MONDAY - TALK 4 ALGEBRAIC STRUCTURE ON COHOMOLOGY

Contents

1. Cohomology 1
2. The ring structure and cup product 2
2.1. Idea and example 2
3. Tensor product of Chain complexes 2
4. Kunneth formula and the cup product 3
5. Pairing between homology and cohomology 3
6. Poincaré Duality 4
7. Ring structure of $H^{*}\left(\mathbb{R} P^{n}, \mathbb{Z} / 2\right)$ 4

1. Cohomology

Let R be a commutative ring. You can think of $R=\mathbb{Z}$ or $R=\mathbb{Z} / 2$ and I'll write $H^{*}(X)=H^{*}(X, R)$ unless the statement depends on the choice of R. Recall that for each n, there is a group $H^{n}(X)$ called the n 'th cohomology group of X. It an be computed using cellular cochains for a CW approximation of X or the singular chains on X. We package this information together into one graded abelian group as:

$$
H^{*}(X)=\bigoplus_{n \geq 0} H^{n}(X)
$$

This is a graded abelian group. An element $\alpha \in H^{n}(X)$ is has degree n, written $|\alpha|=n$. The goal of today is to describe the algebraic structure of $H^{*}(X)$.

Remember that cohomology $H^{n}(X, R)$ is computed using the chain complex whose n 'th term is

$$
C^{n}(X, R)=\operatorname{Hom}_{R}\left(C_{n}(X, R), R\right)
$$

where $C_{n}(X, R)$ is the cellular chain complex of X. The coboundary is obtain by precomposition with the boundary of $C_{n}(X, R)$:

So $\partial(\alpha)=\alpha \circ \delta$.
Example 1.1. - $H^{0}(p t, R)=R$ and $H^{k}(*, R)=0$ if $k \neq 0$ since the cellular chain complex has one cell and

$$
\operatorname{Hom}_{R}(R, R) \cong R
$$

(just decide where 1 goes and the rest is determined since the map must respect R-multiplication). So

$$
H^{*}(p t, R) \cong R
$$

- The n-sphere has cellular chain complex with one cell in degree 0 and n and no cells otherwise. So $H^{k}\left(S^{n}, R\right)=R$ if $k=0, n$ and is zero otherwise. So

$$
H^{*}\left(S^{n}, R\right) \cong R \oplus R \epsilon
$$

where ϵ is a generator of H^{n}.

- $\mathbb{R} P^{n}$ has a cellular structure with one cell in each dimension. The chain complex has a \mathbb{Z} in each degree $0 \leq k \leq n$ and is zero otherwise.

$$
0 \longrightarrow \mathbb{Z} \xrightarrow{1+(-1)^{n}} \mathbb{Z} \longrightarrow \ldots \longrightarrow \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \longrightarrow 0
$$

Again, $\operatorname{Hom}_{R}(\mathbb{Z}, R) \cong R$ and precomposition with multiplication by 2 is the same as multiplication by 2, so
computes the cohomology. In particular,

$$
H^{k}\left(\mathbb{R} P^{n}, R\right)= \begin{cases}R & k=0 \text { or } k=n \text { and } n \text { is odd } \\ R / 2 & k>0 \text { is even } .\end{cases}
$$

Note, if $R=\mathbb{Z} / 2$, then $H^{k}\left(\mathbb{R} P^{n}, \mathbb{Z} / 2\right)=\mathbb{Z} / 2$ for all $0 \leq k \leq n$ and zero otherwise, so

$$
H^{*}\left(\mathbb{R} P^{n}, \mathbb{Z} / 2\right)=\mathbb{Z} / 2 \oplus \mathbb{Z} / 2 w_{1} \oplus \ldots \oplus \mathbb{Z} / 2 w_{n}
$$

where w_{k} is the unique non-zero element of H^{k}.

2. The Ring structure and cup product

2.1. Idea and example. $H^{*}(X)=H^{*}(X, R)$ has the structure of a graded ring. Given an element $\alpha \in$ $H^{n}(X)$ and $\beta \in H^{m}(X)$, we want to define a product

$$
\alpha \beta=\alpha \cup \beta \in H^{n+m}(X) .
$$

That is, an R-linear maps

$$
H^{n}(X) \otimes H^{m}(X) \rightarrow H^{n+m}(X)
$$

The unit of the ring is gotten as follows. Every space has a map $X \rightarrow p t$. This gives a map

$$
R=H^{*}(p t) \xrightarrow{p^{*}} H^{*}(X)
$$

The unit of $H^{*}(X)$ is $p^{*}\left(1_{R}\right)$ which we just denote by $1 \in H^{0}(X)$. The product is not commutative on the nose, but it is what we call graded commutative

$$
\alpha \cup \beta=(-1)^{|\alpha||\beta|} \beta \cup \alpha .
$$

Exercise 2.1. Prove that if $\alpha \in H^{q}(X, R)$ has odd degree q, then $2 \alpha^{2}=0$ in $H^{2 q}(X, R)$.
Example 2.2.

