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1. CoBORDISM II: COBORDISM GROUPS ARE HOMOTOPY GROUPS OF THOM SPACES

Last time we constructed a map from QI to wf. The proof strongly used the framing on
manifolds; in this talk we’ll construct a similar map for the weakest form of cobordism: the one
where we don’t require any structure at all on the manifold.

We begin with a short discussion of transversality, as this will be very important for the con-
structions.

Definition 1.1. Let f:Y — X is a smooth map of manifolds and i: M «— X is an embedding of
a submanifold, we say that f is transverse to i if for every z € M and every y € f~!(x), the map
df ®di: T,Y @ T,M — T, X

is surjective.

Example: if M is a single point x, then f is transverse to ¢ whenever x is a regular value of f.

Theorem 1.2. If f is transverse to i then f~1(M) is a smooth submanifold of Y. The set of maps
transverse to 1 is dense in the mapping space of functions Y — X.

Since in addition the smooth maps are a dense subset of the mapping space, we see that every
map can be approximated arbitrarily closely by a smooth map which is transverse to M.

The goal of this lecture is to show that 91, is isomorphic to the stable homotopy group 7, M O.
In order to discuss this, we first need to discuss Thom spaces. You have already implicitly seen
Thom spaces in previous lectures, but right now we’ll make it explicit.

Definition 1.3. Given an n-dimensional vector bundle £ — B the Thom space of E, written
T(FE), is one of the following:

(1) Let E — B be the S™-bundle obtained by one-point compactifying all of the fibers. T(E)
is the quotient of E by the section at infty, which glues all of the new points together into
one.

(2) If B is conpact, T'(E) is the one-point compactification of E.

(3) If E — B contains a sub-n-disk bundle E’ then T'(E) = E'/OFE'.

When multiple definitions apply they agree.
EXERCISE: Given a pullback square

F-l.E
B ——- B
we get a map T'(f): T(E') — T(E).

Definition 1.4. Let 7, be the universal n-plane bundle on BO(n). We define MO(n) = T(y,).
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Earlier you saw the Thom isomorphism; we can rephrase it in terms of Thom spaces by saying
that it’s an isomoprhism ®; H*(B,Z/2) — H*"(T(E),Z/2).

Now we’re going to do the following. Given any n-manifold M, embed it in R"** for a high
enough k, and let v be the normal bundle. Let E be a tubular neighborhood for M, and consider
E/OE. Since E is an embedding of v into R,

However, v is a vector bundle and therefore comes with a classifying pullback square

«
V——"""7%

|

M —— BO(k)
and thus there exists a map T'(«): T(v) — T(y%). Thus the choice of M «> R™** produces a map

SHE g (5 B) 22 T(v) D Ty,

Write MO(k) = T'(y), and 71, MO = colimy, 7, 11T (7). Thus we have a map 7,4, MO(k) — 7, MO,
and the above construction gives us a map M, — m, M O. Note that we have several things we
need to check to show that this is well-defined:

(1) Making k larger does not change the stable homotopy type of the map.
PROOF: If we change the embedding by composing with the usual embedding R* % — R +k+1
then v changes to v @ R, which changes T'(v) to ¥T'(v), and the map that is produced to
T(yk+1) is exactly the composition

ST ()
XT(v) — ET(v) — T(Yk+1)-

Thus the stable homotopy class of the map does not change.

(2) Changing the embedding does not change the stable homotopy type of the map.
PROOF: For any two choices of embeddings t: M — R™* and «/: M — R™"*’ there exists
a k” and a commutative square of embeddings

M L Rn+k

1

RT%HC, Rn+k”

Since this diagram commutes, by the previous part the elements they produce in 7, (T (g )
are the same.

(3) If M and M’ are cobordant they produce homotopic maps.
PROOF: Let (W, M, M') be a cobordism. Then pick an embedding of W into R™* x [0, 1]
so that we have a diagram
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Now do the Pontrjagin—Thom construction along W fiberwise along [0, 1], so that we get a
morphism S"** x [0,1] — T'(13); at {0} and {1} it restricts to the morphisms for M, so
this map gives a homotopy between the two maps, and is therefore well-defined.

Thus we see that the map we get is well-defined. Now we want to show that it’s a group
homomorphism (which we didn’t show last time). Let M, M’ be two manifolds, and pick embeddings
M — R™* and M’ — R™*. Since these are both compact, we can assume that the n + k-th
coordinate of the image of M is always negative, and the one for M’ is always positive. Thus we
have the following picture:

The dashed regions are the tubular neighborhoods of M and M’ that we have chosen. We now have
two ways to do the Pontrjagin-Thom construction. We can think of all of R*** as being S"** and
then do the collapse from there; this gives us a map S"™* — T(4;). Alternately, we can think of
the left half-space as one copy of S"** and the right half-space as the other and do the Pontrjagin-
Thom construction in each; this gives us a map S"+* v §"+* . T'(4;). If we precompose with the
pinch map V: S"tF — g7tk v §nHk we get the same map we got before. Thus
PT(M UM = (PT(M)V PT(M'))oV.

This says exactly that we get a group homomorphism.

We would now like to show that this homomorphism is an isomorphism. Let us construct an
inverse map. Given an element a € 7, MO, pick a representative for it in m,, xMO(k); this is a
map f:S"* — MO(k). Now since 7, is the colimit of the universal bundles 7, ; over Gry(R™)

and S"T* is compact, we know that the image of f lies in T' (Ym,k)- Thus we have the following
diagram:

f
Sn+k - T(Vm,k)
Gri(R™)

Here, the inclusion of Gry(R™) is as the 0-section in T'(7y, x). In analogy to the previous construc-
tion, we’d like to take the pullback of this to be the manifold. However, it doesn’t necessarily need
to be; this is where transversality comes in. An application of Thom’s transversality theorem says
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that f can be homotoped to be transverse to Gri(R™), so that this preimage will, indeed, be a
manifold. This is the inverse map.

A remark about doing other kinds of cobordism: In the Pontrjagin—-Thom construction, we used
several facts:

e we have an embedding into R"t* that preserves the important data,
e the normal bundle has the correct data, and
e the normal bundle is classified by a map into a classifying space.

For any other kind of cobordism (oriented, spin, framed, etc.) the embeddings and map into a
classifying space use this data. However, the Pontrjagin—Thom construction is not changed. Thus
to do other kinds of cobordism we just need to be able to construct the above data, and the map
will work.

However, if we want to do other kinds of cobordism, for example with PL-manifolds then we
need more: we need a generalization of transversality so that we can construct the inverse map.
This turns out to be the hardest part, but once transversality is generalized a similar proof works
to classify cobordism rings.



