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Weihrauch reducibility

Computational problem: partial multi-valued function f :⊆ NN ⇒ NN

input : any x ∈ dom(f )
output : any y ∈ f (x)

More general spaces can be considered, but problems on NN are
enough to study Weihrauch degrees.

g ≤W f :⇐⇒ there are computable Φ,Ψ :⊆ NN → NN s.t.

• Given p ∈ dom(g), Φ(p) ∈ dom(f )

• Given q ∈ f (Φ(p)), Ψ(p, q) ∈ g(p)

Φ

f
Ψ(p, ·)

g

p Φ(p)

g(p) q

g ≤sW f :⇐⇒ g ≤W f and Ψ does not depend on p.
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First-order problems

A computational problem f :⊆ NN ⇒ N can be identified with
the problem NN ⇒ NN

p∈

dom(f )

7→ {q ∈ NN : q(0) ∈ f (p)}

If g has codomain Y and there is a computable injection
Y → N with computable inverse we say that it is first-order.
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The first-order part of a problem

Theorem (Dzhafarov, Solomon, Yokoyama)
For every f , max≤W{g :⊆ NN ⇒ N : g ≤W f } is well-defined.

Proof.
Assume g :⊆ NN ⇒ N is s.t. g ≤W f via Φ,Ψ.

Φ maps p ∈ dom(g) to an input for f .

Given p, we can uniformly compute an index
w ∈ NN for the map q 7→ Ψ(p, q).

g(p) ⊂ N, hence for every q ∈ f (Φ(p)),

Φw(q)(0) = Ψ(p, q)(0) ↓∈ g(p)

Φ

f
Ψ(p, ·)

g

p Φ(p)

g(p) q
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The first-order part of a problem
Theorem (Dzhafarov, Solomon, Yokoyama)
For every f , max≤W{g :⊆ NN ⇒ N : g ≤W f } is well-defined.

Proof.
Define 1f :⊆ NN × NN ⇒ N as

1f (w, x) := {Φw(q)(0) : q ∈ f (x)}.

Intuitively: 1f behaves just like f
but stops at the first digit!

It follows that g ≤W 1f ≤W f .

1f

id

g

p (Ψ(p, ·),Φ(p))

g(p) Φw(q)(0)
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The first-order part of a problem

For f :⊆ NN ⇒ NN, we define 1f :⊆ NN × NN ⇒ N as:
input : (w, x) s.t. x ∈ dom(f ) and, for every solution

q ∈ f (x), Φw(q)(0) ↓
output : any n s.t. Φw(q)(0) = n for some q ∈ f (x)

1(·) is an interior operator:
• 1(1f ) ≡W 1f ≤W f
• f ≤W g ⇒ 1f ≤W 1g

In particular, 1f 6≡W 1g ⇒ f 6≡W g.
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Computing prefixes
1f computes “sufficiently long” prefixes of solutions.

1f

id

g

p (w,Φ(p))

g(p) Φw(q)(0)

By the continuity of Φw = Ψ(p, ·),
only a prefix of q is needed to solve g.

q[n] is sufficiently long so that
Φw converges on 0.

1f

Φw

g

p (w,Φ(p))

g(p) q[n]
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A few benchmarks

Choice problems are pivotal in the Weihrauch lattice.

Given A 6= ∅ (with some properties), find x ∈ A.

Ck : given a sequence in (k + 1)N, find a number that is not
enumerated.

CN: same as Ck but with no bound.
C2N : given a tree T ⊂ 2<N, find a path p ∈ [T ] (WKL).
CNN : given a tree T ⊂ N<N, find a path p ∈ [T ].
Σ1

1-CN: given a list of subtrees of N<N, find the index of an
ill-founded one.

Manlio Valenti The first-order part of computational problems 8 / 27



A few benchmarks

Choice problems are pivotal in the Weihrauch lattice.

Given A 6= ∅ (with some properties), find x ∈ A.

Ck : given a sequence in (k + 1)N, find a number that is not
enumerated.

CN: same as Ck but with no bound.
C2N : given a tree T ⊂ 2<N, find a path p ∈ [T ] (WKL).
CNN : given a tree T ⊂ N<N, find a path p ∈ [T ].
Σ1

1-CN: given a list of subtrees of N<N, find the index of an
ill-founded one.

Manlio Valenti The first-order part of computational problems 8 / 27



A few benchmarks

Choice problems are pivotal in the Weihrauch lattice.

Given A 6= ∅ (with some properties), find x ∈ A.

Ck : given a sequence in (k + 1)N, find a number that is not
enumerated.

