
Problems for the UChicago ATSS-Monday

July 25, 2016

1 Main Problems

Problem 1. Let (X,x0) be a pointed space. Let CX = X×I
X×{0} denote the cone on X. Give a (pointed)

homeomorphism S1 ∧X ∼= CX
X∪({x0}×I) .

Problem 2. Prove that if α ∈ Hq(X,R) has odd degree q, then 2α2 = 0 in H2q(X,R).

Problem 3. Let Sn denote the one-point compactification of Rn. Explicitly, this is the set Rn q {∞}
topologized so that the complements of compact sets in Rn are open. (You can think of these complements
as ‘neighborhoods of ∞’).

(a) This is not an abuse of notation, i.e. Sn is homeomorphic to the subspace of Rn+1 consisting of unit
vectors. You can try to show this using stereographic projection if you want, or just skip to the next
part.

(b) Write down a map
Sn ∧ Sm −→ Sn+m

and show it’s a homeomorphism. (This should be easier to do with the one-point compactification
definition than with the unit vector definition.)

(c) More generally, if V and W are vector spaces, we can define the one-point compactifications SV and SW

in the same way. Show that, in this language, we can rewrite (b) as a natural homeomorphism

SV ∧ SW ∼= SV⊕W .

Problem 4. Let A be a set with two associative, unital binary operations: �, ? : A×A→ A. Suppose they
distribute past each other in the following way:

(a ? a′) � (b ? b′) = (a� b) ? (a′ � b′),

and suppose their units coincide. Then show that � = ? and the operation is commutative. (This is called
the Eckmann-Hilton argument.)

Problem 5. Use the previous problem to show that π2(X) is an abelian group. (Hint: Think of π2(X) as
[(I2, ∂I2), (X,x0)] and build two ways of concatenating maps from the square: one via stacking vertically
and the other horizontally. Also, draw pictures.)

Problem 6. (a) Describe H∗(RPn,Z) as a ring.

(b) Use Poincaré duality to prove that H∗(CPn,Z) ∼= Z[c]/cn+1 for c ∈ H2. (Hint: To compute CPn as a
graded abelian group, recall that it has a cell structure with exactly one cell e2n in each even dimension.)

(c) What about H∗(CPn,Z/2)?
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Problem 7. (a) Describe H∗(S1 ×X) in terms of H∗(X).

(b) Prove that all cup products in H̃∗(ΣX) are zero.

(c) Show that, for pointed spaces X and Y , if x ∈ H∗(X) and y ∈ H∗(Y ), then xy = 0 ∈ H∗(X ∨ Y ). Hint:
Use naturality.

Problem 8. Compute the cohomology ring of the n–torus Tn = (S1)×n with coefficients in Z.

Problem 9. Show that CP 2 is not homotopy equivalent to S2∨S4 even though these spaces have the same
cohomology groups.

Problem 10. (a) Show that a category with one object is the same data as a set M with an associative,
unital multiplication M ×M →M (i.e. a monoid.)

(b) Show that a functor between one-object categories is the same as a homomorphism of monoids.

(c) Let A and B be two one-object categories, F,G : A→ B two functors between them. Let M,N, f, and
g be the associated monoids and homomorphisms. Show that a natural transformation η : F → G is the
same data as an element n ∈ N such that, for all m ∈M , n · f(m) = g(m) · n.

(d) If we think of a group G as a one-object category, then the set of natural isomorphisms from the identity
functor to itself has a name that you know already from group theory. What is it?

Problem 11. Use the proof outlined in class to check that reduced homology is homotopy invariant.

Problem 12. We can define unreduced homology by setting Hn(X) to be Hn(X+), X with a disjoint
basepoint added. We define relative homology Hn(X,A) for a CW pair (X,A) to be the homology of the
chain complex Cn(X)/Cn(A).

(a) Use the snake lemma to show that there is a long exact sequence in homology

Hn(A)→ Hn(X)→ Hn(X,A)→ Hn−1.

(b) Assume that for a CW pair (X,A) and any subset Z of A such that the closure of Z is contained in the
interior of A we have Hn(X,A) = Hn(X − Z,A − Z). Prove that for a CW pair (X,A), the reduced
Hn(X/A) is the same as Hn(X,A).

