WEDNESDAY - TALK 11
 COBORDISM 4

Contents

1. The SW of the trivial bundle 1
2. Normal bundles and the Whitney product formula 1
3. w of the tautological line bundle on $\mathbb{R} P^{n} \quad 1$
4. w of the tangent bundle of $\mathbb{R} P^{n} \quad 2$
5. Stiefel-Whitney numbers 3

1. The SW of the trivial bundle

Example 1.1. For any X, let $\epsilon_{n}=\epsilon_{n}(X)$ be the trivial n-plane bundle on X. Then, $\epsilon_{n}(X)=f^{*}\left(\epsilon_{n}(p t)\right)$ for $f: X \rightarrow p t$. So in particular, $w\left(\epsilon_{n}(X)\right)=1$. This implies that

$$
w\left(\xi \oplus \epsilon_{n}\right)=w(\xi)
$$

for any n.

2. Normal bundles and the Whitney product formula

Now, let $M \xrightarrow{f} \mathbb{R}^{n+k}$ be the immersion of a smooth manifold M. (An immersion means that the map on tangent spaces $T M_{x} \rightarrow T \mathbb{R}_{f(x)}^{n+k}$ is an injection. I.e., locally, f looks like an injection.) Then we can define a k-plane bundle $\nu(M)$ which is the orthogonal complement of $T M$ in \mathbb{R}^{n+k}. Note that

$$
\nu(M) \oplus T M=T \mathbb{R}^{n+k}=\epsilon_{n+k}\left(\mathbb{R}^{k}\right)
$$

Therefore, letting $w(M)=w(T M)$, we have the Whitney product formula

$$
w(\nu(M)) w(M)=1
$$

Note that $w(\nu(M))$ does not depend on ν, so we think of $w(\nu(M))$ as the formal inverse of $w(M)$ and write

$$
\bar{w}(M)=w(\nu(M))
$$

Example 2.1. The natural inclusion $S^{n} \hookrightarrow \mathbb{R}^{n+1}$ has a trivial normal bundle, so

$$
\bar{w}\left(S^{n}\right)=1
$$

This forces $w\left(S^{n}\right)=1$, so that the SW do not see the tangent bundle of S^{n}. However, S^{n} has a non-trivial tangent bundle for $n>1$ (you will see this for $n=2$ in the exercises).
3. w of the tautological line bundle on $\mathbb{R} P^{n}$

Consider $\gamma_{n}^{1} \rightarrow \mathbb{R} P^{n}$ the tautological line bundle. (In fact, we have

$$
\gamma_{n}^{1} \subset \mathbb{R} P^{n} \times \mathbb{R}^{n+1}=\epsilon_{n}\left(\mathbb{R} P^{n}\right)
$$

is the set (ℓ, v) where $v \in \ell$.) Further, there's a pullback

We have

$$
f^{*}\left(w_{1}\left(\gamma_{n}^{1}\right)\right)=w_{1}\left(f^{*}\left(\gamma_{n}^{1}\right)\right)=w_{1}\left(\gamma_{1}\right) \neq 0
$$

So

$$
w\left(\gamma_{n}^{1}\right)=1+w_{1} .
$$

4. w Of THE TANGENT BUNDLE OF $\mathbb{R} P^{n}$

We want to compute

$$
w\left(\mathbb{R} P^{n}\right)
$$

This takes some thought. We will describe it for $\mathbb{R} P^{2}$.
The tangent bundle on a manifold M at a point is given by the different directions one can move along M. Given a line in \mathbb{R}^{n+1}, you can tell me how to move the line by giving a linear transformation

$$
\ell \rightarrow \mathbb{R}^{n+1}
$$

that is, an element of $\operatorname{Hom}_{\mathbb{R}}\left(\ell, \mathbb{R}^{n+1}\right)$. But,

$$
\operatorname{Hom}_{\mathbb{R}}\left(\ell, \mathbb{R}^{n+1}\right) \cong \operatorname{Hom}_{\mathbb{R}}(\ell, \mathbb{R})^{\oplus n+1} \cong\left(\ell^{*}\right)^{\oplus n+1}
$$

So, we get a surjective map

$$
\left(\ell^{*}\right)^{\oplus n+1} \rightarrow T \mathbb{R} P_{\ell}^{n} .
$$

However, if you happened to give me a whose image was in $\ell \subseteq \mathbb{R}^{n+1}$, this will represent a zero vector in the tangent space, so we have an exact sequence

$$
0 \rightarrow \operatorname{Hom}_{\mathbb{R}}(\ell, \ell) \rightarrow\left(\ell^{*}\right)^{\oplus n+1} \rightarrow T \mathbb{R} P_{\ell}^{n} \rightarrow 0
$$