CN: same as Ck but with no bound.
C2N : given a tree T ⊂ 2<N, find a path p ∈ [T ] (WKL).
CNN : given a tree T ⊂ N<N, find a path p ∈ [T ].
Σ1

1-CN: given a list of subtrees of N<N, find the index of an
ill-founded one.

Manlio Valenti The first-order part of computational problems 8 / 27



A few benchmarks

Choice problems are pivotal in the Weihrauch lattice.

Given A 6= ∅ (with some properties), find x ∈ A.

Ck : given a sequence in (k + 1)N, find a number that is not
enumerated.

CN: same as Ck but with no bound.

C2N : given a tree T ⊂ 2<N, find a path p ∈ [T ] (WKL).
CNN : given a tree T ⊂ N<N, find a path p ∈ [T ].
Σ1

1-CN: given a list of subtrees of N<N, find the index of an
ill-founded one.

Manlio Valenti The first-order part of computational problems 8 / 27



A few benchmarks

Choice problems are pivotal in the Weihrauch lattice.

Given A 6= ∅ (with some properties), find x ∈ A.

Ck : given a sequence in (k + 1)N, find a number that is not
enumerated.

CN: same as Ck but with no bound.
C2N : given a tree T ⊂ 2<N, find a path p ∈ [T ] (WKL).

CNN : given a tree T ⊂ N<N, find a path p ∈ [T ].
Σ1

1-CN: given a list of subtrees of N<N, find the index of an
ill-founded one.

Manlio Valenti The first-order part of computational problems 8 / 27



A few benchmarks

Choice problems are pivotal in the Weihrauch lattice.

Given A 6= ∅ (with some properties), find x ∈ A.

Ck : given a sequence in (k + 1)N, find a number that is not
enumerated.

CN: same as Ck but with no bound.
C2N : given a tree T ⊂ 2<N, find a path p ∈ [T ] (WKL).
CNN : given a tree T ⊂ N<N, find a path p ∈ [T ].

Σ1
1-CN: given a list of subtrees of N<N, find the index of an

ill-founded one.

Manlio Valenti The first-order part of computational problems 8 / 27



A few benchmarks

Choice problems are pivotal in the Weihrauch lattice.

Given A 6= ∅ (with some properties), find x ∈ A.

Ck : given a sequence in (k + 1)N, find a number that is not
enumerated.

CN: same as Ck but with no bound.
C2N : given a tree T ⊂ 2<N, find a path p ∈ [T ] (WKL).
CNN : given a tree T ⊂ N<N, find a path p ∈ [T ].
Σ1

1-CN: given a list of subtrees of N<N, find the index of an
ill-founded one.

Manlio Valenti The first-order part of computational problems 8 / 27



Operations on problems

f × g : solve f and g in parallel

f ∗ : solve finitely many instances of f in parallel

f̂ : solve infinitely many instances of f in parallel

f ∗ g : solve g, apply some computable functional, then solve f

f ′ : jump in the Weihrauch lattice

name of input: a sequence (pn)n∈N in NN s.t.
limn pn is a name for an instance x of f ;
output : f (x)

...
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Examples

• (Brattka, Pauly) if f is densely realized (for every p, f (p) is dense)
then 1f ≤W id . Examples: “given p, produce q which is
non-computable/non-hyp/ML-random relative to p”.

• (Brattka, Gherardi, Marcone) 1lim ≡W CN:

Given (pn)n∈N, for each i we can compute limn pn(i) with finitely
many mind changes.

Being ≤W CN corresponds to being uniformly computable with
finitely many mind changes, hence 1lim ≤W CN. The other
reduction follows from lim ≡W ĈN.
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Examples

• (Dzhafarov, Solomon, Yokoyama) 1WWKL ≡W 1WKL ≡W C∗
2:

exploits the compactness of 2N.

• (Goh, Pauly, V.) 1CNN ≡W Σ1
1-CN:

Given a tree T ⊂ N<N, we look for a sufficiently long σ that
extends to a path in T (Σ1,T

1 condition).

How about Π1
1-CA ≡W ŴF?

Is there a general rule?
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FOP and parallelization
Assume f = ĝ for some first-order g.

Can we characterize 1f in terms of g?

lim ≡W ĈN ————> 1lim ≡W CN ≡W C∗
N

WKL ≡W Ĉ2 ————> 1WKL ≡W C∗
2

Guess: 1f ≡W g∗

This doesn’t quite work: consider

“Given a sequence of trees in N<N, return 0 if they are all
well-founded, or return i + 1 s.t. the i-th tree is ill-founded”

Π1
1-CA can solve it, but WF∗ cannot.
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The unbounded-* operator
We define the unbounded finite parallelization. Intuitively:
just like (·)∗, but with no commitment to the number of instances.