Problem 13. Compute Hm(X;Z/p) for all primes p and X being the torus, Sn, RPn and CPn. Do the
same for the lens space L(p′, q). This is the quotient of S3 by the action of Z/p′, where we consider it as the
unit sphere in C2 and 1 in Z/p′ acts by sending (w, z) to (e2πi/p

′
w, e2πiq/p

′
z).

For ease of reference, here are the Adem relations:

SqaSqb =
∑
c≥0

(
b− c− 1

a− 2c

)
Sqa+b−cSqc, a < 2b

(Remember that the Steenrod algebra is an algebra over F2, so the binomial coefficients are taken mod 2).

Problem 14. Use the Adem relations to verify these formulae:

(a) Sq1Sq1 = 0,

(b) Sq1Sq2n = Sq2n+1,

(c) Sq1Sq2Sq1 = Sq2Sq2
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Problem 15. Here is a picture of the subalgebra of the Steenrod algebra generated by Sq1:

•

Sq1

•

The bottom dot is 1 = Sq0, and the top dot is Sq1 · 1 = Sq1. It is one step higher than the first dot because
it is an operation of degree 1. The line indicates that we multiplied by Sq1 to get from the bottom dot to
the top dot. Draw a picture of the subalgebra generated by Sq1 and Sq2; it is 8 dimensional over F2. Bonus
points if your picture is pretty.

Problem 16. For x ∈ Hn(X), write

Sq(x) = Sq0(x) + Sq1(x) + . . .+ Sqn(x).

Prove that the Cartan formula implies that

Sq(xy) = Sq(x)Sq(y).

Use this to give a simple formula for Sq(ci), where c ∈ H2(CPn,Z/2) is a generator.

2 Extra problems

Problem 17. Show that the map Sp+q = Sp ∧ Sq → Sq ∧ Sp = Sp+q has degree (−1)pq

Problem 18. Let X be a pointed space. There is a natural map ε : X −→ ΩΣX which sends a point x ∈ X
to the loop I × {x} ⊂ I × X → ΣX. Show that the Freudenthal suspension theorem is equivalent to the
statement that, if X has πjX = 0 for j ≤ k − 1, then

ε∗ : πnX −→ πnΩΣX

is an isomorphism for n ≤ 2k − 2 and a surjection for n = 2k − 1.

Problem 19. Let X be a connected, smooth 1-manifold. Convince yourself (but try to be rigorous) that
X is diffeomorphic to either R or S1. So there are no exotic circles.

Problem 20. Given a space X let Γ(X,Z) denote the ring of locally constant functions from X to Z. Show
that this assignment gives a functor hSpacesop −→ CRing where hSpaces denotes the homotopy category
of spaces and Cring denotes the category of commutative rings. Show that, when restricted to spaces where
path components are the same as ordinary components, there is a natural isomorphism Γ(X,Z) ∼= H0(X,Z).
Hint: The only thing that makes this problem difficult is words. You can do it.

Problem 21. If X is a pointed space, let Γ̃(X,Z) denote the abelian group of locally constant functions
that send the basepoint to 0. Then show that, for any subspace A ⊂ B, the following sequence is exact:

0→ Γ̃(B/A,Z)→ Γ(B,Z)→ Γ(A,Z).

Problem 22. Let’s try to build a cohomology theory on the category of sets. We’ll say that a cohomology
theory on the category of sets is a functor F : Setop → Ab satisfying the following properties: (i) F (∗) = Z,

(ii) If A ⊂ X then the sequence 0→ F̃ (A/X)→ F (X)→ F (A) is exact, (iii) if X =
∐
Xα for some indexing

set then the natural map F (X)→
∏
F (Xα) is an isomorphism.

Show that:

(a) Axiom (ii) is redundant and the last map in the exact sequence is automatically surjective.

(b) There is only one such functor F up to natural isomorphism.

(c) This functor is given by X 7→ HomSet(X,A) for some fixed object A. What is it?

Problem 23. Prove that Sq2
n

is indecomposable. (Compute its effect on H∗(RP∞,Z/2)).

3


	Main Problems
	Extra problems

