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Bott’s 1957 announcement of his periodicity theorem transformed algebraic topol-
ogy forever. To quote Atiyah in his obituary for Bott “This paper was a bombshell.
The results were beautiful, far-reaching and totally unexpected.” In briefest form,
the theorem says

BU × Z ' Ω2(BU × Z) and BO × Z ' Ω8(BO × Z)

When Bott started work on this, π10(U(n)) was claimed to be Z/3Z in one paper
and to be cyclic of order a power of two in another, as yet unpublished. He showed
the unpublished claim was correct.

I’ll begin with a brief sketch of his original proof, restricting to the complex case,
next place it in his original context of differential geometry, and then give a sketch
proof by the methods of algebraic topology, still restricting to the complex case.

We have

S2n−1 ∼= U(n)/U(n− 1)

since U(n) acts transitively with isotropy group of a point U(n − 1). By the long
exact sequence of the bundle

U(n− 1) −→ U(n) −→ S2n−1

and the fact that πk(Sq) = 0 for k < q, πk(U(n)) = πk(U) for k/2 < n. Let
Grn(C2n) be the Grassmannian manifold of complex n-planes in C2n and let Vn(C2n)
be the Stiefel manifold of n-frames in C2n. We have a principal U(n)-bundle

p : Vn(C2n) −→ Grn(C2n),

which can also be seen via

Vn(C2n) ∼= U(2n)/U(n) and Grn(C2n) ∼= U(2n)/U(n)× U(n).

By the long exact sequence of homotopy groups, if 1 ≤ k << n,

πk−1(U(n)) ∼= πk(Grn(C2n)).

In a sense I’ll sketch, Bott showed that Grn(C2n) is the “manifold of minimal
geodesics” in ΩSU(2n). By Morse theory, it follows that ΩSU(2n) is homotopy
equivalent to a space obtained from Grn(C2n) by attaching cells of dimension at
least 2n+ 2. Therefore, for 1 ≤ k << n,

πk(Grn(C2n)) ∼= πk(ΩSU(2n)).

Clearly

πk(ΩSU(2n)) = πk+1(SU(2n)) = πk+1(U(2n)).

Therefore

πk−1(U) ∼= πk+1(U).

and the proof gives a map BU −→ ΩSU realizing the isomorphism.
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A direct proof just constructing the map and showing that it is an isomorphism
on homology is possible and is in the book “More concise algebraic topology”. I’ll
sketch that proof. The argument for BO is analogous but much less intuitive from
the point of view of algebraic topology. Two proofs by algebraic topology were given
just a few years after Bott’s original proof, by Moore in a Cartan seminar and by
Dyer and Lashof. Combining the easier parts of the two gives a relatively easy
proof by direct homological calculation that will appear in a book on characteristic
classes I’m writing now.

However, it is Bott’s original proof that really explains why the theorem is true
and gives the identification of the intermediate spaces in the real 8-fold periodic
case. In fact, his proof is a specialization of a very general theorem using Morse
theory to go directly from differential geometry to homotopical conclusions. Its
simplest special case gives a Morse theoretic proof of the Freudenthal suspension
theorem in the case of spheres.

Bott’s paper “The stable homotopy of the classical groups” starts with a general
symmetric space M . That means that M is a compact connected Riemann manifold
such that for every point p ∈M , there is an isometry ιp, called an involution, that
fixes p and reverses geodesics through p.

ιp(p) = p and dιp = − idTpM .

This implies that if γ is a geodesic starting at p, then ιp(γ(t)) = γ(−t). It
also implies that any two points of M can be connected by a geodesic. Therefore
translation along geodesics shows that the action of the isometry group G on M is
transitive. If H is the isotropy group at a point p ∈ M , then M can be identified
with G/H. Not all homogeneous spaces are symmetric, but one can characterize
which ones are.

Let ν = (P,Q;h) be a triple consisting of two points P and Q on M together
with a homotopy class h of curves joining P to Q. Bott thinks of ν as a basepoint
on M . He defines Mν to be the set of all geodesics of minimal length which join
P to Q and are in the homotopy class h. Thinking of a geodesic as a path, define
a map from the unreduced suspension ΣMν to M by sending (s, t) to s(t). For a
fixed small t > 0, this map is 1 to 1 on Mν and serves to define a topology on it.
Write ν∗ for the induced homomorphism πk(Mν) −→ πk+1(M).

Let s be an arbitrary geodesic on M from P to Q. The index of s, denoted by
λs, is the properly counted sum of the conjugate points of P in the interior of s.
(To define conjugate points requires defining Jacobi fields; p and q are conjugate
along s from p to q if there exists a non-zero Jacobi field J along s which vanishes
at two points t. The multiplicity of p and q as conjugate points is equal to the
dimension of the vector space consisting of all such Jacobi fields.) Bott writes |ν|
for the first positive integer which occurs as the index of some geodesic from P to
Q in the class h. In terms of these notions Bott’s principal result is the following
theorem.