Letting ℓ vary and noting that $\operatorname{Hom}_{\mathbb{R}}\left(\gamma_{1}, \gamma_{1}\right)=\epsilon_{1}$ and $\gamma_{1}^{*} \cong \gamma_{1}$, we get

$$
0 \rightarrow \epsilon_{1} \rightarrow(\ell)^{\oplus n+1} \rightarrow T \mathbb{R} P^{n} \rightarrow 0
$$

So

$$
T \mathbb{R} P^{n} \oplus \epsilon_{1}=(\ell)^{\oplus n+1}
$$

This means that

$$
w\left(\mathbb{R} P^{n}\right)=\left(1+w_{1}\right)^{n+1}=\sum_{i=0}^{n+1}\binom{n+1}{i} w_{1}^{i}
$$

Example 4.1. If $n+1=2^{k}$, then

$$
w\left(\mathbb{R} P^{n}\right)\left(1+w_{1}\right)^{n+1} \equiv 1+w_{1}^{2^{k}} \quad \bmod (2)=1
$$

since $w_{1}^{2^{k}}=0$ in $H^{*}\left(\mathbb{R} P^{n}\right)$. However, if $n+1$ is not a power of 2 , then one of $\binom{n+1}{i} \neq 0$ for some $0<i<n+1$ and hence $w_{i}\left(\mathbb{R} P^{n}\right) \neq 0$. Therefore, if $\mathbb{R} P^{n}$ has a trivial tangent bundle, $n=2^{k}-1$. The fact that this only happens if $n=1,3$ and 7 is a deep fact of mathematics proved by Adams called the Hopf Invariant one problem.

Example 4.2. We have

$$
w\left(\mathbb{R} P^{2}\right)=\sum_{i=0}^{3} w_{1}^{i}=1+w_{1}+w_{1}^{2}
$$

(since $w_{1}^{3}=0$).
We can use this to compute

$$
\bar{w}\left(\mathbb{R} P^{2}\right)=1+w_{1}
$$

since

$$
\left(1+w_{1}+w_{1}^{2}\right)\left(1+w_{1}\right)=1
$$

Note in particular that if $\mathbb{R} P^{2} \subset \mathbb{R}^{2+k}$ is an immersion, then $w_{1}\left(\nu\left(\mathbb{R} P^{2}\right)\right) \neq 0$, so $\nu\left(\mathbb{R} P^{2}\right)$ has dimension at least 1 and hence, $k \geq 1$. We conclude that if $\mathbb{R} P^{2}$ immerses into \mathbb{R}^{m}, then $m \geq 3$. (It's a theorem of Whitney that $\mathbb{R} P^{2}$ can be immersed in \mathbb{R}^{3}).

Let r_{1}, \ldots, r_{n} be such that $r_{1}+2 r_{2}+\ldots+n r_{n}=n$. Then for ξ a vector bundle over X,

$$
w_{1}(\xi)^{r_{1}} \ldots w_{n}(\xi)^{r_{n}} \in H^{n}(X)
$$

Now, if $\xi=T M$, then we get

$$
w_{1}(M)^{r_{1}} \ldots w_{n}(M)^{r_{n}} \in H^{n}(M)
$$

so we can pair it with the fundamental class

$$
w_{1}^{r_{1}} \ldots w_{n}^{r_{n}}[M]:=\left\langle w_{1}(M)^{r_{1}} \ldots w_{n}(M)^{r_{n}},[M]\right\rangle \in \mathbb{Z} / 2
$$

We get a set of numbers called the Stiefel-Whitney numbers of M, and these form an important invariant of M.

Theorem 5.1 (Pontrjagin-Thom). Let M be a smooth compact closed manifold. Then the Stiefel-Whitney numbers of M are zero if and only if M is the boundary of some smooth compact manifold.

First, we make some observations. Let W be an $n+1$-dimensional manifold with boundary $M=\partial W$. The orientation on W induces an orientation on its boundary M. In fact, the orientation of W is a choice of fundamental class

$$
[W] \in H_{n+1}(W, M)
$$

and $[W]$ restricts to a fundamental class $[M]$ of M under the boundary homomorphism

$$
H_{n+1}(W, M) \xrightarrow{\partial} H_{n}(M)
$$

so

$$
\partial([W])=[M] .
$$

Intuitively, a triangulation of W induces a triangulation of M. If you think of the sum of the $n+1-$ simplices of W as giving the fundamental class in homology for W, then you can see that $\partial([W])$ will give the sum of the n-simplices of M, and hence represent a fundamental class. To actually prove it, you need to use excision a couple times.