- $H^{*}(p t, \mathbb{Z})=\mathbb{Z}$ as a ring.
- $H *\left(S^{n}, \mathbb{Z}\right)=\mathbb{Z} \oplus \mathbb{Z} \epsilon_{n}$. Since $1 \cup \epsilon=\epsilon \cup 1$, we just need to specify $\epsilon \cup \epsilon$. However, $\epsilon \cup \epsilon \in H^{2 n}\left(S^{n}, \mathbb{Z}\right)=0$. So, $H^{*}\left(S^{n}, \mathbb{Z}\right) \cong \mathbb{Z}[\epsilon] /\left(\epsilon^{2}\right)$. This is called an exterior algebra.
- We will see later that $H^{*}\left(\mathbb{R} P^{n}, \mathbb{Z} / 2\right) \cong \mathbb{Z} / 2[w] /\left(w^{n}\right)$ for $w=w_{1}$ the non-zero element of $H^{1}\left(\mathbb{R} P^{n}, \mathbb{Z} / 2\right)$.

Remark 2.3. There is also a cup product in relative homology:

$$
H^{n}(X, A) \otimes H^{m}(X) \rightarrow H^{n+m}(X, A)
$$

3. Tensor product of Chain complexes

If C_{*} and C_{*}^{\prime} are chain complexes, then

$$
\left(C_{*} \otimes C_{*}^{\prime}\right)_{n}=\bigoplus_{i+j=n} C_{i} \otimes C_{j}^{\prime}
$$

and differential

$$
\delta^{C_{*} \times C_{*}^{\prime}}(x \otimes y)=\delta^{C_{*}}(x) \otimes y+(-1)^{|x|} x \otimes \delta^{C_{*}^{\prime}}(y)
$$

4. Kunneth formula and the cup product

Our goal is to define a maps

$$
\bigoplus_{i+j=n} H^{i}(X) \otimes H^{j}(X) \rightarrow H^{n}(X)
$$

which will give the multiplication.
We will do this in two steps,

$$
\bigoplus_{i+j=n} H^{i}(X) \otimes H^{j}(X) \rightarrow H^{n}(X \times X) \xrightarrow{\Delta^{*}} H^{n}(X)
$$

where the second map is is just the map induced by the diagonal

$$
X \rightarrow X \times X, \quad x \mapsto(x, x)
$$

We fist look at two CW complexes X and Y. Then $X \times Y$ is also a CW complex with cells n-cells

$$
\left\{e_{i}^{X} \times e_{j}^{Y} \mid i+j=n\right\}
$$

One can check that

$$
\delta\left(e_{i}^{X} \times e_{j}^{Y}\right)=\delta\left(e_{i}^{X}\right) \times e_{j}^{Y}+(-1)^{i} e_{i}^{X} \times \delta\left(e_{j}^{Y}\right)
$$

(Example: $D^{1} \times D^{1}$.)
In fact:

$$
C_{*}(X) \otimes C_{*}(Y) \cong C_{*}(X \times Y)
$$

From this, we can do some homological algebra and get a map

$$
k: H^{*}(X) \otimes H^{*}(Y) \rightarrow H^{*}(X \times Y)
$$

Theorem 4.1 (Künneth Isomorphism). If R is nice enough, if one of X or Y has R-torsion free homology and the $C W$ complexes Y has finitely many cells in each dimensions, the map k is an isomorphism. In particular, $H^{*}(X)$ is always torsion free when R is a field.

Definition 4.2. The composite

$$
H^{*}(X) \otimes H^{*}(X) \xrightarrow{k} H^{*}(X \times X) \xrightarrow{\Delta^{*}} H^{*}(X)
$$

defines the cup product:

$$
x \cup y=\Delta^{*} k(x \otimes y)
$$

Exercise 4.3. Compute the cohomology ring of the n-torus $\mathbb{T}^{n}=\left(S^{1}\right)^{\times n}$ with coefficients in \mathbb{Z}.

5. Pairing between homology and cohomology

There is an evaluation map

$$
C^{n}(X, R) \otimes C_{n}(X, R)=\operatorname{Hom}_{R}\left(C_{n}(X, R), R\right) \otimes C_{n}(X, R) \rightarrow R
$$

which takes a function α and a chain a and maps it to the value of α on a, that is, $\alpha(a)$.
Once can check that this gives a pairing

$$
H^{n}(X, R) \otimes H_{n}(X, R) \rightarrow R
$$

We will denote its value by

$$
\langle\alpha, a\rangle
$$

In fact, if $R=F$ is a field, this is even better. The map $\alpha \mapsto\langle\alpha,-\rangle$ is an isomorphism

$$
H^{n}(X, F) \stackrel{ }{\cong} \operatorname{Hom}_{F}\left(H_{n}(X, F), F\right)
$$

where the right hand side is the vector space dual of $H_{n}(X, F)$.
In the more general case, we always get a relationship between homology and cohomology which is called the Universal Coefficient Theorem.

