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1. The SW of the trivial bundle

Example 1.1. For any X, let εn = εn(X) be the trivial n–plane bundle on X. Then, εn(X) = f∗(εn(pt))
for f : X → pt. So in particular, w(εn(X)) = 1. This implies that

w(ξ ⊕ εn) = w(ξ)

for any n.

2. Normal bundles and the Whitney product formula

Now, let M
f−→ Rn+k be the immersion of a smooth manifold M . (An immersion means that the map on

tangent spaces TMx → TRn+k
f(x) is an injection. I.e., locally, f looks like an injection.) Then we can define a

k–plane bundle ν(M) which is the orthogonal complement of TM in Rn+k. Note that

ν(M)⊕ TM = TRn+k = εn+k(Rk).

Therefore, letting w(M) = w(TM), we have the Whitney product formula

w(ν(M))w(M) = 1.

Note that w(ν(M)) does not depend on ν, so we think of w(ν(M)) as the formal inverse of w(M) and write

w(M) = w(ν(M)).

Example 2.1. The natural inclusion Sn ↪→ Rn+1 has a trivial normal bundle, so

w(Sn) = 1

This forces w(Sn) = 1, so that the SW do not see the tangent bundle of Sn. However, Sn has a non–trivial
tangent bundle for n > 1 (you will see this for n = 2 in the exercises).

3. w of the tautological line bundle on RPn

Consider γ1
n → RPn the tautological line bundle. (In fact, we have

γ1
n ⊂ RPn × Rn+1 = εn(RPn)

is the set (`, v) where v ∈ `.) Further, there’s a pullback

γ1 = f∗(γ1
n)

��

// γ1
n

��
RP 1 f // RPn

.
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We have

f∗(w1(γ1
n)) = w1(f∗(γ1

n)) = w1(γ1) 6= 0

So

w(γ1
n) = 1 + w1.

4. w of the tangent bundle of RPn

We want to compute

w(RPn).

This takes some thought. We will describe it for RP 2.
The tangent bundle on a manifold M at a point is given by the different directions one can move along

M . Given a line in Rn+1, you can tell me how to move the line by giving a linear transformation

`→ Rn+1,

that is, an element of HomR(`,Rn+1). But,

HomR(`,Rn+1) ∼= HomR(`,R)⊕n+1 ∼= (`∗)⊕n+1.

So, we get a surjective map

(`∗)⊕n+1 → TRPn` .
However, if you happened to give me a whose image was in ` ⊆ Rn+1, this will represent a zero vector in the
tangent space, so we have an exact sequence

0→ HomR(`, `)→ (`∗)⊕n+1 → TRPn` → 0.

Letting ` vary and noting that HomR(γ1, γ1) = ε1 and γ∗1
∼= γ1, we get

0→ ε1 → (`)⊕n+1 → TRPn → 0.

So

TRPn ⊕ ε1 = (`)⊕n+1.

This means that

w(RPn) = (1 + w1)n+1 =

n+1∑
i=0

(
n+ 1

i

)
wi1.

Example 4.1. If n+ 1 = 2k, then

w(RPn)(1 + w1)n+1 ≡ 1 + w2k

1 mod (2) = 1

since w2k

1 = 0 in H∗(RPn). However, if n+1 is not a power of 2, then one of
(
n+1
i

)
6= 0 for some 0 < i < n+1

and hence wi(RPn) 6= 0. Therefore, if RPn has a trivial tangent bundle, n = 2k − 1. The fact that this only
happens if n = 1, 3 and 7 is a deep fact of mathematics proved by Adams called the Hopf Invariant one
problem.

Example 4.2. We have

w(RP 2) =

3∑
i=0

wi1 = 1 + w1 + w2
1

(since w3
1 = 0).

We can use this to compute

w(RP 2) = 1 + w1

since

(1 + w1 + w2
1)(1 + w1) = 1.

Note in particular that if RP 2 ⊂ R2+k is an immersion, then w1(ν(RP 2)) 6= 0, so ν(RP 2) has dimension
at least 1 and hence, k ≥ 1. We conclude that if RP 2 immerses into Rm, then m ≥ 3. (It’s a theorem of
Whitney that RP 2 can be immersed in R3).
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5. Stiefel-Whitney numbers

Let r1, . . . , rn be such that r1 + 2r2 + . . .+ nrn = n. Then for ξ a vector bundle over X,

w1(ξ)r1 . . . wn(ξ)rn ∈ Hn(X)

Now, if ξ = TM , then we get

w1(M)r1 . . . wn(M)rn ∈ Hn(M)

so we can pair it with the fundamental class

wr11 . . . wrnn [M ] := 〈w1(M)r1 . . . wn(M)rn , [M ]〉 ∈ Z/2.