We can choose a smooth tubular neighborhood V of M in W, and because $V \cong M \times \mathbb{R}_{\geq 0}$, this gives an inward pointing trivial normal vector field on M, which splits a trivial line bundle off of the tangent bundle of W restricted to M :

$$
i^{*} T W=\left.T W\right|_{M}=T M \oplus \epsilon
$$

So we have

$$
w_{k}(M)=w_{k}(T M)=w_{k}(T M \oplus \epsilon)=w_{k}\left(i^{*} T W\right)=i^{*} w_{k}(T W)=i^{*} w_{k}(W)
$$

Now we evaluate the SW numbers. Let $r_{1}+2 r_{2}+\ldots+n r_{n}=n$

$$
\begin{aligned}
w_{1}^{r_{1}} \ldots w_{n}^{r_{n}}[M] & =\left\langle w_{1}^{r_{1}}(M) \ldots w_{n}^{r_{n}}(M),[M]\right\rangle \\
& =\left\langle i^{*} w_{1}^{r_{1}}(W) \ldots i^{*} w_{n}^{r_{n}}(W), \partial[W]\right\rangle \\
& =\left\langle i^{*}\left(w_{1}^{r_{1}}(W) \ldots w_{n}^{r_{n}}(W)\right), \partial[W]\right\rangle
\end{aligned}
$$

You need to verify that, given $f: X \rightarrow Y$ the following diagram commutes

That is,

$$
\left\langle f^{*} \alpha, a\right\rangle=\left\langle\alpha, f_{*} a\right\rangle .
$$

But if you do, you'll see that

$$
\begin{aligned}
w_{1}^{r_{1}} \ldots w_{n}^{r_{n}}[M] & =\left\langle i^{*}\left(w_{1}^{r_{1}}(W) \ldots w_{n}^{r_{n}}(W)\right), \partial[W]\right\rangle \\
& =\left\langle w_{1}^{r_{1}}(W) \ldots w_{n}^{r_{n}}(W), i_{*} \partial[W]\right\rangle \\
& =0
\end{aligned}
$$

since $i_{*} \partial=0$.
Corollary 5.2. If M and M^{\prime} are cobordant, then their $S W$ numbers are equal.
This will help us show the other implication. We want to show that if the all the Stiefel-Whitney numbers of M are zero, then M is a boundary. That is, the image of M in \mathcal{N}_{n} is zero.

Let $B O=G r\left(\mathbb{R}^{\infty}\right)=\bigcup_{k \geq 0} G r_{k}\left(\mathbb{R}^{\infty}\right)$. Then recall that

$$
H^{*}(B O)=\mathbb{Z} / 2\left[w_{1}, w_{2}, \ldots\right]
$$

Since two cobordant manifolds have equal SW numbers, there is a well defined pairing

$$
H^{n}(B O) \otimes \mathcal{N}_{n} \xrightarrow{\#} \mathbb{Z} / 2
$$

which sends the cobordism class of a manifold M to $w_{1}^{r_{1}} \ldots w_{n}^{r_{n}}[M]$.
If all of the Stiefel-Whitney numbers M were zero but M was not a boundary (i.e. $[M] \neq 0$ in \mathcal{N}_{n}), then we would conclude that this pairing is singular. Indeed, for this M, we would have that for all $w_{1}^{r_{1}} \ldots w_{n}^{r_{n}} \in H^{n}(B O), \#\left(w_{1}^{r_{1}} \ldots w_{n}^{r_{n}} \otimes[M]\right)=0$ even though $[M] \neq 0$. So, it's enough to show that this can't happen.

We appeal to things Zhouli told us about. We have maps:
(a) $\alpha: \mathcal{N}_{n} \xrightarrow{\cong} \pi_{n}(M O)$ the Pontrjagin-Thom collapse.
(b) $h: \pi_{n}(M O) \hookrightarrow H_{n}(M O)$ the Hurewicz homomorphism
(c) $\Phi: H_{n}(M O) \xrightarrow{\cong} H_{n}(B O)$ the stable Thom isomorphism.

We know that the map

$$
\mathcal{H}: \mathcal{N}_{n} \xrightarrow{\alpha} \pi_{n}(M O) \xrightarrow{h} H_{n}(M O) \xrightarrow{\Phi} H_{n}(B O)
$$

is injective, and one can show that the diagram

commutes. So \# cannot be singular!

