gherardi) The completion of a represented space X is $\overline{X}:=X\cup\{\bot\}$

Intuitively, we have the possibility to postponing information about $x \in X$. Doing so indefinitely results in a name of \perp .

Using the completion $\overline{f} \colon \overline{X} \rightrightarrows \overline{Y}$ of $f \colon$

Theorem (Soldà, V.)

For every complete $f :\subseteq X \rightrightarrows \mathbb{N}, f^{u*} \equiv_{\mathrm{W}} f^{\diamond}$

Examples: LPO, WF.

Question: can we do better?

Manlio Valenti

• WKL $\equiv_W \widehat{C_2}$:

Manlio Valenti

• WKL $\equiv_{\mathrm{W}} \widehat{\mathsf{C}_2}$: ${}^1(\mathsf{WKL}) \equiv_{\mathrm{W}} (\mathsf{C}_2)^{u*} \equiv_{\mathrm{W}} \mathsf{C}_2^*$

• WKL
$$\equiv_{\mathrm{W}} \widehat{\mathsf{C}_2}$$
:
 ${}^1(\mathsf{WKL}) \equiv_{\mathrm{W}} (\mathsf{C}_2)^{u*} \equiv_{\mathrm{W}} \mathsf{C}_2^*$

• This lifts to jumps: $\mathsf{WKL}^{(n)} \equiv_{\mathrm{W}} \widehat{\mathsf{C}_2^{(n)}}$

$${}^{1}(\mathsf{WKL}^{(n)}) \equiv_{\mathrm{W}} (\mathsf{C}_{2}^{(n)})^{u*} \equiv_{\mathrm{W}} (\mathsf{C}_{2}^{*})^{(n)}$$

•
$$\Pi^1_1$$
-CA $\equiv_W \widehat{WF}$:

$$\mathsf{WF}^* <_{\mathrm{W}} \mathsf{WF}^{u*} \equiv_{\mathrm{W}} \mathsf{WF}^{\diamond} \equiv_{\mathrm{W}} {}^{1}\mathbf{\Pi}_{1}^{1}\text{-}\mathsf{CA}$$

Manlio Valenti

Theorem (Brattka, Rakotoniaina) For every n > 1 and $k \ge 2$, $C_k^{(n)} \le_W \widehat{\mathsf{SRT}_k^n} \le_W \widehat{\mathsf{RT}_k^n} \equiv_W \mathsf{WKL}^{(n)}$

Theorem (Brattka, Rakotoniaina) For every n > 1 and $k \ge 2$, $C_k^{(n)} \le_W \widehat{\mathsf{SRT}_k^n} \le_W \widehat{\mathsf{RT}_k^n} \equiv_W \mathsf{WKL}^{(n)}$

Corollary (Soldà, V.) For every n > 1 and $k \ge 2$, $C_k^{(n)} <_W {}^1SRT_k^n \le_W {}^1RT_k^n \le_W (C_2^*)^{(n)}$

The first reduction is strict as witnessed by $C_{\mathbb{N}}$.

Manlio Valenti

Theorem (Brattka, Rakotoniaina) For every n > 1 and $k \ge 2$, $C_k^{(n)} \le_W \widehat{\mathsf{SRT}_k^n} \le_W \widehat{\mathsf{RT}_k^n} \equiv_W \mathsf{WKL}^{(n)}$

Corollary (Soldà, V.)

For every n > 1 and $k \ge 2$, $\mathsf{C}_k^{(n)} <_{\mathrm{W}} {}^1\mathsf{SRT}_k^n \le_{\mathrm{W}} {}^1\mathsf{RT}_k^n \le_{\mathrm{W}} (\mathsf{C}_2^*)^{(n)}$

The first reduction is strict as witnessed by $C_{\mathbb{N}}$.

Are the last two reductions strict?

Manlio Valenti

Open question (Brattka, Rakotoniaina): $C'_{\mathbb{N}} \leq_{W} \mathsf{RT}_{2}^{2}$?

Theorem (Soldà, V.) For every n and k > 1, $C_{\mathbb{N}}^{(n)} \not\leq_{\mathrm{W}} \mathsf{RT}_{k}^{n+1}$.

Open question (Brattka, Rakotoniaina): $C'_{\mathbb{N}} \leq_{W} \mathsf{RT}_2^2$?

Theorem (Soldà, V.) For every n and k > 1, $C_{\mathbb{N}}^{(n)} \not\leq_{\mathrm{W}} \mathsf{RT}_{k}^{n+1}$.

In particular, for n = 2, ${}^{1}\mathsf{SRT}_{2}^{2} <_{W} {}^{1}\mathsf{RT}_{2}^{2}$ (Brattka, Rakotoniaina), hence

Theorem (Soldà, V.) $C''_2 <_W {}^1SRT_2^2 <_W {}^1RT_2^2 <_W (C_2^*)'' \equiv_W {}^1(WKL'')$

Manlio Valenti

Open question (Brattka, Rakotoniaina): $C'_{\mathbb{N}} \leq_{W} \mathsf{RT}_{2}^{2}$?

Theorem (Soldà, V.) For every n and k > 1, $C_{\mathbb{N}}^{(n)} \not\leq_{\mathrm{W}} \mathsf{RT}_{k}^{n+1}$.

In particular, for $n=2,\,{}^1\mathsf{SRT}_2^2<_{\mathrm{W}}{}^1\mathsf{RT}_2^2$ (Brattka, Rakotoniaina), hence

Theorem (Soldà, V.)

 $\mathsf{C}_2'' <_W {}^1\mathsf{SRT}_2^2 <_W {}^1\mathsf{RT}_2^2 <_W (\mathsf{C}_2^*)'' \equiv_W {}^1(\mathsf{WKL}'')$

Can we fully characterize ${}^{1}\mathsf{RT}_{k}^{n}$?

Manlio Valenti

References

- Brattka, V. and Gherardi, G., *Completion of Choice*, Annals of Pure and Applied Logic **172** (2021), no. 3, 102914.
- Dzhafarov, D., Solomon, R., and Yokoyama, K., On the first-order parts of Weihrauch degrees, In preparation, 2019.
- Goh, J. L., Pauly, A., and Valenti, M., *Finding descending sequences through ill-founded linear orders*, The Journal of Symbolic Logic **86** (2021), no. 2, 817–854.
- Hirschfeldt, D. and Jockusch, C., On notions of computability-theoretic reduction between Π_2^1 principles, Journal of Mathematical Logic **16** (2016), no. 01.
- Neumann, E. and Pauly, A., A topological view on algebraic computation models, Journal of Complexity 44 (2018), 1–22.
- Soldà, G. and Valenti, M., Algebraic properties of the first-order part of a problem, available at arxiv.org/abs/2203.16298.