
MONDAY - TALK 4

ALGEBRAIC STRUCTURE ON COHOMOLOGY

Contents

1. Cohomology 1
2. The ring structure and cup product 2
2.1. Idea and example 2
3. Tensor product of Chain complexes 2
4. Kunneth formula and the cup product 3
5. Pairing between homology and cohomology 3
6. Poincaré Duality 4
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1. Cohomology

Let R be a commutative ring. You can think of R = Z or R = Z/2 and I’ll write H∗(X) = H∗(X,R)
unless the statement depends on the choice of R. Recall that for each n, there is a group Hn(X) called the
n’th cohomology group of X. It an be computed using cellular cochains for a CW approximation of X or
the singular chains on X. We package this information together into one graded abelian group as:

H∗(X) =
⊕
n≥0

Hn(X).

This is a graded abelian group. An element α ∈ Hn(X) is has degree n, written |α| = n. The goal of today
is to describe the algebraic structure of H∗(X).

Remember that cohomology Hn(X,R) is computed using the chain complex whose n’th term is

Cn(X,R) = HomR(Cn(X,R), R),

where Cn(X,R) is the cellular chain complex of X. The coboundary is obtain by precomposition with the
boundary of Cn(X,R):

Cn(X,R)
δ // Cn−1(X,R)

α

��
R

So ∂(α) = α ◦ δ.

Example 1.1. • H0(pt,R) = R and Hk(∗, R) = 0 if k 6= 0 since the cellular chain complex has one
cell and

HomR(R,R) ∼= R

(just decide where 1 goes and the rest is determined since the map must respect R–multiplication).
So

H∗(pt,R) ∼= R.

• The n–sphere has cellular chain complex with one cell in degree 0 and n and no cells otherwise. So
Hk(Sn, R) = R if k = 0, n and is zero otherwise. So

H∗(Sn, R) ∼= R⊕Rε
where ε is a generator of Hn.
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• RPn has a cellular structure with one cell in each dimension. The chain complex has a Z in each
degree 0 ≤ k ≤ n and is zero otherwise.

0 // Z
1+(−1)n// Z // . . . // Z 2 // Z 0 // Z // 0

Again, HomR(Z, R) ∼= R and precomposition with multiplication by 2 is the same as multiplication
by 2, so

0 Roo R
1+(−1)n
oo . . .oo Roo R

2
oo Roo 0oo

computes the cohomology. In particular,

Hk(RPn, R) =

{
R k = 0 or k = n and n is odd

R/2 k > 0 is even.

Note, if R = Z/2, then Hk(RPn,Z/2) = Z/2 for all 0 ≤ k ≤ n and zero otherwise, so

H∗(RPn,Z/2) = Z/2⊕ Z/2w1 ⊕ . . .⊕ Z/2wn
where wk is the unique non-zero element of Hk.

2. The ring structure and cup product

2.1. Idea and example. H∗(X) = H∗(X,R) has the structure of a graded ring. Given an element α ∈
Hn(X) and β ∈ Hm(X), we want to define a product

αβ = α ∪ β ∈ Hn+m(X).

That is, an R–linear maps

Hn(X)⊗Hm(X)→ Hn+m(X).

The unit of the ring is gotten as follows. Every space has a map X → pt. This gives a map

R = H∗(pt)
p∗−→ H∗(X)

The unit of H∗(X) is p∗(1R) which we just denote by 1 ∈ H0(X). The product is not commutative on the
nose, but it is what we call graded commutative

α ∪ β = (−1)|α||β|β ∪ α.

Exercise 2.1. Prove that if α ∈ Hq(X,R) has odd degree q, then 2α2 = 0 in H2q(X,R).

Example 2.2.

• H∗(pt,Z) = Z as a ring.
• H∗(Sn,Z) = Z⊕Zεn. Since 1∪ε = ε∪1, we just need to specify ε∪ε. However, ε∪ε ∈ H2n(Sn,Z) = 0.

So, H∗(Sn,Z) ∼= Z[ε]/(ε2). This is called an exterior algebra.
• We will see later that H∗(RPn,Z/2) ∼= Z/2[w]/(wn) for w = w1 the non-zero element of H1(RPn,Z/2).

Remark 2.3. There is also a cup product in relative homology:

Hn(X,A)⊗Hm(X)→ Hn+m(X,A).

3. Tensor product of Chain complexes

If C∗ and C ′∗ are chain complexes, then

(C∗ ⊗ C ′∗)n =
⊕
i+j=n

Ci ⊗ C ′j .

and differential

δC∗×C
′
∗(x⊗ y) = δC∗(x)⊗ y + (−1)|x|x⊗ δC

′
∗(y).
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4. Kunneth formula and the cup product

Our goal is to define a maps ⊕
i+j=n

Hi(X)⊗Hj(X)→ Hn(X)

which will give the multiplication.
We will do this in two steps,⊕

i+j=n

Hi(X)⊗Hj(X)→ Hn(X ×X)
∆∗−−→ Hn(X)

where the second map is is just the map induced by the diagonal

X → X ×X, x 7→ (x, x).

