MONDAY - TALK 4
ALGEBRAIC STRUCTURE ON COHOMOLOGY
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1. COHOMOLOGY

Let R be a commutative ring. You can think of R = Z or R = Z/2 and T'll write H*(X) = H*(X, R)
unless the statement depends on the choice of R. Recall that for each n, there is a group H"(X) called the
n’th cohomology group of X. It an be computed using cellular cochains for a CW approximation of X or
the singular chains on X. We package this information together into one graded abelian group as:

H*(X) =P H"(X).
n>0

This is a graded abelian group. An element « € H"(X) is has degree n, written |a| = n. The goal of today
is to describe the algebraic structure of H*(X).
Remember that cohomology H™(X, R) is computed using the chain complex whose n’th term is

O"™(X, R) = Homp(Cu(X, R), R),

where C,, (X, R) is the cellular chain complex of X. The coboundary is obtain by precomposition with the
boundary of Cy, (X, R):

Co(X,R) —>C,_1(X,R)

ia

R
So d(a)) = aod.
Example 1.1. e Hpt,R) = R and H*(x,R) = 0 if k # 0 since the cellular chain complex has one
cell and

Hompg(R,R) =2 R
(just decide where 1 goes and the rest is determined since the map must respect R—multiplication).
So
H*(pt,R) =< R.
o The n-sphere has cellular chain complex with one cell in degree 0 and n and no cells otherwise. So

H*(S™ R) = R if k = 0,n and is zero otherwise. So
H*(S",R) = R® Re

where € is a generator of H™.



e RP™ has a cellular structure with one cell in each dimension. The chain complex has a Z in each
degree 0 < k < mn and is zero otherwise.

14+(=1)" 2

0 Z Z Z 7z—2>17 0
Again, Homg(Z, R) & R and precomposition with multiplication by 2 is the same as multiplication
by 2, so
0 R R R R R 0
I+(—1)" 2

computes the cohomology. In particular,

H*¥RP",R) =

R k=0ork=mnandn is odd
R/2 k>0 is even.

Note, if R =7./2, then H*(RP",Z/2) = 7Z,/2 for all 0 < k < n and zero otherwise, so
H*(RP™,Z/2)=Z/2®Z/2w1 & ... dZL/2w,

where wy, is the unique non-zero element of H".

2. THE RING STRUCTURE AND CUP PRODUCT

2.1. Idea and example. H*(X) = H*(X, R) has the structure of a graded ring. Given an element a €
H™(X) and § € H™(X), we want to define a product

af=aUpe H"™(X).
That is, an R-linear maps
H"(X)® H™(X) — H"™(X).
The unit of the ring is gotten as follows. Every space has a map X — pt. This gives a map
R=H*(pt) &5 H*(X)

The unit of H*(X) is p*(1g) which we just denote by 1 € H°(X). The product is not commutative on the
nose, but it is what we call graded commutative

aUp=(-1llFlgya.
Exercise 2.1. Prove that if « € H(X, R) has odd degree ¢, then 2a? = 0 in H*(X, R).
Example 2.2.

o H*(pt,Z) =7 as a ring.

o Hx(S",7) = Z®Ze,. Since 1Ue = U1, we just need to specify eUe. However, eUe € H*(S™,Z) = 0.
So, H*(S™,7Z) = Z[e]/(€?). This is called an exterior algebra.

o We will see later that H*(RP™,Z/2) = Z/2[w]/(w") for w = w; the non-zero element of H*(RP™,7/2).

Remark 2.3. There is also a cup product in relative homology:

H"(X,A) @ H™(X) = H"™ (X, A).

3. TENSOR PRODUCT OF CHAIN COMPLEXES

If C, and C! are chain complexes, then
(C.eChn= @ Ciac
i+j=n
and differential

§C Xz @ y) = 0% (z) @ y + (—1)1*lz @ 6= (y).
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4. KUNNETH FORMULA AND THE CUP PRODUCT

Our goal is to define a maps
P H(X)® H/(X) - H'(X)
i+j=n
which will give the multiplication.
We will do this in two steps,
P HI(X) o HI(X)— H(X x X) 25 H"(X)
i+j=n
where the second map is is just the map induced by the diagonal
X—=>XxX, zm (z,2).
We fist look at two CW complexes X and Y. Then X x Y is also a CW complex with cells n—cells
{ef xe}/ |i+j=n}.
One can check that

S(eX x e;/) =6(ef) x e}/ + (=1 x 5(6;-/).

