ONWARDS AND UPWARDS, OR STREAM OF
CONSCIOUSNESS

PETER MAY

This is the last talk, and there are so many things left to say, so many loose ends
to loose ends to loose ends. This will descend into a mere outline shortly. I will
begin with some of the most basic foundations everyone should see written down
once. Then move on to a tiny bit of an introduction to stable homotopy and the
stable homotopy category.

Following up Mark Behrens, I will then say a bit about what foundations went
into the recent solution of the Kervaire invariant one problem and some directions
ripe for further development.

1. COHOMOLOGY THEORIES

These come in two equivalent forms, reduced F and unreduced E.

(1) Functors E: h.7 —s Ab for all integers ¢

(2) Natural isomorphisms o: E9(X) — EIT1(3X) for all q.

(3) Exactness: Exact sequences

E1(X/A) — E1(X) — E9(A)
for all CW pairs.

(4) Wedge: Isomorphisms

E9(ViX;) — x;EY(X;)

(5) Weak Equivalence: Weak equivalences induces isomorphisms on E*.
Unreduced theory from reduced: E?(X) = E4(X,) and E4(X,A) = E(X/A)
Reduced theory from unreduced: E9(X) = E9(X, ), X based.

Via CW approximation, the Weak Equivalence axiom defines E* on general X.

Observation: For any based Y, the functor [X,Y] of X satisfies the Exactness
and Wedge axioms on CW complexes and pairs.

Theorem 1.1 (Brown representability). Any contravariant functor k: h — Ab

on CW complexes that satisfies the exactness and wedge axioms is representable as

k(X) =[X,Y] for some Y.

Definition 1.2. An Q-prespectrum is a prespectrum FE such that each adjoint map
E, — QEnJrl

is an equivalence.

Corollary 1.3. An Q-spectrum determines a cohomology theory E* by
EY(X) = [X, E,]

and

E~9(X) = [2X, Ey),
1
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both for ¢ >0, and every cohomology theory E is of this form.

Maps of cohomology theories are represented by maps £, — E,’I such that the
following diagrams commute up to homotopy.

B,——E,

L

QEq+1 —_— QEI/]+1

That is a starting point, but one wants to be able to treat spectra as objects in a
good category just like the category of based spaces, but better. Stable homotopy
theory deals with structures invariant under suspension. They should live in a
category that has also the structure we know and love, including smash products
and adjoint function spectra, so that

(X NY,Z)= S (X,F(Y, Z)).

There should be sphere spectra S9 for all integers ¢ such that S9 A S~7 = 80 =8
and the functors ¥ and €2 should be adjoint equivalences. Up to homotopy we had
nearly this much already in 1964. We only arrived a fully satisfactory point-set
level category three decades later, starting here in 1993.

I'll come back to that, but I want to say a bit more about what the stable
homotopy category already allows us to do. I talked about cohomology above. The
first thing the stable category allows one to do is conveniently define the cohomology
of spectra rather than just spaces. We have homotopy groups of spectra

7y(E) =[S, E]

for all integers g. There is no such thing as an unreduced cohomology theory on
spectra, so we generally write E* rather than E*. We set

EY(X) = 1_,F(X, E)

and check the specrum level axioms. What about homology? For this, having a
good smash product of spectra is wonderful. We define

Ey(X) = my(E A X)

These are analogues of Fxt and Tor if you know what they are. There is a
suspension spectrum functor X*°: h.7 — h.?, and the reduced cohomology and
homology of spaces are those of their suspension spectra. This is enormously more
effective than the classical theory. Only ordinary homology and cohomology are
computable by chains and cochains. The homotopy category h.” is closed sym-
metric monoidal under A and F', and these behave formally just like tensor and hom
in the category of modules over a commutative ring. Ring spectra up to homotopy
are monoids in h.¥, with products ¢: EA E — FE and unit S — FE, and they
quite trivially give cup products when the input is a space. Smash products give

Tg(X) @ mp(Y) — mgr (X AY).
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For spaces X, we have X1 A X, = (X x X)4, and we have the composite map

F(X+>E) /\F(X+7E)

F((X x X)4,ENE)
lm’@
F(X,,E)

Putting these together gives cup products. Spectra don’t have diagonal maps.