For f :⊆ NN ⇒ NN

f u∗ :⊆ NN × (NN)N ⇒ (NN)<N is the following problem:

(w, (xn)n∈N) 7→ {(yn)n<k : (∀n < k)(yn ∈ f (xn)) and
Φw(〈yn〉n<k)(0) ↓}

(·)u∗ is a closure operator:
• f ≤W f u∗ ≡W (f u∗)u∗

• f ≤W g ⇒ f u∗ ≤W gu∗

Moreover f ∗ ≤W f u∗ ≤W f̂

Manlio Valenti The first-order part of computational problems 13 / 27



The unbounded-* operator
We define the unbounded finite parallelization. Intuitively:
just like (·)∗, but with no commitment to the number of instances.

For f :⊆ NN ⇒ NN

f u∗ :⊆ NN × (NN)N ⇒ (NN)<N is the following problem:

(w, (xn)n∈N) 7→ {(yn)n<k : (∀n < k)(yn ∈ f (xn)) and
Φw(〈yn〉n<k)(0) ↓}

(·)u∗ is a closure operator:
• f ≤W f u∗ ≡W (f u∗)u∗

• f ≤W g ⇒ f u∗ ≤W gu∗

Moreover f ∗ ≤W f u∗ ≤W f̂

Manlio Valenti The first-order part of computational problems 13 / 27



The unbounded-* operator
We define the unbounded finite parallelization. Intuitively:
just like (·)∗, but with no commitment to the number of instances.

For f :⊆ NN ⇒ NN

f u∗ :⊆ NN × (NN)N ⇒ (NN)<N is the following problem:

(w, (xn)n∈N) 7→ {(yn)n<k : (∀n < k)(yn ∈ f (xn)) and
Φw(〈yn〉n<k)(0) ↓}

(·)u∗ is a closure operator:
• f ≤W f u∗ ≡W (f u∗)u∗

• f ≤W g ⇒ f u∗ ≤W gu∗

Moreover f ∗ ≤W f u∗ ≤W f̂

Manlio Valenti The first-order part of computational problems 13 / 27



FOP and parallelization
Theorem (Soldà, V.)
For every f , 1(f̂ ) ≡W 1(f u∗).

Proof (Sketch): 1(f u∗) ≤W 1(f̂ ) is easy as f u∗ ≤W f̂ .
1(f̂ ) ≤W 1(f u∗) : let (w, (xn)n) be an input for 1(f̂ ).

f (x0) f (x1) f (x2) f (x3) f (x4) . . .

Φw selects a prefix of
a solution.

This corresponds
to selecting finitely
many columns.
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FOP and parallelization
Theorem (Soldà, V.)
For every f , if f ≡W ĝ for some first-order g, then

1f ≡W
1(gu∗) ≡W (1g)u∗ ≡W gu∗

If id ≤sW f then this lifts to jumps: for every n

1(f (n)) ≡sW (gu∗)(n)

In other words: 1(·) and (·)u∗ commute for first-order problems.

Is this peculiar of first-order problems?
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FOP and unbounded-*
Remark: let (w, (xn)n) be an input for 1(f̂ ).

f (x0) f (x1) f (x2) f (x3) f (x4) . . .

Φw selects a prefix of a solution.

The prefix of f (xi) may depend on the solution to xj .
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FOP and unbounded-*
On the other hand, an input for (1f )u∗ is (w, (wn , xn)n) s.t.

• for every n, Φwn selects a prefix of f (xn)

• Φw selects “finitely many prefixes”

f (x0) f (x1) f (x2) f (x3) f (x4) . . .

Φw0

Φw1

Φw2
Φw3

Φw4

Φw

The prefix of f (xi) is independent of the solution of xj .
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FOP and unbounded-*
In some cases, we have a work around. E.g. if f :⊆ NN ⇒ NN is
finitely valued (for every p ∈ dom(f ), |f (p)| < ∞) then

1(f̂ ) ≡W (1f )u∗.

Proposition (Soldà, V.)
There is f s.t. 1(f̂ ) 6≤W (1f )u∗.

Lemma
There are two sequences (An)n∈N and (Bn)n∈N of subsets of N s.t.

• for every n, ∅′ 6≤T An, ∅′ 6≤T Bn, but ∅′ ≤T An ⊕ Bn;
• for every n and every computable functional Ψ s.t. ∅′ =

Ψ(〈Ai〉,Bn), the map sending x to the prefix of Bn used in the
computation of ∅′(x) is not Bn-computable.
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Applications

• lim ≡W ĈN ≡W L̂PO. Since CN ≡W Cu∗
N (Neumann, Pauly)

1(lim) ≡W CN ≡W LPOu∗

This lifts to jumps: for every n

1(lim(n)) ≡W C(n)
N ≡W (LPO(n))u∗

• Π1
1-CA ≡W ŴF, hence 1Π1

1-CA ≡W WFu∗.

