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Kolmogorov complexity in Euclidean space

Fix a universal TM U. Let n, r ∈ N, and x ∈ Rn. The Kolmogorov complexity of x at precision
r is

Kr (x) = length of the shortest input π such that U(π) = dx

= the minimum number of bits to specify x to precision 2−r .

where dx = (m1
2r , . . . ,

mn
2r ) is the closest dyadic rational at precision r to x .

The Kolmogorov complexity of x at precision r given y at precision t is

Kr (x) = length of the shortest input π such that U(π, dy ) = dx

= the minimum number of bits to specify x to precision 2−r if you know

y to precision 2−t .

where dy = (m1
2t , . . . ,

mn
2t ) is the closest dyadic rational at precision t to y .
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Kolmogorov complexity in Euclidean space

For every x ∈ Rn and r ∈ N, 0 ≤ Kr (x) ≤ nr + O(log r).

Symmetry of information: For every x ∈ Rn, y ∈ Rm, and r , t ∈ N,

Kr ,t(x , y) = Kt(y) + Kr ,t(x | y) + O(log r + t).

We can relativize the definitions in the natural way to get KA
r (x),KA

r ,t(x | y), etc.
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Effective Dimensions of Points

Definition (Lutz ’03, Mayordomo ’03)

Let n ∈ N, and x ∈ Rn. The (effective Hausdorff) dimension of x is

dim(x) = lim inf
r→∞

Kr (x)
r .

Definition (Athreya et al. ’07, Lutz and Mayordomo ’08)

Let n ∈ N, and x ∈ Rn. The (effective) strong dimension of x is

Dim(x) = lim sup
r→∞

Kr (x)
r .

The effective dimensions of a point x measure the density of algorithmic information in x .
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The Point-to-Set Principle

Theorem (J. Lutz and N. Lutz, ’16)

For every set E ⊆ Rn,

dimH(E ) = min
A⊆N

sup
x∈E

dimA(x), and

dimP(E ) = min
A⊆N

sup
x∈E

DimA(x).

The Hausdorff and packing dimension of a set is characterized by the corresponding
dimension of the points in the set.

Allows us to use algorithmic techniques to answer questions in geometric measure theory.
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Distance sets

Let E ⊆ Rn. The distance set of E is

∆E = {‖x − y‖ | x , y ∈ E}.

More generally, if x ∈ Rn, the pinned distance of E w.r.t. x is

∆xE = {‖x − y‖ | y ∈ E}.

Question: How do the sizes of ∆E and ∆xE relate to the size of E?
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Distance sets

When E is a finite set, Erdös conjectured that |∆E | is nearly linear in terms of |E |.
In a breakthrough paper, Guth and Katz proved this in the plane.

Still an important open problem for Rn with n ≥ 3.

Falconer posed an analogous question for the case that E is infinite, known as Falconer’s
distance set problem.

If E ⊆ Rn has dimH(E ) > n/2, then ∆E has positive measure.

Still open in all dimensions.

Guth, Iosevich, Ou and Wang, proved that if E ⊆ R2 and dimH(E ) > 5/4, then
µ(∆E ) > 0.
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Distance sets

Substantial progress has been made in a slightly different direction, on the Hausdorff
dimension of pinned distance sets in the plane.

Orponen proved that if E is Ahlfors regular and dimH(E ) > 1, then for “most” points
x ∈ R2, dimH(∆xE ) = 1.

Shmerkin weakened the regularity assumption of Orponen’s result to simple regularity,
i.e., dimH(E ) = dimP(E ).

Liu showed that, if dimH(E ) = s ∈ (1, 5/4), then for most x , dimH(∆xE ) ≥ 4
3s −

2
3 .

Shmerkin improved this bound when dimH(E ) = s ∈ (1, 1.04), by proving that

dimH(∆xE ) ≥ 2/3 + 1/42 ≈ 0.6904
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Pinned distance sets using effective dimension

Using effective dimension, we are able to improve these bounds, when the dimension of E is
close to 1.

Theorem (S. ’22)

Let E ⊆ R2 be an analytic set with dimH(E ) > 1. Then, for all x ∈ R2 outside a set of
Hausdorff dimension at most 1,

dimH(∆xE ) ≥ s
4 + 1

2 ,

where s = dimH(E ).

In particular, for most points x ∈ E , dimH(∆xE ) ≥ s
4 + 1

2 .

D. M. Stull (Northwestern University) Pinned Distance Sets 9 / 19



Pinned distance sets using effective dimension

Theorem (S. ’22)

Suppose that x , y ∈ R2, e1 = y−x
‖y−x‖ satisfy the following.

(C1) dim(x), dim(y) > 1

(C2) K x
r (e1) = r − O(log r) for all r .

(C3) K x
r (y) ≥ Kr (y)− O(log r) for all sufficiently large r .

(C4) Kr (e1 | y) = r − o(r) for all r .

Then

dimx(‖x − y‖) ≥ 3
4 .

We reduce our main theorem on the Hausdorff dimension of pinned distance sets to this
pointwise analog.

1 Orponen’s theorem on radial projections.
2 Point-to-set principle.
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Fix points x , y ∈ R2 satisfying conditions (C1)-(C4). We will prove that dimx(‖x − y‖) ≥ 3/4.

Fix a precision r ∈ N. Suffices to show
that K x

r (‖x − y‖) & 3
4 r .

