
INTRODUCTION

PETER MAY

Welcome all. This workshop is an experiment, both mathematical and social.
We hope to introduce some of the fundamental ideas of algebraic topology, using the
actual historical development as a partial guide to the organization of the material.
Socially, this is both a one week summer school and one week of an eight week
REU. I hope people will find a way to get to know each other a little. There will
be a get together starting 7:30 tomorrow evening around a fire or two on the point,
the little peninsula beyond 55th Street.

I am not a mathematical historian, but I want to start by giving some idea of the
beginnings of the subject in the mid 1930’s. The introduction of homology groups as
cycles modulo boundaries is due to Emmy Noether. The story is that that happened
at a dinner at Brouwer’s house in 1925. Hopf first explicitly used homology groups in
a 1928 paper. Cohomology and something like a modern understanding of Poincaré
duality came a few years later. How many people do NOT know what a homotopy
between continuous maps is? Don’t be shy, raise your hands if you don’t know.

Hopf proved that the Hopf map S3 → S2 is not null homotopic in 1930, intro-
ducing the Hopf invariant for that purpose. Hurewicz introduced homotopy groups
in 1935. Hopf defined H-spaces and, implicitly, Hopf algebras in 1939 (published
1941). At that time π4(S3) was zero. In 1945 or so it became Z/2Z. So it goes
with homotopy groups, then and now.

Homotopy groups are very easy to define. For a based space X, πn(X) is the
set of based homotopy classes of based maps Sn −→ X. When n = 0, this is the
set of path components of X. When n = 1, it is the fundamental group of X.
When n ≥ 2, it is an abelian group. While these groups are easy to define, they are
fiendishly difficult to compute and the history is riddled with mistakes. In fact they
were actually first defined by Cech, in 1932, but he was persuaded not to publish,
both because they were abelian, so perhaps uninteresting, and because he had no
mechanism for computing them.

Incredibly, already in 1937, Freudenthal proved the Freudenthal suspension the-
orem. We say that a based space X is n-connected if πk(X) = 0 for k ≤ n.

Theorem 0.1. If X is (n− 1)-connected, then the suspension homomorphism

πk(X) −→ πk+1(ΣX)

is an isomorphism for k < 2n− 1 and a surjection for k = 2n− 1.

I must define this homomorphism. For based spaces X and Y , the wedge X ∨Y
is the one-point union (identify the two basepoints), and X ∧ Y is the quotient
space X × Y/X ∨ Y , where we think of X ∨ Y as X × ∗ ∪ ∗ × Y ⊂ X × Y . The
suspension ΣX is X ∧ S1 and Sk ∧ S1 is homeomorphic to Sk+1. The suspension
homomorphism, which Freudenthal denoted E for Einhängen, sends f : Sk −→ X
to

f ∧ id : Sk+1 ∼= Sk ∧ S1 −→ X ∧ S1 = ΣX.
1
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I will not prove anything today, but I will sketch ideas. For a pair of spaces
(X,A), so A ⊂ X, and a basepoint ∗ ∈ A, there are relative homotopy group
πk(X,A). A quick definition is that

πn(X,A) = πn−1(P (X; ∗, A)

where P (X,A) is the space of paths p : I −→ X such that p(0) = ∗ and p(1) ∈ A.
If A = ∗, this is just a redefinition of πn(X), hence the indexing, but that may not
be obvious.

To see it, let ΩX denote the space of loops S1 −→ X, namely the paths in X
that start and end at the basepoint. We may identify S1 with I/∂I, so these are
just based maps S1 −→ X. We observe that

[ΣX,Y ] ∼= [X,ΩY ].

f : ΣX −→ Y corresponds to g : X −→ ΩY if f(x, s) = g(x)(s). In particular,

πn(X) = [Sn, X] ∼= [Sn−1,ΩX] ∼= · · · ∼= π1(Ωn−1X) ∼= π0(ΩnX).

This can be viewed as an axiomatization of homotopy groups, and I’ll introduce
language to say that later on.

Do you all know what an exact sequence of groups is? Please raise your hands
if you don’t! [Explanation if needed]. There is a long exact sequence

· · · −→ πn(A) −→ πn(X) −→ πn(X,A) −→ πn−1(X,A) −→ · · ·
The first map is induced by the inclusion A −→ X, the second by the inclusion
(X, ∗) −→ (X,A), and the third by the end point projection p1 : P (X,A) −→ A.

