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1. Whitehead, CW complexes, homology, cohomology

Spaces are built up out of cells: disks attached to one another. The CW approximation theo-
rem states that for every space X there exists a CW complex Z and a map Z X such that
πi(Z) πi(X) is an isomorphism for all i ≥ 0. (In the case i = 0 by “isomorphism” we mean
“bijection.”) This means that in order to study spaces up to weak equivalence, it suffices to study
CW complexes.

(This is a bit of a cheat: we say that homotopy groups are the things we care about. These only
see maps from spheres into the space.... so we can only detect what spaces look like up to attaching
spheres. So this shouldn’t be too surprising.)

We may ask why we care about weak equivalences, if the question we were asking originally
was to study spaces up to homotopy equivalence. It turns out that between CW complexes, weak
equivalences and homotopy equivalences are the same thing:

Theorem 1.1 (Whitehead). If a map f :X Y is a weak equivalence then f is a homotopy
equivalence.

This follows from the cellular approximation theorem:

Theorem 1.2. Any map f :X Y between CW complexes is homotopic to a cellular map.
Moreover, if the map is already cellular on a subcomplex A of X then the homotopy can be chosen
to be the identity on A.

Thus studying CW complexes up to homotopy eqiuvalence is exactly the same as studying CW
complexes up to weak equivalence. Since most spaces we care about are CW complexes already, it
isn’t that big of a deal.

So now we want to define some invariants on spaces up to homotopy equivalence. Actually, in the
spirit of category theory and focusing not just on objects but on morphisms, we want an invariant
of spaces and maps.

Definition 1.3. A (reduced) homology theory is a sequence of functors h̃n: Top Ab satisfying
the following axioms:

(1) If f ' g then the induced maps f∗ = hnf and g∗ are equal.

(2) For every CW pair (X,A) there exist boundary homomorphisms ∂: h̃n(X/A) h̃n−1(A)
which fit into an exact sequence

h̃nA h̃nX h̃n(X/A)
∂

h̃n−1A .

These are natural in the sense that for every map of CW pairs f : (X,A) (Y,B) there
exists a square

h̃n(X/A) h̃n−1A

h̃n(Y/B) h̃n−1B

∂

f

∂

f
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(3) For any wedge sumX =
∨
Xα with inclusions iα:Xα X the induced map

⊕
α h̃n(Xα) h̃n(X)

is an isomorphism.

These axioms are a form of the Eilenberg–Steenrod axioms. (I won’t go into the historical details,
but these are the most modern version of these.)

We’re going to construct a homology theory. Let X be a CW complex. We define a chain
complex Cn(X) by letting Cn(X) be the free abelian group generated by the n-cells of X. We need
to define a map CnX Cn−1X. This map is defined as dn[enα] =

∑
β cαβ[en−1

β ], so we just need

to figure out what the coefficients cαβ are. For an n-cell enα and an n− 1-cell en−1
β we define cαβ to

be the degree of the map

Sn−1 χα
Xn−1 Xn−1/(Xn−1\eβn−1) Sn−1,

where the first map is the attaching map of enα, the second map collapses all of Xn−1 except en−1
β

to a point, and the last map is given by the characteristic map of en−1
β . We then define h̃n to be

the n-th homology of this complex. For n = −1 we define C−1(X) = Z and the map d0 takes the
sum of the coefficients. All other negative n’s are 0.

We’re going to skip verifying axiom (2). For (3), note that for n 6= 0 the generators satisfy
the conditions given, and for a cell in Xα the characteristic map only touches cells in Xα. Thus
(3) works. To see (1), by cellular approximation we can assume that f and g are homotopic by
a cellular homotopy X × I Y . The chain complex for X × I is given in the following way:
truncate the chain complexes Cn(X) and Cn(I) so that they are 0 at negative dimensions. Now
take their tensor product: this has as the k-th group ⊕i+j=kCk(X) ⊗ Ck(I), with the boundary

given by d(x⊗ y) = d(x)⊗ y + (−1)deg xx⊗ d(y). Then augment the chain complex by adding a Z
in degree −1. (EXERCISE: check this). We have a homotopy between cellular maps, so by cellular
approximation it homotopic to a cellular map, so we get a cellular map X × I Y , which gives a
map between these chain complexes. It turns out (EXERCISE: check this) that when restricted to
the subcomplex of the form C∗(X)⊗ C∗(0) this is f and when restricted to C0(X)⊗ C∗(1) this is
g, and the map gives a chain homotopy (EXERCISE: how?). Two chain-homotopic maps give the
same map on homology, so we’re done.