(Example: D' x D))
In fact:
Ci(X)RC(Y) 2 Cu(X xXY).
From this, we can do some homological algebra and get a map
kE:H* (X)) H(Y) > H*(X xY).

Theorem 4.1 (Kiinneth Isomorphism). If R is nice enough, if one of X orY has R—torsion free homology
and the CW complexes Y has finitely many cells in each dimensions, the map k is an isomorphism. In
particular, H*(X) is always torsion free when R is a field.

Definition 4.2. The composite

H*(X)® H*(X) & H*(X x X) &5 H*(X)

defines the cup product:
xUy =A"%(z®y).

Exercise 4.3. Compute the cohomology ring of the n-torus T" = (S!)*" with coefficients in Z.

5. PAIRING BETWEEN HOMOLOGY AND COHOMOLOGY
There is an evaluation map
C"(X,R)® Cr(X,R) =Hompg(Cph(X,R),R) @ C(X,R) = R

which takes a function « and a chain a and maps it to the value of « on a, that is, a(a).
Once can check that this gives a pairing

H"(X,R)® H,(X,R) — R.
We will denote its value by
(a, a) .
In fact, if R = F is a field, this is even better. The map «a +— (@, —) is an isomorphism
H"™(X, F) = Homp(H,(X, F), F),

where the right hand side is the vector space dual of H,, (X, F).
In the more general case, we always get a relationship between homology and cohomology which is called
the Universal Coefficient Theorem.



6. POINCARE DUALITY

Let M be a compact n-manifold. We can see what orientable and non-orientable means in terms of the
example S? and RP2.

Theorem 6.1. If M is a compact n—-dimensional manifold without boundary, then H;(M,7Z) = 0 for i > n.
Further,

(a) If M is orientable, then H,(M,7) = Z.

(b) If M is not orientable, then H,(M,Z) = 0.

This agrees with our computations for S? and RP?. There’s also a notion or R-orientability for different
coefficients R. For now, let’s just say that if R = Z/2, every compact n—dimensional manifold is Z/2—
orientable so that (a) always holds in that case. Intuitively, this is because orientation is determined by
reflections and since —1 = 1, these are invisible to cohomology with coefficients in Z/2.

Choose a generator

[M] € H,(M,Z) = Z.
Then [M] is called the fundamental class. You can think of [M] as being represented by a sum of all the
n—cells in C,,(M,Z) (which is finite since M is compact). The cells have a natural orientation coming from
R™. Since M is oriented, one can choose the CW structure so that the boundaries align in a way that makes
[M] a cycle.

Theorem 6.2 (Poincaré Duality). Let M be a closed R-oriented n—dimensional topological manifold. Con-
sider the pairing the pairing

(601) HP(M7 R) ® H"_I)(M7 R) (—=U—,[M])

where

R

a® B (aUp, [M]).
If R = 7Z/2, this pairing is non-degenerate. That is, for each o € HP(M,7Z/2) with o # 0, there exists
B € H" P(M,Z/2) such that (U B,[M]) # 0 and vice versa.
Further, for R =7 and H"(M,Z) and H" P(M,Z) are torsion free, the pairing is also non-degenerate.
7. RING STRUCTURE OF H*(RP"™,7Z/2)
Proposition 7.1. There is a ring homomorphism
H*(RP",Z/2) 2 Z/2[w]/(w")
for w the non-zero element of H'.

Proof. Since RP! ~ S, the claim is clear for n = 1. Suppose that the claim holds for RP"~!. Note that
the natural inclusion RP"~! — RP" induces a surjective ring homomorphism

H*(RP™,7Z/2) — H*(RP"',7Z/2)

(so in particular, an isomorphism for 0 < k < m — 1). Therefore, w™ ! is the non-zero element in
H"1(RP",7Z/2). However, since

HY(RP",Z/2) @ H"Y(RP",2/2) “—2ED, 79
is non-singular, <w Uw" !, [RP"]> #0,s0wUw"t#£0. O
Remark 7.2. Note that H,(RP,,Z/2) = Z/2, the fundamental class [RP"] is the unique non-zero element.

Remark 7.3. There are inclusions
RP° c RP! c...c RP" c RP"! . ..
and
o0
RP>® = U RP™.
n=0
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You should convince yourself that this implies that
H*(RP*>,Z/2) = Z/2[w]
for « € H!.