The Hopf bundle p : S3 −→ S2 is obtained as the orbit space S3/S1, where
S3 is the unit sphere in C2, S1 is the unit sphere in C and S1 acts on S3 by
λ(x1, x2) = (λx1, λx2). The map p is an example of a fiber bundle. For such a
bundle p : E −→ B with fiber F , there is a long exact sequence (LES)

· · · −→ πn(F ) −→ πn(E) −→ πn(B) −→ πn−1(F ) −→ · · · .
The point is that p induces a map of pairs (E,F ) −→ (B, ∗) that induces an
isomorphism of homotopy groups. In the case of the Hopf bundle, this is

· · · −→ πn(S1) −→ πn(S3) −→ πn(S2) −→ πn−1(S1) −→ · · · .
I assume you know that π1(S1) = Z and that πk(Sn) = 0 for k < n. For the

latter, any continuous map Sk −→ Sn can be homotoped to one that misses a
point, and then you can deform to a constant map since Sn − pt is contractible.
Since S1 has universal cover R, πk(S1) = 0 for k ≥ 2. We conclude by the LES that
π2(S2) ∼= π1(S1) and that π3(S3) ∼= π2(S2). But the suspension theorem gives that
πn(Sn) ∼= πn+1(Sn+1) for n ≥ 2. We conclude first that πn(Sn) ∼= Z for all n ≥ 1
and second that the map p has infinite order. That is an ahistorical derivation of
Hopf’s 1930 result. It was much harder before Freudenthal came along. In fact,
Freudenthal was a student of Hopf, and the story goes that he was the easiest of
students: he came to Hopf one day and said “I want to be your student and here
is my thesis.”

There is a wonderful result, called the homotopy excision theorem, due originally
to Blakers and Massey in a series of papers 1951-53. It gives the real explanation
of the Freudenthal suspension theorem.

A triad is a triple (X;A,B), where A and B are subspaces ofX. We let C = A∩B
and assume that C is non-empty. We say that (X;A,B) is excisive if X is the union
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of the interiors of A and B. Assume for simplicity that these spaces are all path
connected. We say that the pair (A,C) is n-connected if πk(A,C) = 0 for k ≤ n.

Theorem 0.2. If (X;A,B) is an excisive triad such that (A,C) is (m − 1)-
connected and (B,C) is (n− 1)-connected, where m ≥ 2 and n ≥ 1, then

πk(A,C) −→ πk(X,B)

is an isomorphism if k < m+ n− 2 and an epimorphism if k = m+ n− 2.

The cone CX is X∧I, where I has basepoint 1 (it had basepoint 0 when defining
PX). We can form an excisive triad (ΣX;C+X,C−X) using two copies of CX
with intersection X, fattened slightly so as to make the triad excisive. Freudenthal
suspension follows via

πk(X) ∼= πk+1(C+X,X) −→ πk+1(ΣX,C−X) ∼= πk+1(ΣX).

The isomorphisms hold by the LES, because the cones are contractible and so have
zero homotopy groups except for π0. The homotopy excision theorem applies to
the middle arrow.

The suspension homomorphism E fits into the EHP exact sequence

· · · −→ πq(S
n)

E−→ πq+1(Sn+1)
H−→ πq+1(S2n+1)

P−→ πq−1(Sn)
E−→ πq(S

n+1) −→ · · ·

when q ≤ 3n − 2. Here H is a generalization of the Hopf invariant that Hopf
introduced. It is due to George Whitehead. P is a map called the Whitehead
product. It is due to J.H.C. Whitehead, no relation. Working one prime at a time,
there are extensions of this sequence valid for all values of q. This is the starting
point for calculations in unstable homotopy theory. I won’t say anything about the
proof. This workshop will focus on stable homotopy theory, which starts from the
stable homotopy groups πsn = πn+q(S

q) for q large.
Wouldn’t it be nice to have invariants for which excision holds in all dimensions?

Then these invariants would all be stable. In fact, we do. That is what homology
is all about. It gives related invariants that are far simpler to compute. I am not
going to construct homology, but I do want to explain what it is.