Manlio Valenti The first-order part of computational problems 19 / 27



Applications

• lim ≡W ĈN ≡W L̂PO.

Since CN ≡W Cu∗
N (Neumann, Pauly)

1(lim) ≡W CN ≡W LPOu∗

This lifts to jumps: for every n

1(lim(n)) ≡W C(n)
N ≡W (LPO(n))u∗

• Π1
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• lim ≡W ĈN ≡W L̂PO. Since CN ≡W Cu∗
N (Neumann, Pauly)

1(lim) ≡W CN ≡W LPOu∗

This lifts to jumps: for every n

1(lim(n)) ≡W C(n)
N ≡W (LPO(n))u∗

• Π1
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The diamond operator
(Neumann, Pauly) f ⋄ (roughly): “computation using f as oracle”

(Hirschfeldt, Jockusch): define the game G(f → g)

Player 1 Player 2

p ∈ dom(g)
p-computable q ∈ g(p) and wins OR
p-computable x1 ∈ dom(f )

y1 ∈ f (x1)

〈p, y1〉-computable q ∈ g(p) and wins OR
〈p, y1〉-computable x2 ∈ dom(f )
...

Player 2 wins if he declares victory. Otherwise Player 1 wins.
g ≤W f ⋄ iff Player 2 has a computable winning strategy for G(f → g)
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unbounded-* and diamond
The diamond is essentially an “unbounded compositional product”.

What is the relation between f u∗ and f ⋄?

Observation: for every f we have f u∗ ≤W f ⋄

Can we have f u∗ ≡W f ⋄?

Theorem (Soldà, V.)
If f : NN ⇒ N is s.t. {(x,n) : n ∈ f (x)} ∈ Π0

1 then f u∗ ≡W f ⋄.
Besides, if ran(f ) = k then f ∗ ≡W f ⋄.

Idea: we guess the possible answers to the oracle calls and use the
effective closedness of Graph(f ) to discard wrong guesses.

Examples: Ck for every k ∈ N.
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unbounded-* and diamond
(Brattka, Gherardi) The completion of a represented space X is

X := X ∪ {⊥}

Intuitively, we have the possibility to postponing information
about x ∈ X . Doing so indefinitely results in a name of ⊥.

Using the completion f : X ⇒ Y of f :

Theorem (Soldà, V.)
For every complete f :⊆ X ⇒ N, f u∗ ≡W f ⋄

Examples: LPO, WF.

Question: can we do better?
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Applications

• WKL ≡W Ĉ2:

1(WKL) ≡W (C2)
u∗ ≡W C∗

2

• This lifts to jumps: WKL(n) ≡W Ĉ(n)
2

1(WKL(n)) ≡W (C(n)
2 )u∗ ≡W (C∗

2)
(n)

• Π1
1-CA ≡W ŴF:

WF∗ <W WFu∗ ≡W WF⋄ ≡W
1Π1

1-CA
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Ramsey’s theorem

Theorem (Brattka, Rakotoniaina)
For every n > 1 and k ≥ 2, C(n)

k ≤W ŜRTn
k ≤W R̂Tn

k ≡W WKL(n)

Corollary (Soldà, V.)
For every n > 1 and k ≥ 2, C(n)

k <W 1SRTn
k ≤W 1RTn

k ≤W (C∗
2)

(n)

The first reduction is strict as witnessed by CN.

Are the last two reductions strict?
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k ≤W R̂Tn

k ≡W WKL(n)

Corollary (Soldà, V.)
For every n > 1 and k ≥ 2, C(n)

k <W 1SRTn
k ≤W 1RTn

k ≤W (C∗
2)

(n)

The first reduction is strict as witnessed by CN.

Are the last two reductions strict?

Manlio Valenti The first-order part of computational problems 24 / 27



Ramsey’s theorem
Open question (Brattka, Rakotoniaina): C′

N ≤W RT2
2?

Theorem (Soldà, V.)
For every n and k > 1, C(n)

N 6≤W RTn+1
k .

In particular, for n = 2, 1SRT2
2 <W 1RT2

2 (Brattka, Rakotoniaina),
hence

Theorem (Soldà, V.)
C′′

2 <W 1SRT2
2 <W 1RT2

2 <W (C∗
2)

′′ ≡W 1(WKL′′)

Can we fully characterize 1RTn
k ?
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