Theorem 0.1. Let M be a symmetric space. Then for any base point ν on M ,
Mν is again a symmetric space. Further, ν∗ is surjective in positive dimensions
less than |ν| and is bijective in positive dimensions less than |ν| − 1. Thus:

πk(Mν) = πk+1(M) for 0 < k < |ν| − 1.
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Example 0.2. Let M = Sn, n > 2, and let ν = (P,Q) consist of two antipodes;
because Sn is simply connected the class h is unique. Then Mν is Sn−1, viewed as
geodesics through equatorial points, and ν∗ : πk(Sn1) −→ πk(Sn) coincides with the
usual suspension homomorphism. The integers which occur as indexes of geodesics
joining P to Q, form the set 0, 2(n− 1), 4(n− 1), · · · . Hence |ν| = 2(n− 1), and
the theorem yields the Freudenthal suspension theorem. If ν = (P,Q) with Q not
the antipode of P , then Mν is a single point and |ν| = n − 1. Then the theorem
merely implies that πk(Sn) = 0 for 0 < k ≤ n− 2.

Bott writes “At first glance the evaluation of |ν| may seem a formidable task”.
But he explains why it is really routine, at least to him. Since Mν is another
symmetric space, the construction can be iterated, and it leads to ν-sequences.
Some are identified, with the relevant |ν|, as

U(2n)/U(n)× U(n)
2n+2 //U(2n)

0(2n)/O(n)×O(n)
n+1 //U(2n)/0(2n)

2n+1 //sp(2n)/U(2n)
4n+2 //Sp(2n)

Sp(2n)/Sp(n)× Sp(n)
4n+1 //U(4n)/Sp(2n)

8n−2 //SO(8n)/U(4n)
8n−2 //SO(8n)

Therefore

πk(U) ∼= πk+1(BU) ∼= πk+2(U)

πk(O) ∼= πk+1(BO) ∼= πk+2(U/O) ∼= πk+3(Sp/U) ∼= πk+4(Sp)

πk(Sp) ∼= πk+1(BSp) ∼= πk+2(U/Sp) ∼= πk+3(O/U) ∼= πk+4(O)

Z, 0 Z2,Z2, 0,Z, 0, 0, 0,Z.
In retrospect we can write down maps, do homological calculations, and reprove

the required equivalences of spaces and loop spaces. But the insight from differen-
tial geometry is central to knowing what the relevant spaces are. Homology and
cohomology are mentioned and some homological consequences of his homotopi-
cal arguments are stated, but Bott’s work is all Morse theoretic identification of
homotopical connectivity estimates of the maps ν∗.

A leisurely treatment of Bott’s original proof is in Milnor’s book “Morse theory”,
but he only gets to symmetric spaces on page 109. There are many other proofs
of Bott periodicity. In the complex case, the same year as Bott’s paper, Atiyah
saw that the Riemann-Roch theorem led to a beautifully simple reformulation that
gives the form always used nowadays. That form requires that you know what K-
theory is. As Dylan told us yesterday, K(X) is the Grothendieck construction on
V ect(X). There is a Künneth type product induced by tensor products of vector
bundles.

K(X)⊗K(Y ) −→ K(X × Y ).
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Atiyah’s verson of Bott periodicity says this is an isomorphism when X is compact
and Y = S2. There is a reduced version

K̃(X)⊗ K̃(S2)
∼= //K̃(Σ2X),

which amounts to an equivalence BU −→ Ω2BU on the represented level, which I
expect Ben will say more about. He later gave a proof using an analysis of clutching
functions to compare trivializations on X × D+ and X × D−. Bott himself, in
another 1959 paper, one that is almost never referred to and that was solicited
by Atiyah, first showed that his original proof leads to the conclusion in the form
wanted by Atiyah and Hirzebruch. He also showed that the product reformulation
was also true in real K-theory, denoted KO, with S2 replaced by S8. Briefly, he
showed by explicit comparison that the adjoints of his original equivalences

BU −→ Ω2
0BU and BO −→ Ω8BO

are homotopic to maps

Σ2BU −→ BU and Σ8BO −→ BO

that represent the isomorphisms given by multiplication by the the respective Bott
classes.

There are many other proofs of Bott periodicity. The algebraic source of pe-
riodicity is most clearly seen in modules over Clifford algebras, explained in a
fundamental paper of Atiyah, Bott, and (posthumously) Shapiro. That algebraic
periodicity was turned into a new proof of Bott periodicity by Wood and Karoubi,
independently. They used Banach algebras to realize the Clifford module periodic-
ity geometrically. Another quite concrete and homotopically elementary proof was
given quite recently by Aguilar and Prieto in the complex case and extended to the
real case by Mark Behrens. But I will sketch a calculational proof. It has the virtue
of calculating the homology and cohomology of all relevant spaces on the way.

