Math 207, Section 31: Honors Analysis I Autumn Quarter 2009 John Boller Homework 6, Final Version Due: Monday, November 9, 2009

- 1. (*) Read Kolmogorov and Fomin, Chapter 2, especially Section 8.
- 2. (*) Read Kolmogorov and Fomin, Chapter 3, especially Section 11.
- 3. (*) Read Sally, Chapter 4, especially Section 5.
- 4. (*) Prove that a metric space is sequentially compact if and only if it has the Bolzano-Weierstrass property.
- 5. Consider the interval $[0,1] \subset \mathbb{R}$ with the inherited metric. Consider the open cover consisting of $[0,\frac{1}{10})$, $(\frac{1}{2},1]$ and, for each $n \in \mathbb{N}$, the interval $(\frac{1}{n+2},\frac{1}{n})$. Find the Lebesgue number of this cover.
- Sally, Section 4.5, Exercises (*) 4.5.34, 4.5.35, 4.5.37, and 4.5.39.
 (Oops!-you have already done 35 and 39. If you haven't, try them again!)
- 7. Let \mathbb{R}^n have the usual metric. Show that if $A \subset \mathbb{R}^n$ is open and connected, then A is path-connected.
- 8. Let (X, d_1) and (Y, d_2) be metric spaces. We give the Cartesian product $X \times Y$ the distance function $d((x_1, y_1), (x_2, y_2)) = d_1(x_1, x_2) + d_2(y_1, y_2).$
 - (a) Show that $(X \times Y, d)$ is a metric space.
 - (b) Show that a set $S \subset X \times Y$ is open if and only if, given any $x \in S$, there exist open sets $A \subset X$ and $B \subset Y$ such that $x \in A \times B \subset S$.
 - (c) Show that if $X \times Y$ is connected, then X and Y are connected.
- 9. Show that the Topologist's Sine Curve given by

$$S = \{(x,0) \mid x \le 0\} \cup \{(x, \sin(1/x)) \mid x > 0\}$$

is connected but not path-connected as a subset of $X = \mathbb{R}^2$.

- 10. Let X be a metric space. The connected component of a point $x \in X$ is denoted C(x) and is the union of all connected sets in X containing x. The space X is called *totally disconnected* if $C(x) = \{x\}$ for every $x \in X$. Show that \mathbb{Q} is totally disconnected in the usual metric.
- 11. Do Sally, Project 4.6.3, on Topological Groups.
- 12. (*) Read Sally, Chapter 5, especially Section 1.
- 13. Sally, Section 5.1, Exercises (*) 5.1.3, 5.1.8, 5.1.10.
- 14. Let $K(x,y) \in C([a,b] \times [a,b])$ be such that $||K||_{\infty} = M$. Let $\lambda \in \mathbb{R}$ and $\phi(x) \in C[a,b]$. Let $\Gamma : C[a,b] \to C[a,b]$ take the function $f \in C[a,b]$ to the function $\Gamma(f) \in C[a,b]$ defined on each $x \in [a,b]$ by:

$$\Gamma(f)(x) = \phi(x) + \lambda \int_{a}^{x} K(x, y) f(y) dy$$

(a) Show that for each $n \in \mathbb{N}$,

$$||\Gamma^n(f) - \Gamma^n(g)||_{\infty} \le |\lambda|^n M^n \frac{(b-a)^n}{n!} ||f - g||_{\infty}.$$

Thus, for n large enough, Γ^n is contractive.

(b) Show that Γ has a unique fixed point. Thus, the integral equation

$$f(x) = \phi(x) + \lambda \int_{a}^{x} K(x, y) f(y) dy$$

has a unique solution in C[a, b].

15. Let $X = [1, +\infty) \subset \mathbb{R}$, and define $f : X \to X$ by $f(x) = \frac{1}{2}(x + \frac{2}{x})$. Prove that f is contractive with contstant $\alpha = \frac{1}{2}$ and fixed point $x_0 = \sqrt{2}$.