TUESDAY - TALK 7

VECTOR BUNDLES 3

Contents

1. Higher Structure: Steenrod Squares 1
2. Characteristic Classes 2
3. Cohomology of $G r_{n}\left(\mathbb{R} P^{\infty}\right) \quad 3$
4. Relation to Steenrod Squares 3
5. Axioms for Stiefel-Whitney classes 3
6. The trivial bundle 4
7. Normal bundles and the Whitney product formula 4

1. Higher Structure: Steenrod Squares

In this section, $H^{*}(X)=H^{*}(X, \mathbb{Z} / 2)$. We describe operations on cohomology that generalize the cup product. For $i \geq 0$, the i 'th Steenrod square is a group homomorphism

$$
S q^{i}: H^{n}(X) \rightarrow H^{n+i}(X)
$$

They have the following properties:
(1) $S q^{0}(\alpha)=\alpha$ (i.e. $S q^{0}$ is the identity morphism.)
(2) If $\alpha \in H^{k}(X)$, then $S q^{k}(\alpha)=\alpha^{2}$.
(3) If $\alpha \in H^{k}(X)$, and $i>k$, then $S q^{k}(\alpha)=0$.
(4) $S q^{1}$ is the Bockstein homomorphism, i.e., the connecting homomorphism for the long exact sequence on cohomology induced from the short exact sequence on coefficients

$$
0 \rightarrow \mathbb{Z} / 2 \xrightarrow{2} \mathbb{Z} / 4 \rightarrow \mathbb{Z} \rightarrow 0
$$

(In particular, $S q^{1} S q^{1}=0$).
(5) There is a commutative diagram

(6) (Cartan Formula) $S q^{i}(x \cup y)=\sum_{j+k=i} S q^{j}(x) \cup S q^{k}(x)$.
(7) (Adem Relations) If $a<2 b$, then

$$
S q^{a} S q^{b}=\sum_{c=0}^{[a / 2]}\binom{b-c-1}{a-2 c} S q^{a+b-c} S q^{c}
$$

(8) (Naturality) If $f: X \rightarrow Y$ is a continuous map, then $f^{*} S q^{i}=S q^{i} f^{*}$.

Remark 1.1. There are also relative Steenrod operations $S q^{i}: H^{n}(X, A) \rightarrow H^{n+i}(X, A)$.
Exercise 1.2. For $x \in H^{n}(X)$, write

$$
S q(x)=S q^{0}(x)+S q^{1}(x)+\ldots+S q^{n}(x)
$$

Prove that the Cartan formula implies that

$$
S q(x y)=\underset{1}{S q}(x) S q(y)
$$

Example 1.3. Let's compute what these do to the $\operatorname{ring} H^{*}\left(\mathbb{R} P^{\infty}, \mathbb{Z} / 2\right)$. We have

$$
\begin{aligned}
S q(w) & =S q^{0}(w)+S q^{1}(w) \\
& =w+w^{2}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
S q\left(w^{i}\right) & =\left(w+w^{2}\right)^{i} \\
& =w^{i}(1+w)^{i} \\
& =w^{i} \sum_{k=0}^{i}\binom{i}{k} w^{k} \\
& =\sum_{k=0}^{i}\binom{i}{k} w^{i+k}
\end{aligned}
$$

Therefore, we read off

$$
S q^{k}\left(w^{i}\right)=\binom{i}{k} w^{i+k}
$$

Remark 1.4. Note that binomial coefficients are easy to compute modulo 2. Let $i=i_{0}+2 i_{1}+\ldots+2^{r} i_{r}+\ldots$ for $i_{r}=0$ or 1 (note that this sum is finite). Similarly, let $k=k_{0}+2 k_{1}+\ldots+2^{r} k_{r}+\ldots$ Then

$$
\binom{i}{k} \equiv \prod_{r}\binom{i_{r}}{k_{r}} \quad \bmod (2)
$$

Definition 1.5. The Steenrod algebra \mathcal{A} is the $\mathbb{Z} / 2$ algebra on the symbols $S q^{i}$ modulo the Adem relations and the relation $S q^{0}=1$.
Definition 1.6. A Steenrod square $S q^{r}$ is decomposable if it can be written as a sum of products of $S q^{i}$'s with $i<r$. It is called indecomposable if it is not decomposable.

