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1. HIGHER STRUCTURE: STEENROD SQUARES
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In this section, H*(X) = H*(X,Z/2). We describe operations on cohomology that generalize the cup

product. For ¢ > 0, the i ’th Steenrod square is a group homomorphism
Sq¢': H"(X) — H"™(X).

They have the following properties:

(1) S¢°(a) = a (i.e. Sq is the identity morphism.)

(2) If @ € H*(X), then S¢*(a) = a?.

(3) If « € H*(X), and i > k, then Sq¢*(a) = 0.

(4)

S¢' is the Bockstein homomorphism, i.e., the connecting homomorphism for the long exact sequence on

cohomology induced from the short exact sequence on coeflicients

0 2/23 7/4— 7 —0.
(In particular, Sq'Sq' = 0).
(5) There is a commutative diagram

o

H"(X) ——— H”+1(EX)
oo oo
Hn+z(X) _ = it (2X).

(6) (Cartan Formula) S¢‘(z Uy) =Y Sq¢? (z) U Sq*(z).

(7) (Adem Relations) If a < 2b, then

[a/2] b c—1
Sq*Sqb = Z ( 5 )Sq‘“‘b_Cch.

a — zC
c=0

(8) (Naturality) If f : X — Y is a continuous map, then f*Sq¢’ = Sq'f*.

Jtk=i

Remark 1.1. There are also relative Steenrod operations S¢' : H"(X, A) — H" (X, A).

Exercise 1.2. For x € H"(X), write
Sq(z) = Sq¢°(z) + Sq¢* (z) + ...+ Sq™(x).
Prove that the Cartan formula implies that

Sq(zy) = Sq(x)Sq(y).



Example 1.3. Let’s compute what these do to the ring H*(RP*>°,Z/2). We have
Sq(w) = Sq°(w) + 8¢’ (w)
= w+ w?.
Therefore,
Sq(w') = (w +w?)’
=w' (1 +w)’

Therefore, we read off

Remark 1.4. Note that binomial coefficients are easy to compute modulo 2. Let i = ig+2i1+...+2"i,.+. ..
for i = 0 or 1 (note that this sum is finite). Similarly, let k = ko + 2k1 + ...+ 2"k, +.... Then

()-T1(E) o

Definition 1.5. The Steenrod algebra A is the Z/2 algebra on the symbols S¢* modulo the Adem relations
and the relation S¢° = 1.

Definition 1.6. A Steenrod square Sq” is decomposable if it can be written as a sum of products of S¢*’s
with ¢ < r. It is called indecomposable if it is not decomposable.

For example, you can verify that
Sqd — Sqlqu
so S¢> is decomposable.

Exercise 1.7. Prove that S¢” is indecomposable if and only if »r = 2!. (Hint: Compute its effect on
H*(RP,7Z/2) for one direction and use the Adem relations for the other).

Proposition 1.8. As an algebra, A is generated by the symbols Squ.

2. CHARACTERISTIC CLASSES

Recall that there are isomorphisms
VectR(X) 2= [X,Gr,(RP™®)],  VectS(X) = [X,Gr,(CP>)].

Now, let B,, = Gr,(RP*) and R,, = Z/2 or B,, = Gr,(CP*) and R,, = Z. Then given a vector bundle
£ E — X with classifying map f¢ : X — By, we get a map

H*(B,, Ry) x5, H*(X,R,).
Given ¢ € H*(By, Ry),
c(§) = fé(c)
is an algebraic invariant for the vector bundle ¢ called a characteristic class. These are interesting because
they can allow us to distinguish between vector bundles, i.e., if there exists ¢ such that ¢(§) # ¢(n), the

§Zn.
For M a smooth manifold, let TM — M be the tangent bundle of M. Then the characteristic classes

(M) =¢(TM)

are of particular interest since they give invariants of smooth manifolds.
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Computing characteristic classes is closely tied to computing H*(B,,, R,). When B, = Gr,(RP>), the
characteristic classes are called Siefel-Whitney classes. When B, = Gr,(CP>), they are called Chern
classes. I will only talk about Siefel-Whitney (SW) classes in this talk.

3. COHOMOLOGY OF Gry,(RP>)
Theorem 3.1. H*(Gr,(RP>),7Z/2) 2 Z/2[w1, ..., wy] for w; of degree i called the i’th SW class.

In fact, one call (RP*)" — Gr,(RP>) classifying the n—plane bundle v; x ... X 7; and prove that this
gives an isomorphism

H*(Gr,(RP>®),Z/2) — H*((RP>®)",Z/2)*" C Z/2[w]®" = Z /2wy 1, . . . w1 ]
where ¥, is the symmetric group on n-letters and acts by permuting the copies of RP>. The class w; goes
to the i'th elementary symmetric polynomial on the w ;’s.
4. RELATION TO STEENROD SQUARES
For any n-plane bundle £ on X, there are elements
w;(€) € H(X,Z/2).

A construction of the SW classes goes as follows. Any n-plane bundle £ on X is Z/2 orientable. and a
Thom isomorphism
g H'(X) — H"(ET, 00),

where ET is the one point compactification of E. We can define

wi(€) = ¢~ (Sq' (1))
Rather than being so formal about it, will study the SW classes by looking at the properties that they
satisfy.

5. AXIOMS FOR STIEFEL-WHITNEY CLASSES

(1) wo(¢) =1
(2) (Naturality) Given a pull back diagram
() — j
y —L - x
where
& ={lyv) lyeY, ve E, p(v) = f(y)}
we have

frwi(§) = wi(f7(€))-
(3) If £ and n are bundles over X, then

k
wi(€®n) =Y wi(€) Uwy_i(n)
=0

(4) The tautological line bundle v; — RP! (aka, the Mobius band on S!) satisfies
wi(n) #0
We can package (3) by defining the total Stiefel-Whitney class
w(&) = wo(§) +wi(§) + ... +wn(§) + ...

(the sum stops at waim(¢)(£)). Then

w(§ ©n) =w(&) Yw(n).
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6. THE SW CLASSES OF THE TRIVIAL BUNDLE

Example 6.1. For any X, let €, = €,(X) be the trivial n—plane bundle on X. Then, €,(X) = f*(e,(pt))
for f: X — pt. So in particular, w(e, (X)) = 1. This implies that

w( D en) = w(f)

for any n.
7. NORMAL BUNDLES AND THE WHITNEY PRODUCT FORMULA

Now, let M I, R*+* he the immersion of a smooth manifold M. (An immersion means that the map on
tangent spaces T M, — TR}L(JZS is an injection. I.e., locally, f looks like an injection.) Then we can define a

k-plane bundle v(M) which is the orthogonal complement of TM in R"**. Note that
v(M)®TM = 7(R""*) = ¢, . (R).

Therefore, letting w(M) = w(T M), we have the Whitney product formula

wv(M))w(M) = 1.
Note that w(v(M)) does not depend on v, so we think of w(v(M)) as the formal inverse of w(M) and write

w(M) =w(v(M)).
Example 7.1. The natural inclusion S™ < R"*! has a trivial normal bundle, so

w(S") =1

This forces w(S™) = 1, so that the SW do not see the tangent bundle of S™. However, S™ has a non—trivial
tangent bundle for n > 1 (you will see this for n = 2 in the exercises).