We get a set of numbers called the Stiefel-Whitney numbers of M , and these form an important invariant
of M .

Theorem 5.1 (Pontrjagin-Thom). Let M be a smooth compact closed manifold. Then the Stiefel-Whitney
numbers of M are zero if and only if M is the boundary of some smooth compact manifold.

First, we make some observations. Let W be an n + 1–dimensional manifold with boundary M = ∂W .
The orientation on W induces an orientation on its boundary M . In fact, the orientation of W is a choice
of fundamental class

[W ] ∈ Hn+1(W,M),

and [W ] restricts to a fundamental class [M ] of M under the boundary homomorphism

Hn+1(W,M)
∂−→ Hn(M),

so

∂([W ]) = [M ].

Intuitively, a triangulation of W induces a triangulation of M . If you think of the sum of the n + 1-
simplices of W as giving the fundamental class in homology for W , then you can see that ∂([W ]) will give
the sum of the n–simplices of M , and hence represent a fundamental class. To actually prove it, you need
to use excision a couple times.

We can choose a smooth tubular neighborhood V of M in W , and because V ∼= M × R≥0, this gives an
inward pointing trivial normal vector field on M , which splits a trivial line bundle off of the tangent bundle
of W restricted to M :

i∗TW = TW |M = TM ⊕ ε.
So we have

wk(M) = wk(TM) = wk(TM ⊕ ε) = wk(i∗TW ) = i∗wk(TW ) = i∗wk(W ).

Now we evaluate the SW numbers. Let r1 + 2r2 + . . .+ nrn = n

wr11 . . . wrnn [M ] = 〈wr11 (M) . . . wrnn (M), [M ]〉
= 〈i∗wr11 (W ) . . . i∗wrnn (W ), ∂[W ]〉
= 〈i∗(wr11 (W ) . . . wrnn (W )), ∂[W ]〉 .

You need to verify that, given f : X → Y the following diagram commutes

Hn(Y )⊗Hn(X)
f∗⊗1 //

1⊗f∗
��

Hn(X)⊗Hn(X)

〈−,−〉
��

Hn(Y )⊗Hn(Y )
〈−,−〉 // Hn(X)⊗Hn(X).

That is,

〈f∗α, a〉 = 〈α, f∗a〉 .
But if you do, you’ll see that

3



wr11 . . . wrnn [M ] = 〈i∗(wr11 (W ) . . . wrnn (W )), ∂[W ]〉
= 〈wr11 (W ) . . . wrnn (W ), i∗∂[W ]〉
= 0

since i∗∂ = 0.

Corollary 5.2. If M and M ′ are cobordant, then their SW numbers are equal.

This will help us show the other implication. We want to show that if the all the Stiefel–Whitney numbers
of M are zero, then M is a boundary. That is, the image of M in Nn is zero.

Let BO = Gr(R∞) =
⋃
k≥0Grk(R∞). Then recall that

H∗(BO) = Z/2[w1, w2, . . .].

Since two cobordant manifolds have equal SW numbers, there is a well defined pairing

Hn(BO)⊗Nn
#−→ Z/2,

which sends the cobordism class of a manifold M to wr11 . . . wrnn [M ].
If all of the Stiefel–Whitney numbers M were zero but M was not a boundary (i.e. [M ] 6= 0 in Nn),

then we would conclude that this pairing is singular. Indeed, for this M , we would have that for all
wr11 . . . wrnn ∈ Hn(BO), #(wr11 . . . wrnn ⊗ [M ]) = 0 even though [M ] 6= 0. So, it’s enough to show that this
can’t happen.

We appeal to things Zhouli told us about. We have maps:

(a) α : Nn
∼=−→ πn(MO) the Pontrjagin-Thom collapse.

(b) h : πn(MO) ↪→ Hn(MO) the Hurewicz homomorphism

(c) Φ : Hn(MO)
∼=−→ Hn(BO) the stable Thom isomorphism.

We know that the map

H : Nn
α−→ πn(MO)

h−→ Hn(MO)
Φ−→ Hn(BO)

is injective, and one can show that the diagram

Hn(BO)⊗Nn

#

))

1⊗H // Hn(BO)⊗Hn(BO)

〈−,−〉
��

Z/2

commutes. So # cannot be singular!
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