How many of you have not seen categories, functors, and natural transforma-
tions? Please do not be shy and raise your hands if you have NOT seen these.
Briefly, in 1945, Eilenberg and MacLane introduced the language we now all use
when comparing different subjects, and algebraic topology is about comparing
topology to algebra. Their coining of the word “category” comes directly from
Immanuel Kant’s use of the same word, which in turn comes from Aristotle.

Definition 0.3. Category C : class of objects, sets C (x, y) of morphisms, identity
morphisms, composition

C (y, z)× C (x, y) −→ C (x, z)

associative and unital.

Small versus large. Sets, spaces, groups, abelian groups, etc.

Definition 0.4. Functor F : C −→ D . Object Fx ∈ D for each object x ∈ C .
Functions

F : C (x, y) −→ D(Fx, Fy)

F (h ◦ g) = F (h) ◦ F (g), F (idx) = idFx
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Free abelian group functor Sets −→ Ab. Vector space on a given basis Sets −→
vectorspaces. Forgetful functor Spaces −→ Sets.

Covariant versus contravariant.

Definition 0.5. Contravariant functor.

F : C (x, y) −→ D(Fy, Fx)

F (h ◦ g) = F (g) ◦ F (h), F (idx) = idFx

Vector space dual: vector spaces to vector spaces.
Eilenberg liked to say that they defined categories in order to be able to define

functors and defined functors in order to be able to define natural transformations.

Definition 0.6. Natural transformation η : F −→ G : C −→ D . For each object x
in C , a morphism ηx : Fx −→ Gx in D such that the following diagram commutes
for each morphism f : x −→ y in C :

Fx

ηx

��

Ff // Fy

ηy

��
Gx

Gf
// Gy

η is defined the same way for all x. A map in a category is an isomorphism if it
has an inverse. A natural isomorphism is a natural transformation such that each ηx
is an isomorphism. The inverses give a natural isomorphism η−1. Let T denote the
category of based spaces (well-based technically) and let hT denote its homotopy
category, which is obtained by identifying two maps if they are homotopic. We are
interested in functors defined on hT .

Theorem 0.7. Up to natural isomorphism, there is a unique sequence of functors
πn from based spaces to based sets if n = 0, to groups if n = 1 and to abelian groups
if n ≥ 2 together with natural isomorphisms λ : πn(X) ∼= πn−1(ΩX) for n ≥ 1 and
λ0 from π0(X) to the set of components of X, based at the basepoint component.

Proof. We are assuming known that π0(ΩX) has a natural group structure and
that π0(Ω2X) has a natural abelian group structure. The natural isomorphisms
are required to preserve group structure. Given a second sequence (π′n, λn), we get

πn(X) ∼= π0(ΩnX) ∼= π′0(ΩnX) ∼= π′n(X).

�

It is not hard to derive the properties of homotopy groups of pairs form the
axioms, but that requires the formal theory of fibration sequences, using that Ωn

preserves them.
What we really want to axiomatize is homology, since there are alternative con-

structions that look very different. Here it is not hard to define axioms for based
spaces and axioms for pairs of spaces with no basepoints in sight and to prove
that these axioms are equivalent. Let U and U 2 denote the categories of unbased
spaces and unbased pairs of spaces. We are interested in functors defined on hU
and hU 2.
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Definition 0.8. A reduced homology theory H̃∗ on based spaces X consists of
functors

H̃q : hT −→ A b

together with natural “suspension isomorphisms”

σ : H̃q(X) −→ H̃q+1(X)

that satisfy the following axioms

(1) Exactness. For a nice inclusion (technically a cofibration) A −→ X, the
sequence

H̃q(A) −→ H̃q(X) −→ H̃q(X/A)

is exact.
(2) Additivity. For a set of based spaces Xi, the natural map

⊕H̃q(Xi) −→ H̃q(∨Xi)

is an isomorphism.

Additivity is an addendum to the Eilenberg-Steenrod axioms which was added
by Milnor. It is essential as soon as one deals with spaces that have non-zero
homology for arbitrarily large q. We will see a lot of those this week.

There is one more axiom that was introduced later and that distinguishes what is
called singular homology from other homology theories. The axioms above implic-
itly assume that the given spaces are nice; technically, they must have the homotopy
types of CW complexes, as Inna Zakharevich will clarify this afternoon. For gen-
eral spaces one needs another axiom. A map f : X −→ Y is said to be a weak
equivalence, or weak homotopy equivalence, if f∗ : πq(X,x) −→ πq(Y, f(x)) is an
isomorphism for every q and every choice of basepoint x. Note that this definition
does not assume that f preserves given basepoints.