This gives a more modern setting than we discussed earlier. K-theory is repre-
sented by K, the Q-spectrum with Ko, = BU x Z and Ks,+1 = U. When we have
a prespectrum 7, such that each T,, — Q7,41 is an inclusion, we define

(LT),, = colim Q”“TnHC

and see that (LT), is actually homeomorphic to Q(LT),+;. Now that’s what I
call a spectrum! T have done so since 1969. We construct Thom spectra MG from
Thom prespectra T'G that way, for your favorite classical family of Lie groups G:
O, SO, Spin, U, Sp. The functor X*° is another example:

(¥°°X),, = colim Q*EHr X

Everything we have talked about this week led up to this homotopical world of
spectra, where we now work so freely.

Mark Behrens talked about the Kervaire invariant one problem, a truly spectac-
ular theorem of Hill, Hopkins, and Ravenel dating from 2009. Haynes Miller wrote
a lovely survey paper about it for the Bourbaki seminar in 2010. With total lack
of modesty, I will quote from his paper:

Hill, Hopkins, and Ravenel marshall three major developments in stable homo-
topy theory in their attack on the Kervaire invariant problem:

— The chromatic perspective based on work of Novikov and Quillen and pi-
oneered by Landweber, Morava, Miller, Ravenel, Wilson, and many more recent
workers;

— The theory of structured ring spectra, implemented by May and many others;
and

— Equivariant stable homotopy theory, as developed by May and collaborators.

To give some idea of where the subject stands now and where it might go, I will
say a bit out each of these three.

After Frank Adams’ death in 1989, 30 years after Bott’s bombshell, I found an
unpublished draft paper on his desk. It began “The work I shall report has the
following significance. At one time it seemed as if homotopy theory was utterly
without system; now it is almost proved that systematic effects predominate.” He
was referring to the relationship between periodic phenomena in algebra and period-
icity phenomena in homotopy theory, as encoded in what is called chromatic theory.
It is all about calculations with periodic spectra connected with formal group laws.
But it all started with Bott’s K-theory spectra, which are still the most important
ones geometrically. There are certain periodic ring spectra F, which encode the
chromatic filtration through the nth level and K(n) which encode the difference
between the (n— 1)st level and the nth. The J theory Mark talked about is central
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to understanding the first layer, which is now complete. The second filtration is
now largely understood calculationally. T M F' is central here. To avoid embarrass-
ing myself in front of real experts, like Mark, Agnes, and Zhouli, I'll just say that
there is lots more work to be done to obtain a full conceptual understanding, but
calculational understanding beyond the second level seems beyond understanding
by mere humans.

h.# is a wonderful place to work, and in stable homotopy theory we worked
there and only there until 1993. With Ray and Quinn, I defined highly structured
commutative ring spectra, called E., ring spectra, way back in 1972. I finally un-
derstood what they really are in work with Elmendorf, Kriz, and Mandell, starting
in 1993. There is a perfectly good symmetric monoidal category . of spectra,
before passage to homotopy, and F, ring spectra are essentially nothing but com-
mutative monoids in that category. This allows us to finally develop a good theory
of module spectra, allowing us to seriously mimic commutative algebra in the world
of spectra. MU is an example of a spectrum that one sees in nature as a commu-
tative ring spectrum. Using the new theory of modules, we constructed the K(n)
as MU-modules, making the old construction in terms of cobordism of manifolds
with singularities obsolete. Goerss, Hopkins, and Miller proved that the FE, are
commutative ring spectra, and use of this fact pervades modern work in chromatic
homotopy theory.

One question from the audience was about putting T, for topological, in front of
some algebraic term. We have Topological Hochschild homology and Topological
cyclic homology, for example. Here, but not always, what we mean is that we have
mimicked classical algebraic constructions by replacing rings, modules, and algebra,
by ring, module, and algebra spectra, as our point-set level understanding of spectra
now allows. Specialized to algebra via application to Eilenberg-MacLane spectra,
like HR = K(R,0), this gives strengthened versions of the algebraic invariants we
knew before. Now the sphere spectrum S plays the role of Z in algebra, since S
is the unit for the smash product and therefore maps into any commutative ring
spectrum. Passage to homotopy groups gives the Hurewicz homomorphism, but
we now see it in a much more highly structured context. There is a new subject
of derived algebraic geometry, spearheaded by Lurie and others, which essentially
starts from commutative ring spectra.