6. Poincaré Duality

Let M be a compact n-manifold. We can see what orientable and non-orientable means in terms of the example S^{2} and $\mathbb{R} P^{2}$.
Theorem 6.1. If M is a compact n-dimensional manifold without boundary, then $H_{i}(M, \mathbb{Z})=0$ for $i>n$. Further,
(a) If M is orientable, then $H_{n}(M, \mathbb{Z}) \cong \mathbb{Z}$.
(b) If M is not orientable, then $H_{n}(M, \mathbb{Z})=0$.

This agrees with our computations for S^{2} and $\mathbb{R} P^{2}$. There's also a notion or R-orientability for different coefficients R. For now, let's just say that if $R=\mathbb{Z} / 2$, every compact n-dimensional manifold is $\mathbb{Z} / 2^{-}$ orientable so that (a) always holds in that case. Intuitively, this is because orientation is determined by reflections and since $-1=1$, these are invisible to cohomology with coefficients in $\mathbb{Z} / 2$.

Choose a generator

$$
[M] \in H_{n}(M, \mathbb{Z}) \cong \mathbb{Z}
$$

Then $[M]$ is called the fundamental class. You can think of $[M]$ as being represented by a sum of all the n-cells in $C_{n}(M, \mathbb{Z})$ (which is finite since M is compact). The cells have a natural orientation coming from \mathbb{R}^{n}. Since M is oriented, one can choose the CW structure so that the boundaries align in a way that makes [M] a cycle.
Theorem 6.2 (Poincaré Duality). Let M be a closed R-oriented n-dimensional topological manifold. Consider the pairing the pairing

$$
\begin{equation*}
H^{p}(M, R) \otimes H^{n-p}(M, R) \xrightarrow{\langle-\cup-,[M]\rangle} R \tag{6.0.1}
\end{equation*}
$$

where

$$
\alpha \otimes \beta \mapsto\langle\alpha \cup \beta,[M]\rangle
$$

If $R=\mathbb{Z} / 2$, this pairing is non-degenerate. That is, for each $\alpha \in H^{p}(M, \mathbb{Z} / 2)$ with $\alpha \neq 0$, there exists $\beta \in H^{n-p}(M, \mathbb{Z} / 2)$ such that $\langle\alpha \cup \beta,[M]\rangle \neq 0$ and vice versa.

Further, for $R=\mathbb{Z}$ and $H^{n}(M, \mathbb{Z})$ and $H^{n-p}(M, \mathbb{Z})$ are torsion free, the pairing is also non-degenerate.

$$
\text { 7. Ring structure of } H^{*}\left(\mathbb{R} P^{n}, \mathbb{Z} / 2\right)
$$

Proposition 7.1. There is a ring homomorphism

$$
H^{*}\left(\mathbb{R} P^{n}, \mathbb{Z} / 2\right) \cong \mathbb{Z} / 2[w] /\left(w^{n}\right)
$$

for w the non-zero element of H^{1}.
Proof. Since $\mathbb{R} P^{1} \simeq S^{1}$, the claim is clear for $n=1$. Suppose that the claim holds for $\mathbb{R} P^{n-1}$. Note that the natural inclusion $\mathbb{R} P^{n-1} \rightarrow \mathbb{R} P^{n}$ induces a surjective ring homomorphism

$$
H^{*}\left(\mathbb{R} P^{n}, \mathbb{Z} / 2\right) \rightarrow H^{*}\left(\mathbb{R} P^{n-1}, \mathbb{Z} / 2\right)
$$

(so in particular, an isomorphism for $0 \leq k \leq n-1$). Therefore, w^{n-1} is the non-zero element in $H^{n-1}\left(\mathbb{R} P^{n}, \mathbb{Z} / 2\right)$. However, since

$$
H^{1}\left(\mathbb{R} P^{n}, \mathbb{Z} / 2\right) \otimes H^{n-1}\left(\mathbb{R} P^{n}, \mathbb{Z} / 2\right) \xrightarrow{\left\langle-\cup-,\left[\mathbb{R} P^{n}\right]\right\rangle} \mathbb{Z} / 2
$$

is non-singular, $\left\langle w \cup w^{n-1},\left[\mathbb{R} P^{n}\right]\right\rangle \neq 0$, so $w \cup w^{n-1} \neq 0$.
Remark 7.2. Note that $H_{n}\left(\mathbb{R} P_{n}, \mathbb{Z} / 2\right)=\mathbb{Z} / 2$, the fundamental class [$\mathbb{R} P^{n}$] is the unique non-zero element.
Remark 7.3. There are inclusions

$$
\mathbb{R} P^{0} \subset \mathbb{R} P^{1} \subset \ldots \subset \mathbb{R} P^{n} \subset \mathbb{R} P^{n+1} \ldots
$$

and

$$
\mathbb{R} P^{\infty}=\bigcup_{\substack{n=0 \\ 4}}^{\infty} \mathbb{R} P^{n}
$$

You should convince yourself that this implies that

$$
H^{*}\left(\mathbb{R} P^{\infty}, \mathbb{Z} / 2\right) \cong \mathbb{Z} / 2[w]
$$

for $\alpha \in H^{1}$.