For example, you can verify that

$$
S q^{3}=S q^{1} S q^{2}
$$

so $S q^{3}$ is decomposable.
Exercise 1.7. Prove that $S q^{r}$ is indecomposable if and only if $r=2^{l}$. (Hint: Compute its effect on $H^{*}\left(\mathbb{R} P^{\infty}, \mathbb{Z} / 2\right)$ for one direction and use the Adem relations for the other).

Proposition 1.8. As an algebra, \mathcal{A} is generated by the symbols $S q^{2^{i}}$.

2. Characteristic Classes

Recall that there are isomorphisms

$$
V e c t_{n}^{\mathbb{R}}(X) \cong\left[X, G r_{n}\left(\mathbb{R} P^{\infty}\right)\right], \quad \operatorname{Vect}_{n}^{\mathbb{C}}(X) \cong\left[X, G r_{n}\left(\mathbb{C} P^{\infty}\right)\right]
$$

Now, let $B_{n}=G r_{n}\left(\mathbb{R} P^{\infty}\right)$ and $R_{n}=\mathbb{Z} / 2$ or $B_{n}=G r_{n}\left(\mathbb{C} P^{\infty}\right)$ and $R_{n}=\mathbb{Z}$. Then given a vector bundle $\xi: E \rightarrow X$ with classifying map $f_{\xi}: X \rightarrow B_{n}$, we get a map

$$
H^{*}\left(B_{n}, R_{n}\right) \xrightarrow{f_{\xi}^{*}} H^{*}\left(X, R_{n}\right)
$$

Given $c \in H^{*}\left(B_{n}, R_{n}\right)$,

$$
c(\xi):=f_{\xi}^{*}(c)
$$

is an algebraic invariant for the vector bundle ξ called a characteristic class. These are interesting because they can allow us to distinguish between vector bundles, i.e., if there exists c such that $c(\xi) \neq c(\eta)$, the $\xi \neq \eta$.

For M a smooth manifold, let $T M \rightarrow M$ be the tangent bundle of M. Then the characteristic classes

$$
c(M)=c(T M)
$$

are of particular interest since they give invariants of smooth manifolds.

Computing characteristic classes is closely tied to computing $H^{*}\left(B_{n}, R_{n}\right)$. When $B_{n}=G r_{n}\left(\mathbb{R} P^{\infty}\right)$, the characteristic classes are called Siefel-Whitney classes. When $B_{n}=G r_{n}\left(\mathbb{C} P^{\infty}\right)$, they are called Chern classes. I will only talk about Siefel-Whitney (SW) classes in this talk.

3. Cohomology of $G r_{n}\left(\mathbb{R} P^{\infty}\right)$

Theorem 3.1. $H^{*}\left(G r_{n}\left(\mathbb{R} P^{\infty}\right), \mathbb{Z} / 2\right) \cong \mathbb{Z} / 2\left[w_{1}, \ldots, w_{n}\right]$ for w_{i} of degree i called the i 'th $S W$ class.
In fact, one call $\left(\mathbb{R} P^{\infty}\right)^{n} \rightarrow G r_{n}\left(\mathbb{R} P^{\infty}\right)$ classifying the n-plane bundle $\gamma_{1} \times \ldots \times \gamma_{1}$ and prove that this gives an isomorphism

$$
H^{*}\left(G r_{n}\left(\mathbb{R} P^{\infty}\right), \mathbb{Z} / 2\right) \rightarrow H^{*}\left(\left(\mathbb{R} P^{\infty}\right)^{n}, \mathbb{Z} / 2\right)^{\Sigma_{n}} \subset \mathbb{Z} / 2\left[w_{1}\right]^{\otimes n} \cong \mathbb{Z} / 2\left[w_{1,1}, \ldots w_{1, n}\right]
$$

where Σ_{n} is the symmetric group on n-letters and acts by permuting the copies of $\mathbb{R} P^{\infty}$. The class w_{i} goes to the i 'th elementary symmetric polynomial on the $w_{1, i}$'s.