Equivariant algebraic topology, stable and unstable, is ubiquitous. All over
mathematics we study objects together with their symmetries. Starting with a
group G, usually finite or compact Lie but sometimes profinite or infinite discrete,
one studies spaces and spectra with G actions. This is an incredibly rich field that
has fascinated me since 1966. I keep coming back to it. It plays a big role in
many classical areas, and in topological cyclic homology, for example, but it has
only recently become fashionable, thanks to its use in the solution of the Kervaire
invariant one problem.

Talking to an audience with many present and potential graduate students, it
seems fitting to end with this area, because we know so little about it. It is abso-
lutely full of open questions, at various levels. Hill, Hopkins, and Ravenel lucked
out since they needed just a small amount of not very difficult calculation in their
amazing work. We still know almost nothing about calculations in this area, and
we don’t even understand some very basic foundations.
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Question 1. What is ordinary equivariant homology homotopically? The point
is that ordinary theory, called Bredon homology, is characterized by a dimension
axiom, which says that Hf(G/H) =0 for ¢ # 0, while H§(G/H) = N(G/H) for
a prescribed functor N from the orbit category of G to Ab, called a homological
coefficient system. In general, we only know how to construct these theories via
suitable chains, not via homotopy groups or anything else more topological.

Question 2. How can we compute ordinary equivariant homology and cohomol-
ogy? The list of known calculations is embarrassingly small. One key problem
is that the Serre spectral sequece is like Leray’s pre-fibration level version, with
non-trivial local coefficients intrinsically present.

Some homology and cohomology theories, those whose coefficient systems ex-
tend to Mackey functors, are genuinely stable, admitting suspension isomorphisms
for representation spheres, and these can be constructed via homotopy groups of
genuine G-spectra, but these homology theories are best understood as graded not
over the integers but over the real representation ring RO(G).

Question 3: Even rationally, can we compute equivariant characteristic classes?
We have equivariant classifying spaces Bg(IT), where II is the structural group of
some class of bundles, for example I = U(n) or II = O(n), and G is the ambient
group of symmetries. For line bundles and cyclic groups G of prime order, we know
how to compute, but for almost nothing else.

Question 4: Can we compute the RO(G)-graded cohomology of a point for some
nonabelian G? We (sort of) know the answer for cyclic groups of prime power
order, but for nothing else.

Question 5: What is the relationship between geometric and cohomological orien-
tation theory? These are equivalent nonequivariantly, but they are not equivalent
equivariantly. There are even two papers of my own, one with Costenoble and
Waner, on orientation theory. One is geometric, with Costenoble and Waner, and
the other is cohomological, and I do not know how to relate the two.

Here are some more advanced questions.

Question 6: There is an analogue of the Atiyah-Segal completion theory with
K¢ replaced by MUg or any module over it, due to Greenlees and myself, but we
only proved it for finite extensions of a torus. Does it still hold for general compact
Lie groups? This raises many questions.

Question 7: Is there a geometric reason that m,(MU) is concentrated in even
degrees? Are the homotopy groups of the fixed point spectra of MUg concentrated
in even degrees?

Question 8: Is there a reasonable equivariant chromatic theory?

Question 9: As a start, can we obtain a complete understanding of equivariant
J-theory, which should give understanding of chromatic level one?

Question 10: We understand several versions of global Mackey functors, defined
compatibly for all finite groups G. Is there a corresponding theory of global Tam-
bara functors? You probably have no idea what Tambara functors are, but the
7o(E™) of a commutative ring G-spectrum together have such a structure.

General topic: Fully develop various relationships between geometric and alge-
braic topology equivariantly.

Wild speculation: Is there an algebraic geometry of schemes over Mackey (and
Tambara?) functors.
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I could keep on going forever, but most of you are probably thinking about going
home. Thank you for coming.