We fist look at two CW complexes X and Y . Then X × Y is also a CW complex with cells n–cells

{eXi × eYj | i+ j = n}.

One can check that

δ(eXi × eYj ) = δ(eXi )× eYj + (−1)ieXi × δ(eYj ).

(Example: D1 ×D1.)
In fact:

C∗(X)⊗ C∗(Y ) ∼= C∗(X × Y ).

From this, we can do some homological algebra and get a map

k : H∗(X)⊗H∗(Y )→ H∗(X × Y ).

Theorem 4.1 (Künneth Isomorphism). If R is nice enough, if one of X or Y has R–torsion free homology
and the CW complexes Y has finitely many cells in each dimensions, the map k is an isomorphism. In
particular, H∗(X) is always torsion free when R is a field.

Definition 4.2. The composite

H∗(X)⊗H∗(X)
k−→ H∗(X ×X)

∆∗−−→ H∗(X)

defines the cup product:

x ∪ y = ∆∗k(x⊗ y).

Exercise 4.3. Compute the cohomology ring of the n–torus Tn = (S1)×n with coefficients in Z.

5. Pairing between homology and cohomology

There is an evaluation map

Cn(X,R)⊗ Cn(X,R) = HomR(Cn(X,R), R)⊗ Cn(X,R)→ R

which takes a function α and a chain a and maps it to the value of α on a, that is, α(a).
Once can check that this gives a pairing

Hn(X,R)⊗Hn(X,R)→ R.

We will denote its value by

〈α, a〉 .
In fact, if R = F is a field, this is even better. The map α 7→ 〈α,−〉 is an isomorphism

Hn(X,F )
∼=−→ HomF (Hn(X,F ), F ),

where the right hand side is the vector space dual of Hn(X,F ).
In the more general case, we always get a relationship between homology and cohomology which is called

the Universal Coefficient Theorem.
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6. Poincaré Duality

Let M be a compact n-manifold. We can see what orientable and non-orientable means in terms of the
example S2 and RP 2.

Theorem 6.1. If M is a compact n–dimensional manifold without boundary, then Hi(M,Z) = 0 for i > n.
Further,

(a) If M is orientable, then Hn(M,Z) ∼= Z.
(b) If M is not orientable, then Hn(M,Z) = 0.

This agrees with our computations for S2 and RP 2. There’s also a notion or R–orientability for different
coefficients R. For now, let’s just say that if R = Z/2, every compact n–dimensional manifold is Z/2–
orientable so that (a) always holds in that case. Intuitively, this is because orientation is determined by
reflections and since −1 = 1, these are invisible to cohomology with coefficients in Z/2.

Choose a generator

[M ] ∈ Hn(M,Z) ∼= Z.
Then [M ] is called the fundamental class. You can think of [M ] as being represented by a sum of all the
n–cells in Cn(M,Z) (which is finite since M is compact). The cells have a natural orientation coming from
Rn. Since M is oriented, one can choose the CW structure so that the boundaries align in a way that makes
[M ] a cycle.

Theorem 6.2 (Poincaré Duality). Let M be a closed R–oriented n–dimensional topological manifold. Con-
sider the pairing the pairing

(6.0.1) Hp(M,R)⊗Hn−p(M,R)
〈−∪−,[M ]〉−−−−−−−→ R

where

α⊗ β 7→ 〈α ∪ β, [M ]〉 .
If R = Z/2, this pairing is non-degenerate. That is, for each α ∈ Hp(M,Z/2) with α 6= 0, there exists
β ∈ Hn−p(M,Z/2) such that 〈α ∪ β, [M ]〉 6= 0 and vice versa.

Further, for R = Z and Hn(M,Z) and Hn−p(M,Z) are torsion free, the pairing is also non-degenerate.

7. Ring structure of H∗(RPn,Z/2)

Proposition 7.1. There is a ring homomorphism

H∗(RPn,Z/2) ∼= Z/2[w]/(wn)

for w the non-zero element of H1.

Proof. Since RP 1 ' S1, the claim is clear for n = 1. Suppose that the claim holds for RPn−1. Note that
the natural inclusion RPn−1 → RPn induces a surjective ring homomorphism

H∗(RPn,Z/2)→ H∗(RPn−1,Z/2)

(so in particular, an isomorphism for 0 ≤ k ≤ n − 1). Therefore, wn−1 is the non-zero element in
Hn−1(RPn,Z/2). However, since

H1(RPn,Z/2)⊗Hn−1(RPn,Z/2)
〈−∪−,[RPn]〉−−−−−−−−→ Z/2

is non-singular,
〈
w ∪ wn−1, [RPn]

〉
6= 0, so w ∪ wn−1 6= 0. �

Remark 7.2. Note that Hn(RPn,Z/2) = Z/2, the fundamental class [RPn] is the unique non-zero element.

Remark 7.3. There are inclusions

RP 0 ⊂ RP 1 ⊂ . . . ⊂ RPn ⊂ RPn+1 . . .

and

RP∞ =

∞⋃
n=0

RPn.

4



You should convince yourself that this implies that

H∗(RP∞,Z/2) ∼= Z/2[w]

for α ∈ H1.
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