Pinned Distance Sets Using Effective Dimension

Don Stull

Northwestern University Department of Computer Science

Kolmogorov complexity in Euclidean space

Fix a universal TM U. Let $n, r \in \mathbb{N}$, and $x \in \mathbb{R}^n$. The Kolmogorov complexity of x at precision r is

 $K_r(x) =$ length of the shortest input π such that $U(\pi) = d_x$

= the minimum number of bits to specify x to precision 2^{-r} .

where $d_x = (\frac{m_1}{2^r}, \dots, \frac{m_n}{2^r})$ is the closest dyadic rational at precision r to x.

The Kolmogorov complexity of x at precision r given y at precision t is

 $K_r(x) =$ length of the shortest input π such that $U(\pi, d_y) = d_x$ = the minimum number of bits to specify x to precision 2^{-r} if you know y to precision 2^{-t} .

where $d_y = (\frac{m_1}{2^t}, \dots, \frac{m_n}{2^t})$ is the closest dyadic rational at precision t to y.

- For every $x \in \mathbb{R}^n$ and $r \in \mathbb{N}$, $0 \le K_r(x) \le nr + O(\log r)$.
- Symmetry of information: For every $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$, and $r, t \in \mathbb{N}$, $K_{r,t}(x, y) = K_t(y) + K_{r,t}(x \mid y) + O(\log r + t).$
- We can *relativize* the definitions in the natural way to get $K_r^A(x), K_{r,t}^A(x \mid y)$, etc.

Definition (Lutz '03, Mayordomo '03)

Let $n \in \mathbb{N}$, and $x \in \mathbb{R}^n$. The *(effective Hausdorff) dimension of x* is

 $\dim(x) = \liminf_{r \to \infty} \frac{K_r(x)}{r}.$

Definition (Athreya et al. '07, Lutz and Mayordomo '08)

Let $n \in \mathbb{N}$, and $x \in \mathbb{R}^n$. The *(effective) strong dimension of x* is

$$\operatorname{Dim}(x) = \limsup_{r \to \infty} \frac{K_r(x)}{r}.$$

The effective dimensions of a point x measure the density of algorithmic information in x.

Theorem (J. Lutz and N. Lutz, '16)

For every set $E \subseteq \mathbb{R}^n$,

$$\dim_{H}(E) = \min_{A \subseteq \mathbb{N}} \sup_{x \in E} \dim^{A}(x), \text{ and }$$

$$\dim_P(E) = \min_{A \subseteq \mathbb{N}} \sup_{x \in E} \operatorname{Dim}^A(x).$$

- The Hausdorff and packing dimension of a *set* is characterized by the corresponding dimension of the *points* in the set.
- Allows us to use algorithmic techniques to answer questions in geometric measure theory.

Let $E \subseteq \mathbb{R}^n$. The distance set of E is

$$\Delta E = \{ \|x - y\| \mid x, y \in E \}.$$

More generally, if $x \in \mathbb{R}^n$, the pinned distance of E w.r.t. x is

$$\Delta_x E = \{ \|x - y\| \mid y \in E \}.$$

Question: How do the sizes of ΔE and $\Delta_x E$ relate to the size of E?

When E is a finite set, Erdös conjectured that $|\Delta E|$ is nearly linear in terms of |E|.

- In a breakthrough paper, Guth and Katz proved this in the plane.
- Still an important open problem for \mathbb{R}^n with $n \geq 3$.

Falconer posed an analogous question for the case that E is infinite, known as Falconer's *distance set problem*.

- If $E \subseteq \mathbb{R}^n$ has dim_H(E) > n/2, then ΔE has positive measure.
- Still open in all dimensions.
- Guth, losevich, Ou and Wang, proved that if $E \subseteq \mathbb{R}^2$ and dim_H(E) > 5/4, then $\mu(\Delta E) > 0$.

Substantial progress has been made in a slightly different direction, on the Hausdorff dimension of *pinned distance sets* in the plane.

