Pinned Distance Sets Using Effective Dimension

Don Stull
Northwestern University
Department of Computer Science

Kolmogorov complexity in Euclidean space

Fix a universal TM U. Let $n, r \in \mathbb{N}$, and $x \in \mathbb{R}^{n}$. The Kolmogorov complexity of x at precision r is

$$
\begin{aligned}
K_{r}(x) & =\text { length of the shortest input } \pi \text { such that } U(\pi)=d_{x} \\
& =\text { the minimum number of bits to specify } x \text { to precision } 2^{-r} .
\end{aligned}
$$

where $d_{x}=\left(\frac{m_{1}}{2^{r}}, \ldots, \frac{m_{n}}{2^{r}}\right)$ is the closest dyadic rational at precision r to x.
The Kolmogorov complexity of x at precision r given y at precision t is

$$
\begin{aligned}
K_{r}(x) & =\text { length of the shortest input } \pi \text { such that } U\left(\pi, d_{y}\right)=d_{x} \\
& =\text { the minimum number of bits to specify } x \text { to precision } 2^{-r} \text { if you know }
\end{aligned}
$$ y to precision 2^{-t}.

where $d_{y}=\left(\frac{m_{1}}{2^{t}}, \ldots, \frac{m_{n}}{2^{t}}\right)$ is the closest dyadic rational at precision t to y.

Kolmogorov complexity in Euclidean space

- For every $x \in \mathbb{R}^{n}$ and $r \in \mathbb{N}, 0 \leq K_{r}(x) \leq n r+O(\log r)$.
- Symmetry of information: For every $x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}$, and $r, t \in \mathbb{N}$,

$$
K_{r, t}(x, y)=K_{t}(y)+K_{r, t}(x \mid y)+O(\log r+t)
$$

- We can relativize the definitions in the natural way to get $K_{r}^{A}(x), K_{r, t}^{A}(x \mid y)$, etc.

Effective Dimensions of Points

Definition (Lutz '03, Mayordomo '03)

Let $n \in \mathbb{N}$, and $x \in \mathbb{R}^{n}$. The (effective Hausdorff) dimension of x is

$$
\operatorname{dim}(x)=\liminf _{r \rightarrow \infty} \frac{K_{r}(x)}{r}
$$

Definition (Athreya et al. '07, Lutz and Mayordomo '08)
Let $n \in \mathbb{N}$, and $x \in \mathbb{R}^{n}$. The (effective) strong dimension of x is

$$
\operatorname{Dim}(x)=\limsup _{r \rightarrow \infty} \frac{K_{r}(x)}{r}
$$

The effective dimensions of a point x measure the density of algorithmic information in x.

The Point-to-Set Principle

Theorem (J. Lutz and N. Lutz, '16)

For every set $E \subseteq \mathbb{R}^{n}$,

$$
\begin{gathered}
\operatorname{dim}_{H}(E)=\min _{A \subseteq \mathbb{N}} \sup _{x \in E} \operatorname{dim}^{A}(x), \text { and } \\
\operatorname{dim}_{P}(E)=\min _{A \subseteq \mathbb{N}} \sup _{x \in E} \operatorname{Dim}^{A}(x) .
\end{gathered}
$$

- The Hausdorff and packing dimension of a set is characterized by the corresponding dimension of the points in the set.
- Allows us to use algorithmic techniques to answer questions in geometric measure theory.

Distance sets

Let $E \subseteq \mathbb{R}^{n}$. The distance set of E is

$$
\Delta E=\{\|x-y\| \mid x, y \in E\}
$$

More generally, if $x \in \mathbb{R}^{n}$, the pinned distance of E w.r.t. x is

$$
\Delta_{x} E=\{\|x-y\| \mid y \in E\}
$$

Question: How do the sizes of ΔE and $\Delta_{x} E$ relate to the size of E ?

Distance sets

When E is a finite set, Erdös conjectured that $|\Delta E|$ is nearly linear in terms of $|E|$.

- In a breakthrough paper, Guth and Katz proved this in the plane.
- Still an important open problem for \mathbb{R}^{n} with $n \geq 3$.

Falconer posed an analogous question for the case that E is infinite, known as Falconer's distance set problem.

- If $E \subseteq \mathbb{R}^{n}$ has $\operatorname{dim}_{H}(E)>n / 2$, then ΔE has positive measure.
- Still open in all dimensions.
- Guth, losevich, Ou and Wang, proved that if $E \subseteq \mathbb{R}^{2}$ and $\operatorname{dim}_{H}(E)>5 / 4$, then $\mu(\Delta E)>0$.

Distance sets

Substantial progress has been made in a slightly different direction, on the Hausdorff dimension of pinned distance sets in the plane.