4. Relation to Steenrod Squares

For any n-plane bundle ξ on X, there are elements

$$
w_{i}(\xi) \in H^{i}(X, \mathbb{Z} / 2)
$$

A construction of the SW classes goes as follows. Any n-plane bundle ξ on X is $\mathbb{Z} / 2$ orientable. and a Thom isomorphism

$$
\varphi: H^{i}(X) \rightarrow H^{n+i}\left(E^{+}, \infty\right)
$$

where E^{+}is the one point compactification of E. We can define

$$
w_{i}(\xi)=\varphi^{-1}\left(S q^{i}(\varphi(1))\right)
$$

Rather than being so formal about it, will study the SW classes by looking at the properties that they satisfy.

5. Axioms for Stiefel-Whitney classes

(1) $w_{0}(\xi)=1$
(2) (Naturality) Given a pull back diagram

where

$$
\left.f^{*}(\xi)=\{(y, v)) \mid y \in Y, v \in E, p(v)=f(y)\right\}
$$

we have

$$
f^{*} w_{i}(\xi)=w_{i}\left(f^{*}(\xi)\right)
$$

(3) If ξ and η are bundles over X, then

$$
w_{k}(\xi \oplus \eta)=\sum_{i=0}^{k} w_{i}(\xi) \cup w_{k-i}(\eta)
$$

(4) The tautological line bundle $\gamma_{1} \rightarrow \mathbb{R} P^{1}$ (aka, the Möbius band on S^{1}) satisfies

$$
w_{1}\left(\gamma_{1}\right) \neq 0
$$

We can package (3) by defining the total Stiefel-Whitney class

$$
w(\xi)=w_{0}(\xi)+w_{1}(\xi)+\ldots+w_{n}(\xi)+\ldots
$$

(the sum stops at $\left.w_{\operatorname{dim}(\xi)}(\xi)\right)$. Then

$$
w(\xi \oplus \eta)=\underset{3}{w(\xi) \cup w(\eta) .}
$$

6. The SW classes of the trivial bundle

Example 6.1. For any X, let $\epsilon_{n}=\epsilon_{n}(X)$ be the trivial n-plane bundle on X. Then, $\epsilon_{n}(X)=f^{*}\left(\epsilon_{n}(p t)\right)$ for $f: X \rightarrow p t$. So in particular, $w\left(\epsilon_{n}(X)\right)=1$. This implies that

$$
w\left(\xi \oplus \epsilon_{n}\right)=w(\xi)
$$

for any n.

7. Normal bundles and the Whitney product formula

Now, let $M \xrightarrow{f} \mathbb{R}^{n+k}$ be the immersion of a smooth manifold M. (An immersion means that the map on tangent spaces $T M_{x} \rightarrow \tau \mathbb{R}_{f(x)}^{n+k}$ is an injection. I.e., locally, f looks like an injection.) Then we can define a k-plane bundle $\nu(M)$ which is the orthogonal complement of $T M$ in \mathbb{R}^{n+k}. Note that

$$
\nu(M) \oplus T M=\tau\left(\mathbb{R}^{n+k}\right)=\epsilon_{n+k}\left(\mathbb{R}^{k}\right)
$$

Therefore, letting $w(M)=w(T M)$, we have the Whitney product formula

$$
w(\nu(M)) w(M)=1
$$

Note that $w(\nu(M))$ does not depend on ν, so we think of $w(\nu(M))$ as the formal inverse of $w(M)$ and write

$$
\bar{w}(M)=w(\nu(M))
$$

Example 7.1. The natural inclusion $S^{n} \hookrightarrow \mathbb{R}^{n+1}$ has a trivial normal bundle, so

$$
\bar{w}\left(S^{n}\right)=1
$$

This forces $w\left(S^{n}\right)=1$, so that the SW do not see the tangent bundle of S^{n}. However, S^{n} has a non-trivial tangent bundle for $n>1$ (you will see this for $n=2$ in the exercises).