- Orponen proved that if E is Ahlfors regular and $\dim_H(E) > 1$, then for "most" points $x \in \mathbb{R}^2$, $\dim_H(\Delta_x E) = 1$.
- Shmerkin weakened the regularity assumption of Orponen's result to simple regularity, i.e., $\dim_H(E) = \dim_P(E)$.
- Liu showed that, if dim_H(E) = $s \in (1, 5/4)$, then for most x, dim_H($\Delta_x E$) $\geq \frac{4}{3}s \frac{2}{3}$.
- Shmerkin improved this bound when $\dim_H(E)=s\in(1,1.04),$ by proving that $\dim_H(\Delta_{\rm x} E)\geq 2/3+1/42\approx 0.6904$

Using effective dimension, we are able to improve these bounds, when the dimension of E is close to 1.

Theorem (S. '22)

Let $E \subseteq \mathbb{R}^2$ be an analytic set with dim_H(E) > 1. Then, for all $x \in \mathbb{R}^2$ outside a set of Hausdorff dimension at most 1,

$$\dim_H(\Delta_{\scriptscriptstyle X} E) \geq rac{s}{4} + rac{1}{2}$$
 ,

where $s = \dim_H(E)$.

In particular, for most points $x \in E$, $\dim_H(\Delta_x E) \ge \frac{s}{4} + \frac{1}{2}$.

Pinned distance sets using effective dimension

Theorem (S. '22)

Suppose that
$$x, y \in \mathbb{R}^2$$
, $e_1 = \frac{y-x}{\|y-x\|}$ satisfy the following.
(C1) dim (x) , dim $(y) > 1$
(C2) $K_r^{\times}(e_1) = r - O(\log r)$ for all r .
(C3) $K_r^{\times}(y) \ge K_r(y) - O(\log r)$ for all sufficiently large r .
(C4) $K_r(e_1 \mid y) = r - o(r)$ for all r .
Then

$$\dim^x(\|x-y\|) \geq \frac{3}{4}.$$

We reduce our main theorem on the Hausdorff dimension of pinned distance sets to this pointwise analog.

- Orponen's theorem on radial projections.
- Point-to-set principle.

Fix points $x, y \in \mathbb{R}^2$ satisfying conditions (C1)-(C4). We will prove that $\dim^x(||x - y||) \ge 3/4$.

- Fix a precision $r \in \mathbb{N}$. Suffices to show that $K_r^x(||x y||) \gtrsim \frac{3}{4}r$.
- By symmetry of information, $K_r^x(y \mid ||x - y||) \approx K_r^x(y) - K_r^x(||x - y||).$
 - K^x_r(y | ||x − y||) ≈ the amount of information needed to compute y if you know x and ||x − y||.
- A *lower* bound K[×]_r(||x y||) is equivalent to an *upper* bound on K[×]_r(y | ||x - y||).
- Suffices to bound the set of $z \in \mathbb{R}^2$ such that ||x z|| = ||x y|| and $K_r(z) \lesssim K_r(y)$.

Goal: Bound the size of the set of points z such that ||x - z|| = ||x - y|| and $K_r(z) \le K_r(y)$.

• Reduce this to projections.

- Divide and conquer.
 - Use (1) to bound the set of points z which are "far" away from y.
 - Use (2) to bound the set of points z which are "close" to y.
- Using (1), we get a weak lower bound on the complexity of ||x - y||:

 $\mathcal{K}_t^{ imes}(\|x-y\|) \gtrsim rac{\mathcal{K}_t(y)}{2}$

- Choosing t such that $K_t(y) \approx \frac{r}{2}$ gives $K_t^x(||x-y||) \gtrsim \frac{r}{4}$.
- Use (2) to show handle the points "close" to *y*.

Reducing to projection theorem

Fixed appropriate t. Proved $K_t^{\times}(\|x-y\|) \gtrsim \frac{r}{4}$. Need to show that $K_{r,t}^{\times}(\|x-y\|) \gtrsim \frac{r}{2}$.

- Equivalently, $K_{r,r,t}^{x}(y \mid ||x y||, y) \approx K_{r}(y) r$.
 - K^x_{r,r,t}(y | ||x − y||, y) ≈ number of bits required to compute y if you know x, ||x − y|| and the first t bits of y.
- Using (2), we can compute x if we know y, z and the position of x along the line with direction e[⊥]₂ containing x.