Zhouli mentioned that the dual of an algebra is a coalgebra. In the example
of BO that he gave you, BO has a product and a diagonal map, and H∗(BO)
has both a product and a coproduct; its product is a map of coalgebras, which a
diagram chase shows is the same as saying its coproduct is a map of algebras. Such
a structure is called a Hopf algebra. Hopf implicitly introduced the idea around
1940.

The homology Hopf algebras H∗(BU ;Z) and H∗(BO;F2) enjoy a very special
property: they are self-dual, so that they are isomorphic to the cohomology Hopf
algebras H∗(BU ;Z) and H∗(BO;F2). The proof of this basic result is due to my
adviser John Moore. It is purely algebraic and explicitly determines the homology
Hopf algebras from the cohomology Hopf algebras. Zhouli used this in his sketch
proof of Thom’s calculation of π∗(TO). We focus on the complex case. Homology
and cohomology are always to be taken with coefficients in Z. I assume you know
that the cohomology Hopf algebra is given by

(0.3) H∗(BU) = P{ci | i ≥ 1} with ψ(cn) =
∑
i+j=n

ci ⊗ cj

Determination of the homology algebra is a purely algebraic problem in dualization
and a full proof is in More Concise Section 21.6.
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The dual coalgebra of a polynomial algebra P [x] is written Γ[x]; when P [x] is
regarded as a Hopf algebra with x primitive, meaning that

ψ(x) = x⊗ 1 + 1⊗ x,

Γ[x] is called a divided polynomial Hopf algebra.
Clearly H∗(BU(1);Z) = P [c1] is a quotient algebra of H∗(BU ;Z). Write

H∗(BU(1)) = Γ[γ1]

It has basis {γi | i ≥ 0} and coproduct ψ(γn) =
∑
i+j=n γi ⊗ γj , where γ0 = 1 and

γi is dual to ci1. The inclusion BU(1) −→ BU induces an identification of this as a
sub coalgebra of H∗(BU). This sub coalgebra freely generates H∗(BU).

Theorem 0.4. H∗(BU) = P{γi | i ≥ 1}, where γi ∈ H∗(BU(1)) is dual to ci1.

The self duality of H∗(BU) plays a central role in a quick proof of (complex)
Bott periodicity. We describe how that works. The essential point is to prove the
following result.

Theorem 0.5. There is a map β : BU −→ ΩSU of H-spaces which induces an
isomorphism on homology.

It follows from the dual Whitehead theorem that β must be an equivalence. In
that rarely cited sequel, Bott wrote down explicit maps coming from the general
theory of symmetric spaces. I will write down the key map, but then I will only
say what it does, leaving out proofs. Full details are in More Concise Section 21.6.

We take BU = U/U × U to be the union of the Grassmannians

U(2n)/U(n)× U(n).

We let U be the union of the U(2n) and SU be the union of its subgroups SU(2n)
of unitary transformations with determinant one.

Abbreviate notation by writing Vn to be the sum of n copies of C∞.
It is convenient to use paths and loops of length π. Taking 0 ≤ θ ≤ π, define

ν(θ) ∈ U(V2) by

ν(θ)(z′, z′′) = (eiθz′, e−iθz′′).

Then ν(0) is multiplication by 1, ν(π) is multiplication by −1, and ν(θ)−1 = ν(−θ).
The genesis in a symmetric isometry might be visible. Define

β : U(V2) −→ ΩSU(V2)

by letting

β(T )(θ) = [T, ν(θ)] = Tν(θ)T−1ν(−θ)
where T ∈ U(V2). Clearly [T, ν(θ)] has determinant one and β(T ) is a loop at the
identity element e of the group SU(V2). Since ν(θ) is a scalar multiplication on
each summand V, if T = T ′ × T ′′ ∈ U(V) × U(V), then β(T )(θ) = e. Therefore β
passes to orbits to give a well-defined map

β : BU = U/U × U −→ ΩSU.

To define the H-space structure on BU , choose a linear isometric isomorphism
ξ : V2 −→ V and let the product T1T2 be the composite

V2
(ξ−1)2 //V4 T1⊕T2 //V4 γ //V4 ξ2 //V2,
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where γ interchanges the middle two summands. Up to homotopy, the product
is independent of the choice of ξ. The H-space structure we use on ΩSU is the
pointwise product, (ω1ω2)(θ) = ω1(θ)ω2θ. It is an exercise to verify that β is an
H-map.1

Let {e′i} and {e′′i } denote the standard bases of two copies of V and let Cn1 and
Cn2 be spanned by the first n vectors in each of these bases. Let

j : U(Cn1 ⊕ C1
2) −→ U(Cn1 ⊕ Cn2 )

be the inclusion. Restrictions of β give a commutative diagram

CPn = U(Cn1 ⊕ C1
2)/U(Cn1 ) × U(C1

2)
α //

j

��

ΩSU(Cn1 ⊕ C1
2) = ΩSU(n + 1)

Ωj

��
U(2n)/U(n) × U(n) = U(Cn1 ⊕ Cn2 )/U(Cn1 ) × U(Cn2 )

β // ΩSU(Cn1 ⊕ Cn2 ) = ΩSU(2n).