(3) Weak equivalence. If f : X −→ Y is a weak equivalence, then

f∗ : H̃∗(X) −→ H̃∗(Y )

is an isomorphism.

In all of the axioms above, q could be any integer, but there is a last Eilenberg-
Steenrod axiom that, among many other things, forces the negative homology
groups to be zero.

(4) Dimension. H̃q(S
0) = 0 for q 6= 0 and H̃0(S0) = π for some abelian group π.

It is not true that H̃ is unique in general, but when the dimension axiom is sat-
isfied the homology theory (H̃, σ) is unique in the sense that any two are naturally
isomorphic. The proof is not nearly as simple as for π∗, and there are constructions
that are so different looking that the most efficient way to show they are equivalent
is to verify that both satisfy the axioms.

The original Eilenberg-Steenrod axioms were for homology theories on pairs of
unbased spaces and look rather different at first sight. They bring excision into
play and express our desire to have excision hold in general. We think of a space
X as the pair (X, ∅).

Definition 0.9. A homology theory H∗ on pairs of spaces (X,A) consists of func-
tors

Hq : hU 2 −→ A b



6 PETER MAY

together with natural transformations

∂ : Hq(X,A) −→ Hq−1(A)

that satisfy the following axioms.

(1) Exactness. For any pair (X,A), the following sequence

· · · //Hq(A) //Hq(X) //Hq(X,A)
∂ //Hq−1(A) // · · ·

is exact.
(2) Excision. For an excisive triad (X;A,B), the map

H∗(A,A ∩B) −→ H∗(X,B)

is an isomorphism.
(3) Additivity. For a set of pairs (Xi, Ai), the natural map

⊕H̃q(Xi, Ai) −→ H̃q(q(Xi, Ai))

is an isomorphism.

Again, we need another axiom to deal with general pairs. A map

f : (X,A) −→ (Y,B)

is a weak equivalence if f : X −→ Y and f : A −→ B are weak equivalences.

(4) Weak equivalence. If f : (X,A) −→ (Y,B) is a weak equivalence, then

f∗ : H∗(X,A) −→ H∗(Y,B)

is an isomorphism.

The original Eilenberg-Steenrod dimension axiom says

(5) Dimension. Hq(pt) = 0 for q 6= 0 and H0(pt) = π for some abelian group π.

For each Abelian group π, there is a unique homology theory satisfying the
dimension axiom.

Given a theory H∗ on pairs, we define the corresponding reduced theory on based
spaces by

H̃∗(X) = H∗(X, ∗).
The suspension axiom follows from excision and exactness in exactly the same
way that the Freudenthal suspension theorem followed from the homotopy excision
theorem, and the rest of the axioms are deduced easily.

Given a theory H̃∗ on based spaces, we define H∗(X) = H̃∗(X+), where X+

is the union of X and a disjoint basepoint. General pairs (X,A) are naturally
homotopy equivalent to nice pairs. On a nice pair (X,A) we define

H∗(X,A) = H̃∗(X/A).

To define

∂ : Hq(X,A) −→ Hq−1(A)

on a nice pair, we notice that X+/A+ = X/A. We define the unreduced cone CA
to be CA+ and see that if Y = X+ ∪A CA, then collapsing the contractible space
CA to a point gives a homotopy equivalence Y −→ X/A while collapsing X to a
point gives a natural map Y −→ ΣA+. Then ∂ is the composite

Hq(X,A) = H̃q(X+/A+) H̃q(Y )
∼=oo //H̃(ΣA+)

σ−1
//H̃q−1(A+) = Hq−1(A)
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From here it is not to hard to deduce the weak equivalence, exactness, additivity,
and weak equivalence axioms for H. The dimension axiom, if assumed on H̃ is
clear on H. It is not so obvious how to prove the excision axiom, and I hope that
Inna will explain how to do that this afternoon.

Full details of everything I have said may be found in “A concise course in
algebraic topology”, [95] on my web page.

http://www.math.uchicago.edu/˜may/CONCISE/ConciseRevised.pdf