 $K_{r-t,r}(x \mid y) \lesssim K_r(z \mid y) + K_{r-t}(x \mid p_{e_2}x, e_2)$

Want to bound K_r(x | p_{e2}x, e₂) - the complexity of computing (an approximation of) x given (approximations of) p_{e2}x and e₂.

Projection theorem

- We want to bound K_r(x | p_ex, e) the complexity of computing (an approximation of) x given (approximations of) p_ex and e.
- When the direction *e* is random relative to *x*, i.e., $K_r^x(e) \approx r$, we know that $K_r(x \mid p_e x, e) \approx K_r(x) r$.
 - This is the pointwise analog of Marstrand's projection theorem.
- Unfortunately, for our application to distances, we don't have enough control over the direction to directly apply this result.
- However, we **do** have enough control to ensure that *e* is random *up to some initial precision*:

$$K_s^{\times}(e) \approx s$$

where $s = -\log ||z - y||$.

通り くほり くほう

Theorem (S. '22)

Let $x \in \mathbb{R}^2$ such that dim $(x) \ge 1$. Let $e \in S^1$ and $r, t \in \mathbb{N}$. Suppose that $K_{t,r}(e \mid x) \approx t$. Then

 $K_r(x \mid p_e x, e) \lesssim K_r(x) - \frac{r+t}{2}$

- When t = r, i.e., *e* is random w.r.t. *x*, then this recovers the pointwise analog of Marstrand's theorem (N. Lutz and S. '18). In particular, in this case, the bound is tight.
- It is likely that this bound is **not** tight in general. Improvements on this should immediately lead to improvements on the distance set problem.

Let $x \in \mathbb{R}^2$, $b \in \mathbb{N}$ and a < b.

- [a, b] is **teal** if $K_{b,s}(x \mid x) \lesssim b s$ for all $a \leq s \leq b$.
- $\ \, {\it [a,b] is yellow if } K_{s,a}(x\mid x)\gtrsim s-a \ \, {\it for all } a\leq s\leq b.$

Generalize known projection theorems to show the following. Assume $K_s^{\times}(e) \approx s$ for all $s \leq b - a$. Then

- If [a, b] is teal, $K_{b,b,b,a}(x \mid p_e x, e, x) \approx 0$.
- \bigcirc If [a,b] is yellow, $K_{b,b,b,a}(x \mid p_e x, e, x) \approx K_{b,a}(x \mid x) (b-a)$.

Read $K_{b,b,b,a}(x \mid p_e x, e, x)$ as the complexity of computing x given

- *b*-approximations of $p_e x$ and e
- *a*-approximation of *x*.

Goal: Bound the complexity of $K_r(x \mid p_e x, e)$ when $K_t^{x}(e) \approx t$.

Main idea: Partition [0, r] into yellow and teal intervals of length at most t, and sum the bounds.

- Naive partition does not necessarily work. The contribution of yellow intervals might be too high.
- However, we can optimize to get a partition to lower the contribution of yellow intervals enough to prove that

$$K_r(x \mid p_e x, e) \lesssim K_r(x) - rac{r+t}{2}$$
,

Back to distances

Let
$$z \in \mathbb{R}^2$$
 such that $||x - z|| = ||x - y||$. We know that
• $p_e x = p_e w$, where w is the midpoint of y and z and $e = \frac{z - y}{||y - z||}$.
• $\mathcal{K}_s^x(e) \approx s$, where $s = -\log ||z - y||$
• That is, e is random relative to x up to precision t .

Let $t \leq r$ such that $K_t(y) \approx \frac{r}{2}$. Suppose that z is as above and $s \geq t$. Using the projection theorem, we have

$$\mathcal{K}_{r-s}(x \mid p_e x, e) \lesssim \mathcal{K}_{r-s}(x) - \frac{r}{2}$$

We can conclude that

$$egin{aligned} \mathcal{K}_{r,t}^{x}(\|x-y\| \mid \|x-y\|) \gtrsim \mathcal{K}_{r,t}^{x}(\|x-y\| \mid y) \ \gtrsim \mathcal{K}_{r,t}(y \mid y) - (\mathcal{K}_{r}(y) - r) \ pprox r - \mathcal{K}_{t}(y) \ pprox rac{r}{2} \end{aligned}$$

Thank you!

Э

・ロト ・ 理 ト ・ 国 ト ・ 国 ト