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Computable Rings

Definition

A computable ring is a computable subset A ⊆ N equipped with
two computable binary operations + and · on A, together with
elements 0, 1 ∈ A such that R = (A, 0, 1,+, ·) is a ring.

All rings will be countable and commutative, unless we say
otherwise.
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Noether’s Primary Decomposition Lemma

Primary Decomposition Lemma

If R is Noetherian, then R contains only finitely many minimal
prime ideals.

Primary Decomposition Lemma

If R contains infinitely many minimal prime ideals, then R is not
Noetherian, i.e. R contains an infinite strictly ascending chain of
ideals

I0 ⊂ I1 ⊂ I2 ⊂ · · · ⊂ In ⊂ · · · ⊂ R, n ∈ N.
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Classical Proof of the Lemma

Assume that R contains infinitely many distinct minimal primes.

Need to construct an infinite strictly ascending chain

I0 ⊂ I1 ⊂ I2 ⊂ · · · In ⊂ · · · ⊂ R.

Let I0 = 〈0〉R ⊂ R.
Since R contains infinitely many minimal primes, 〈0〉R ⊂ R is not a
prime ideal. Therefore there exist a1, b1 ∈ R such that a1, b1 /∈ I0
but a1b1 = 0 ∈ I0. Now, either a1 or b1 is contained in infinitely
many minimal primes; add it to I0 to get I1 ⊃ I0.
Repeat with the invariant that

Ik = 〈c1, c2, · · · , ck〉R ⊂ R, k ∈ N,

is contained in infinitely many minimal primes, and therefore is not
prime itself. Uses ∅′′.
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Reverse Mathematics

The “Big Five:”

RCA0 : Recursive Comprehension Axiom

WKL0 : Weak König’s Lemma

ACA0 : Arithmetic Comprehension Axiom

ATR0 : Arithmetic Transfinite Recursion

Π1
1−CA0 : Π1

1−Comprehension Axiom

ADS : Ascending-Descending Chain Principle

2−MLR : Existence of 2-Random sets

COH : Cohesive set principle

AMT : Atomic Model Theorem
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The Tree Antichain Theorem

Definition

Let T ⊆ 2<N be a tree. We say that T is completely branching if

for all σ ∈ T , σ+ = {σ0, σ1} ⊂ 2<N, either

σ+ ⊂ T or σ+ ∩ T = ∅.

TAC (Tree Antichain Theorem)

Every infinite completely branching computably enumerable tree
T ⊆ 2<N contains an infinite antichain.

TAC (Tree Antichain Theorem–Equivalent Version)

Every infinite tree T ⊆ 2<N with no terminal nodes and infinitely
many splittings has an infinite antichain.
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Two Paths to TAC

Fact (RCA0)

TAC follows from each of 2-MLR and ADS (individually).

Fact (RCA0)

TAC is restricted Π1
2.

Fact (RCA0)

TAC does not follow from WKL

Corollary

TAC is not equivalent to any other “known” subsystem of
Second-Order Arithmetic.
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Primary Decomposition for Restricted Classes of Rings

Definition

Let R be a ring with multiplicative identity 1R .

We say that ideals I , J ⊆ R are coprime whenever I + J = R,
i.e. 1R ∈ I + J.

We say that ideals I , J ⊆ R are uniformly coprime if for all
x ∈ I ∩ J there exist y ∈ I , z ∈ J, and a, b ∈ R such that

x = yz and ay + bz = 1R .

Theorem A

If R has infinitely many coprime minimal primes, then R is not
Noetherian.

Theorem B

If R has infinitely many uniformly coprime minimal primes, then R
is not Noetherian.
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Algebraic Characterizations of TAC

Theorem (RCA0 + BΣ2)

Theorem B is equivalent to TAC.

Conjecture (RCA0 + BΣ2)

Theorem A is equivalent to TAC.
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TAC implies Theorem B

Given R with infinitely many minimal primes, construct
T = TR ⊆ 2<N such that:

every σ ∈ T corresponds to some (zero-divisor) xσ ∈ R;

∏
σ∈S xσ = 0R whenever S covers 2N;

paths in T correspond to annihilator ideals;

maximal paths correspond to maximal annihilator (hence
minimal prime) ideals.

If {αi : i ∈ N} is an infinite T−antichain, and

IN = Ann(
N∏
i=1

xαi ),

then
I0 ⊂ I1 ⊂ I2 · · · ⊂ IN ⊂ · · · .
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Theorem B implies TAC

Given infinite Σ0
1 completely branching T ⊆ 2<N.

Construct R via:

R is a quotient of Q[Xσ : σ ∈ T ] such that

X∅ = 0 ∈ R,
Xσ0Xσ1 = Xσ, and
inverses for all polynomials such that the intersection of the
partial−2N−coverings yielded by the monomials is empty.

R is a PIR; every ideal I ⊂ R is generated by a monomial.

Given an infinite strictly ascending R−chain, one can
effectively find a principle generator for each ideal in the chain
and use BΣ2 along with the sequence of exponents of these
generators to build an infinite antichain of T in the context.
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First-Order Considerations

Over RCA0 we have that TAC → Theorem B.

The converse follows from RCA0+BΣ2.

Definition (RCA0)

For each n ∈ N, let n−TAC be the principle that says “for every
infinite tree T ⊆ 2<N with infinitely many splittings, there is a
(path-)nonincreasing fT : T → N such that:

f (∅) = n;

there exist infinitely many σ ∈ T and iσ ∈ {0, 1} such that:

f (σ) > f (σiσ).

TAC is equivalent to 1-TAC. Let WTAC be n−TAC without the n.

TAC −→ Theorem B −→ WTAC, over RCA0.
TAC ←→ Theorem A/B ←→ WTAC, over RCA0+BΣ.
Q: What is the first order part of n−TAC, WTAC?
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infinite tree T ⊆ 2<N with infinitely many splittings, there is a
(path-)nonincreasing fT : T → N such that:

f (∅) = n;

there exist infinitely many σ ∈ T and iσ ∈ {0, 1} such that:

f (σ) > f (σiσ).

TAC is equivalent to 1-TAC. Let WTAC be n−TAC without the n.

TAC −→ Theorem B −→ WTAC, over RCA0.
TAC ←→ Theorem A/B ←→ WTAC, over RCA0+BΣ.

Q: What is the first order part of n−TAC, WTAC?
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Consequences of the Hilbert Basis Theorem:
The Krull Intersection Theorem

Theorem (Krull Intersection Theorem; KIT)

If R is an integral domain, I ⊂ R an ideal, then⋂
n∈N

I n = 0R .

Theorem (RCA0, Conidis (2021))

KIT implies WKL0.
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The Primary Decomposition Lemma

We need to use infinite combinatorial structures (graphs) that are
more general than trees and include (undirected) cycles.

Theorem

The Primary Decomposition Lemma follows from CAC+WKL0.

Lemma (RCA0)

If R is Noetherian, then the nilradical N ⊂ R exists and
Nn = 0R , for some n ∈ N.

PDL implies KIT (and thus WKL0).

Conjecture (RCA0)

The Primary Decomposition Lemma implies:

KIT; (Milne’s Lecture Notes; online)

WKL0;

TAC+WKL0.
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Thank You!

Chris Conidis
The Reverse Mathematics of Noether’s Decomposition Lemma