- Orponen proved that if E is Ahlfors regular and $\operatorname{dim}_{H}(E)>1$, then for "most" points $x \in \mathbb{R}^{2}, \operatorname{dim}_{H}\left(\Delta_{x} E\right)=1$.
- Shmerkin weakened the regularity assumption of Orponen's result to simple regularity, i.e., $\operatorname{dim}_{H}(E)=\operatorname{dim}_{P}(E)$.
- Liu showed that, if $\operatorname{dim}_{H}(E)=s \in(1,5 / 4)$, then for most $x, \operatorname{dim}_{H}\left(\Delta_{x} E\right) \geq \frac{4}{3} s-\frac{2}{3}$.
- Shmerkin improved this bound when $\operatorname{dim}_{H}(E)=s \in(1,1.04)$, by proving that

$$
\operatorname{dim}_{H}\left(\Delta_{x} E\right) \geq 2 / 3+1 / 42 \approx 0.6904
$$

Pinned distance sets using effective dimension

Using effective dimension, we are able to improve these bounds, when the dimension of E is close to 1.

Theorem (S. '22)

Let $E \subseteq \mathbb{R}^{2}$ be an analytic set with $\operatorname{dim}_{H}(E)>1$. Then, for all $x \in \mathbb{R}^{2}$ outside a set of Hausdorff dimension at most 1 ,

$$
\operatorname{dim}_{H}\left(\Delta_{x} E\right) \geq \frac{s}{4}+\frac{1}{2}
$$

where $s=\operatorname{dim}_{H}(E)$.

In particular, for most points $x \in E, \operatorname{dim}_{H}\left(\Delta_{x} E\right) \geq \frac{s}{4}+\frac{1}{2}$.

Pinned distance sets using effective dimension

Theorem (S. '22)

Suppose that $x, y \in \mathbb{R}^{2}, e_{1}=\frac{y-x}{\|y-x\|}$ satisfy the following.
(C1) $\operatorname{dim}(x), \operatorname{dim}(y)>1$
(C2) $K_{r}^{\times}\left(e_{1}\right)=r-O(\log r)$ for all r.
(C3) $K_{r}^{x}(y) \geq K_{r}(y)-O(\log r)$ for all sufficiently large r.
(C4) $K_{r}\left(e_{1} \mid y\right)=r-o(r)$ for all r.
Then

$$
\operatorname{dim}^{x}(\|x-y\|) \geq \frac{3}{4}
$$

We reduce our main theorem on the Hausdorff dimension of pinned distance sets to this pointwise analog.
(1) Orponen's theorem on radial projections.
(2) Point-to-set principle.

Fix points $x, y \in \mathbb{R}^{2}$ satisfying conditions (C1)-(C4). We will prove that $\operatorname{dim}^{x}(\|x-y\|) \geq 3 / 4$.

- Fix a precision $r \in \mathbb{N}$. Suffices to show that $K_{r}^{x}(\|x-y\|) \gtrsim \frac{3}{4} r$.
- By symmetry of information, $K_{r}^{\times}(y \mid\|x-y\|) \approx K_{r}^{\times}(y)-K_{r}^{x}(\|x-y\|)$.
- $K_{r}^{\times}(y \mid\|x-y\|) \approx$ the amount of information needed to compute y if you know x and $\|x-y\|$.
- A lower bound $K_{r}^{x}(\|x-y\|)$ is equivalent to an upper bound on $K_{r}^{\times}(y \mid\|x-y\|)$.
- Suffices to bound the set of $z \in \mathbb{R}^{2}$ such that $\|x-z\|=\|x-y\|$ and $K_{r}(z) \lesssim K_{r}(y)$.

Goal: Bound the size of the set of points z such that $\|x-z\|=\|x-y\|$ and $K_{r}(z) \leq K_{r}(y)$.

For any $e \in \mathcal{S}^{1}$ and $x \in \mathbb{R}^{2}$, $p_{e} x=e \cdot x$.
(1) $\left|p_{e_{1}} y-p_{e_{1}} z\right| \lesssim\|y-z\|^{2}$
(2) $p_{e_{2}} x=p_{e_{2}} w$

- Reduce this to projections.
- Divide and conquer.
- Use (1) to bound the set of points z which are "far" away from y.
- Use (2) to bound the set of points z which are "close" to y.
- Using (1), we get a weak lower bound on the complexity of $\|x-y\|$:

$$
K_{t}^{x}(\|x-y\|) \gtrsim \frac{K_{t}(y)}{2}
$$

- Choosing t such that $K_{t}(y) \approx \frac{r}{2}$ gives $K_{t}^{x}(\|x-y\|) \gtrsim \frac{r}{4}$.
- Use (2) to show handle the points "close" to y.

Reducing to projection theorem

Fixed appropriate t. Proved $K_{t}^{x}(\|x-y\|) \gtrsim \frac{r}{4}$. Need to show that $K_{r, t}^{x}(\|x-y\|) \gtrsim \frac{r}{2}$.