Passing to colimits over n, we obtain the commutative diagram

CP∞ α //

j

��

ΩSU

Ωj'
��

BU
β // ΩSU.

The right arrow is an equivalence, as we see from a quick check of homology or
homotopy groups.

We claim that H∗(ΩSU) is a polynomial algebra on generators δi of degree 2i,
i ≥ 1, and that α∗ : H∗(CP∞) −→ H∗(ΩSU) is a monomorphism onto the free
abelian group spanned by suitably chosen polynomial generators δi. The algebra
proving the self-duality implies the topological statement that

j∗ : H∗(CP∞) −→ H∗(BU)

is a monomorphism onto the free abelian group generated by a set {γi} of polyno-
mial generators for H∗(BU), hence the claim will complete the proof.

Think of S1 as the quotient of [0, π] obtained by setting 0 = π. Let

i : U(Cn−1
1 ⊕ C1

2) −→ U(Cn1 ⊕ C1
2)

be the inclusion. It induces a map i : CPn−1 −→ CPn that leads to the left diagram
below, and the right diagram is its adjoint.

(0.6) CPn−1 α //

i

��

ΩSU(n)

Ωi

��
CPn α //

ρ

��

ΩSU(n+ 1)

Ωπ
��

S2n

h
// ΩS2n+1

ΣCPn−1 α̂ //

Σi

��

SU(n)

i

��
ΣCPn α̂ //

Σρ

��

SU(n+ 1)

π

��
ΣS2n

ĥ

// S2n+1

Here ρ : CPn −→ CPn/CPn−1 ∼= S2n is the quotient map and π(T ) = T (e′n).

1This is also part of the 1970’s infinite loop space story; details generalizing these H-space
structures and maps to the context of actions by an E∞ operad may be found at the beginning

of E∞ ring spaces and E∞ ring spectra.
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Lemma 0.7. The composite Ωπ ◦ α ◦ i is trivial, so that Ωπ ◦ α factors as the

composite hρ for a map h. Moreover, the adjoint ĥ of h is a homeomorphism.

Proof. Details of the first statement are elementary and it is also elementary to

check that ĥ is injective. Details are in More Concise. Then the image of ĥ is open
by invariance of domain and closed by the compactness of ΣS2n, hence is all of
S2n+1 since S2n+1 is connected. �

Armed with this elementary geometry, we return to homology. The rightmost
column in the second diagram is a fibration, and it is standard to use it to compute
H∗(ΩSU(n + 1)) by induction on n. We have SU(2) ∼= S3, and, inductively the
cohomology Serre spectral sequence of this fibration satisfies E2 = E∞, leading to
a proof that

H∗(SU(n+ 1)) = E{y2i+1|1 ≤ i ≤ n}
as a Hopf algebra, where y2i+1 has degree 2i + 1 and π∗(y2n+1) is a generator of
H2n+1(S2n+1).

Using the homology Serre spectral sequence of the path space fibration over
SU(n+ 1), we conclude that

H∗(ΩSU(n+ 1)) ∼= P{δi|1 ≤ i ≤ n},
where δi has degree 2i. The rest is a mopping up exercise detailed in More Concise.
The key diagram is included in the notes of this talk, which are now on line.

H2n(CPn)
α∗ //

∼=

  

ρ∗ ∼=

��

H2n(ΩSU(n + 1))

∼=

uu
σ

zz

(Ωπ)∗

��

H2n+1(ΣΩSU(n + 1))

ε∗

��
H2n+1(ΣCPn)

α̂∗
//

(Σρ)∗ ∼=
��

(Σα)∗

55

H2n+1(SU(n + 1))

π∗

��
H2n+1(ΣS2n)

ĥ∗
∼=

//

(Σh)∗ ))

H2n+1(S2n+1)

H2n+1(ΣΩS2n+1)

ε∗

OO

H2n(S2n)
h∗

//

∼=

??

H2n(ΩS2n+1)

∼=

ii
σ

dd

Here ε denotes the evaluation map of the (Σ,Ω) adjunction, and the suspension σ
is defined to be the composite of ε∗ and the suspension isomorphism. The algebra
generator δn maps to a fundamental class under π∗σ. By the diagram, so does the
basis element x2n ∈ H2n(CPn). Therefore, modulo decomposable elements which
are annihilated by σ, α∗(x2i) = δi as claimed.