By symmetry of information,
K x
r (y | ‖x − y‖) ≈ K x

r (y)−K x
r (‖x − y‖).

K x
r (y | ‖x − y‖) ≈ the amount of

information needed to compute y if you
know x and ‖x − y‖.

A lower bound K x
r (‖x − y‖) is equivalent

to an upper bound on K x
r (y | ‖x − y‖).

Suffices to bound the set of z ∈ R2 such
that ‖x − z‖ = ‖x − y‖ and
Kr (z) . Kr (y).
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Goal: Bound the size of the set of points z such that ‖x − z‖ = ‖x − y‖ and Kr (z) ≤ Kr (y).

For any e ∈ S1 and x ∈ R2,
pex = e · x .

1 |pe1y−pe1z | . ‖y−z‖2

2 pe2x = pe2w

Reduce this to projections.

Divide and conquer.

Use (1) to bound the set of points z
which are “far” away from y .
Use (2) to bound the set of points z
which are “close” to y .

Using (1), we get a weak lower bound on
the complexity of ‖x − y‖:

K x
t (‖x − y‖) & Kt(y)

2

Choosing t such that Kt(y) ≈ r
2 gives

K x
t (‖x − y‖) & r

4 .

Use (2) to show handle the points “close”
to y .
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Reducing to projection theorem

Fixed appropriate t. Proved K x
t (‖x − y‖) & r

4 . Need to show that K x
r ,t(‖x − y‖) & r

2 .

1 |pe1y−pe1z | . ‖y−z‖2

2 pe2x = pe2w

Equivalently, K x
r ,r ,t(y | ‖x − y‖, y) ≈ Kr (y)− r .

K x
r ,r ,t(y | ‖x − y‖, y) ≈ number of bits required to

compute y if you know x , ‖x − y‖ and the first t
bits of y .

Using (2), we can compute x if we know y , z and
the position of x along the line with direction e⊥2
containing x .

Kr−t,r (x | y) . Kr (z | y) + Kr−t(x | pe2x , e2)

Want to bound Kr (x | pe2x , e2) - the complexity of
computing (an approximation of) x given
(approximations of) pe2x and e2.
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Projection theorem

We want to bound Kr (x | pex , e) - the complexity of computing (an approximation of) x
given (approximations of) pex and e.

When the direction e is random relative to x , i.e., K x
r (e) ≈ r , we know that

Kr (x | pex , e) ≈ Kr (x)− r .

This is the pointwise analog of Marstrand’s projection theorem.

Unfortunately, for our application to distances, we don’t have enough control over the
direction to directly apply this result.

However, we do have enough control to ensure that e is random up to some initial
precision:

K x
s (e) ≈ s,

where s = − log ‖z − y‖.
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Projection theorem

Theorem (S. ’22)

Let x ∈ R2 such that dim(x) ≥ 1. Let e ∈ S1 and r , t ∈ N. Suppose that Kt,r (e | x) ≈ t.
Then

Kr (x | pex , e) . Kr (x)− r+t
2

When t = r , i.e., e is random w.r.t. x , then this recovers the pointwise analog of
Marstrand’s theorem (N. Lutz and S. ’18). In particular, in this case, the bound is tight.

It is likely that this bound is not tight in general. Improvements on this should
immediately lead to improvements on the distance set problem.
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Projection theorem

Let x ∈ R2, b ∈ N and a < b.

1 [a, b] is teal if Kb,s(x | x) . b − s for all a ≤ s ≤ b.

2 [a, b] is yellow if Ks,a(x | x) & s − a for all a ≤ s ≤ b.

Generalize known projection theorems to show the following. Assume K x
s (e) ≈ s for all

s ≤ b − a. Then

1 If [a, b] is teal, Kb,b,b,a(x | pex , e, x) ≈ 0.

2 If [a, b] is yellow, Kb,b,b,a(x | pex , e, x) ≈ Kb,a(x | x)− (b − a).

Read Kb,b,b,a(x | pex , e, x) as the complexity of computing x given

b-approximations of pex and e

a-approximation of x .
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Projection theorem

Goal: Bound the complexity of Kr (x | pex , e) when K x
t (e) ≈ t.

Main idea: Partition [0, r ] into yellow and teal intervals of length at most t, and sum the
bounds.

Naive partition does not necessarily work. The contribution of yellow intervals might be
too high.

However, we can optimize to get a partition to lower the contribution of yellow intervals
enough to prove that

Kr (x | pex , e) . Kr (x)− r+t
2 ,
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Back to distances

Let z ∈ R2 such that ‖x − z‖ = ‖x − y‖. We know that
1 pex = pew , where w is the midpoint of y and z and e = z−y

‖y−z‖ .
2 K x

s (e) ≈ s, where s = − log ‖z − y‖
That is, e is random relative to x up to precision t.

Let t ≤ r such that Kt(y) ≈ r
2 . Suppose that z is as above and s ≥ t. Using the projection

theorem, we have

Kr−s(x | pex , e) . Kr−s(x)− r
2 .

We can conclude that

K x
r ,t(‖x − y‖ | ‖x − y‖) & K x

r ,t(‖x − y‖ | y)

& Kr ,t(y | y)− (Kr (y)− r)

≈ r − Kt(y)

≈ r

2
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The End

Thank you!
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