(1) $\left|p_{e_{1}} y-p_{e_{1}} z\right| \lesssim\|y-z\|^{2}$
(2) $p_{e_{2}} x=p_{e_{2}} w$

- Equivalently, $K_{r, r, t}^{x}(y \mid\|x-y\|, y) \approx K_{r}(y)-r$.
- $K_{r, r, t}^{x}(y \mid\|x-y\|, y) \approx$ number of bits required to compute y if you know $x,\|x-y\|$ and the first t bits of y.
- Using (2), we can compute x if we know y, z and the position of x along the line with direction e_{2}^{\perp} containing x.

$$
K_{r-t, r}(x \mid y) \lesssim K_{r}(z \mid y)+K_{r-t}\left(x \mid p_{e_{2}} x, e_{2}\right)
$$

- Want to bound $K_{r}\left(x \mid p_{e_{2}} x, e_{2}\right)$ - the complexity of computing (an approximation of) x given (approximations of) $p_{e_{2}} x$ and e_{2}.

Projection theorem

- We want to bound $K_{r}\left(x \mid p_{e} x, e\right)$ - the complexity of computing (an approximation of) x given (approximations of) $p_{e} x$ and e.
- When the direction e is random relative to x, i.e., $K_{r}^{x}(e) \approx r$, we know that $K_{r}\left(x \mid p_{e} x, e\right) \approx K_{r}(x)-r$.
- This is the pointwise analog of Marstrand's projection theorem.
- Unfortunately, for our application to distances, we don't have enough control over the direction to directly apply this result.
- However, we do have enough control to ensure that e is random up to some initial precision:

$$
K_{s}^{x}(e) \approx s
$$

where $s=-\log \|z-y\|$.

Projection theorem

Theorem (S. '22)
Let $x \in \mathbb{R}^{2}$ such that $\operatorname{dim}(x) \geq 1$. Let $e \in \mathcal{S}^{1}$ and $r, t \in \mathbb{N}$. Suppose that $K_{t, r}(e \mid x) \approx t$. Then

$$
K_{r}\left(x \mid p_{e} x, e\right) \lesssim K_{r}(x)-\frac{r+t}{2}
$$

- When $t=r$, i.e., e is random w.r.t. x, then this recovers the pointwise analog of Marstrand's theorem (N. Lutz and S. '18). In particular, in this case, the bound is tight.
- It is likely that this bound is not tight in general. Improvements on this should immediately lead to improvements on the distance set problem.

Projection theorem

Let $x \in \mathbb{R}^{2}, b \in \mathbb{N}$ and $a<b$.
(1) $[a, b]$ is teal if $K_{b, s}(x \mid x) \lesssim b-s$ for all $a \leq s \leq b$.
(2) $[a, b]$ is yellow if $K_{s, a}(x \mid x) \gtrsim s-a$ for all $a \leq s \leq b$.

Generalize known projection theorems to show the following. Assume $K_{s}^{x}(e) \approx s$ for all $s \leq b-a$. Then
(1) If $[a, b]$ is teal, $K_{b, b, b, a}\left(x \mid p_{e} x, e, x\right) \approx 0$.
(2) If $[a, b]$ is yellow, $K_{b, b, b, a}\left(x \mid p_{e} x, e, x\right) \approx K_{b, a}(x \mid x)-(b-a)$.

Read $K_{b, b, b, a}\left(x \mid p_{e} x, e, x\right)$ as the complexity of computing x given

- b-approximations of $p_{e} x$ and e
- a-approximation of x.

Projection theorem

Goal: Bound the complexity of $K_{r}\left(x \mid p_{e} x, e\right)$ when $K_{t}^{x}(e) \approx t$.
Main idea: Partition $[0, r]$ into yellow and teal intervals of length at most t, and sum the bounds.

- Naive partition does not necessarily work. The contribution of yellow intervals might be too high.
- However, we can optimize to get a partition to lower the contribution of yellow intervals enough to prove that

$$
K_{r}\left(x \mid p_{e} x, e\right) \lesssim K_{r}(x)-\frac{r+t}{2},
$$

Back to distances

Let $z \in \mathbb{R}^{2}$ such that $\|x-z\|=\|x-y\|$. We know that
(1) $p_{e} x=p_{e} w$, where w is the midpoint of y and z and $e=\frac{z-y}{\|y-z\|}$.
(2) $K_{s}^{x}(e) \approx s$, where $s=-\log \|z-y\|$

- That is, e is random relative to x up to precision t.

Let $t \leq r$ such that $K_{t}(y) \approx \frac{r}{2}$. Suppose that z is as above and $s \geq t$. Using the projection theorem, we have

$$
K_{r-s}\left(x \mid p_{e} x, e\right) \lesssim K_{r-s}(x)-\frac{r}{2}
$$

We can conclude that

$$
\begin{aligned}
K_{r, t}^{\times}(\|x-y\| \mid\|x-y\|) & \gtrsim K_{r, t}^{\times}(\|x-y\| \mid y) \\
& \gtrsim K_{r, t}(y \mid y)-\left(K_{r}(y)-r\right) \\
& \approx r-K_{t}(y) \\
& \approx \frac{r}{2}
\end{aligned}
$$

Thank you!