Let’s do some calculations. Note that if X has only one 0-cell then h̃0(X) = 0, since the map
from C0(X) to C−1(X) will always be an isomorphism. As this will be the case for almost all of
our examples we’re going to say this always. In addition, all negative groups are always 0, since
the map C0(X) C−1(X) is surjective.

Let X = Sn. Sn has a CW structure with one 0-cell and one n-cell. If n > 1 then Cm(X) is

Z at n, 0 and −1 and 0 elsewhere, and therefore we have h̃n(Sn) = Z and h̃m(Sn) = 0 otherwise.

When n = 0 we have Cm(X) is Z2 at 0 and Z at −1, so h̃0(X) = Z and h̃m(X) = 0 otherwise.
When n = 1 we have Z at 1, 0 and −1. Since the map from the 0-th group to the 1-st group is
an isomorphism, the map from the 1-st group to the 0-th is 0. (Also, we can explicitly compute
that the map is 0 explicitly, since the two endpoints of the 1-cell are attached to the same place.

CHECK THIS) Thus in general we have that h̃mS
n is Z at m = n and 0 otherwise.

We can always prove this in a slightly different way to prove this. We will show that for all X,

h̃n+1(ΣX) = h̃nX. We have a CW pair (CX,X) (with the CW structure coming from the CW

structure on X× I). Now CX is contractible, so by (1) h̃n(CX) ∼= h̃n∗ = 0 for all n. Thus we have
a long exact sequence

h̃nCX h̃n(CX/X) h̃n−1X h̃n−1CX.

The two endpoints are 0, so the middle map is an isomorphism. Since CX/X ∼= ΣX, this follows.
Consider RPn. RPn can be written as Sn/± 1. If we take a CW structure on Sn with two cells

in each dimension, with the −1-action swapping the cells. Thus RPn has a CW structure with
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one cell in each dimension, and thus C∗(X) has one cell in each degree −1, . . . , n. We now need to
figure out what the boundary maps look like. Since this has a single 0-cell we don’t need to worry
about what’s going on for Cm(X) at m = 0, so we’ll only worry about higher groups. The degree
of the map is 1 + (−1)n, since for any point inside Sn−1 there are two points in the preimage, one
which is locally mapped to by the identity, and the other of which is mapped by (−1)m. Thus when
m is even the map is 2, and when m is odd it is 0. (This agrees with the other discussion that it

is 0 at m = 1.) Thus the chain complex has maps alternating 0 and 2, and we see that h̃mRPn for
m odd less than n, and 0 otherwise. The only exception to this is when n is odd, in which case we

have h̃n = Z.
Consider CPn. This has a CW structure with a single cell in each even dimension 0 through 2n.

Thus the chain complex we construct has no consecutive groups other than the ones in dimensions
−1 and 0, and thus we must have hmCPn is Z when m = 2, 4, . . . , 2n and 0 otherwise.

The axioms we’ve been discussing have been for reduced homology. To get the same thing for

unreduced homology, we define Hn(X) = h̃n(X+), where X+ is X with a disjoint basepoint added.
When working with unreduced homology there is an extra axiom needed, called excision. This is
explained both in Hatcher and in Concise, (I suggest reading both together).

Now we need to talk a bit about cohomology. A cohomology theory is almost the dual of a
homology theory; it’s not quite the dual, because instead of taking the dual of the homology
groups, we take the dual of the chain complexes that form them. This actually makes a rather
large difference for computation. We can write down axioms for cohomology in the same way as
the axioms for homology. To define a cohomology theory we take Cn(X) and dualize it: we define

h̃n(X) to be the cohomology of the chain complex Cn(X) = Hom(Cn(X),Z). The boundary map
is defined by precomposition with the boundary map on Cn(X).

Just from the definitions we see that h̃m(Sn) is Z if m = n and 0 otherwise, and that h̃m(CPn)
is Z if m = 2, 4, . . . , 2n and 0 otherwise. What is the cohomology of RPn? As before, we have a Z
in each dimension −1 through n. The maps, however, are different: the multiplications by 2 shift,
and we get Z/2’s in the even dimensions and 0’s in the odd dimensions.


