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p-ADIC DEFORMATION OF ALGEBRAIC CYCLE CLASSES

SPENCER BLOCH, HÉLÈNE ESNAULT, AND MORITZ KERZ

ABSTRACT. We study the p-adic deformation properties of algebraic cycle
classes modulo rational equivalence. We show that the crystalline Chern
character of a vector bundle lies in a certain part of the Hodge filtration if
and only if, rationally, the class of the vector bundle lifts to a formal pro-class
in K-theory on the p-adic scheme.

1. INTRODUCTION

In this note we study the deformation properties of algebraic cycle classes
modulo rational equivalence. In the end the main motivation for this is to
construct new interesting algebraic cycles out of known ones by means of a
suitable deformation process. In fact we suggest that one should divide such
a construction into two steps: Firstly, one should study formal deformations
to infinitesimal thickenings and secondly, one should try to algebraize these
formal deformations.

We consider the first problem of formal deformation in the special situation
of deformation of cycles in the p-adic direction for a scheme over a complete
p-adic discrete valuation ring. It turns out that this part is – suitably in-
terpreted – of a deep cohomological and K -theoretic nature, related to p-adic
Hodge theory, while the precise geometry of the varieties plays only a minor
rôle.

In order to motivate our approach to the formal deformation of algebraic
cycles we start with the earliest observation of the kind we have in mind,
which is due to Grothendieck. The deformation of the Picard group can be
described in terms of Hodge theoretic data via the first Chern class.

Indeed, consider a field k of characteristic zero, S = k[[t]], X /S a smooth
projective variety and Xn !→ X the closed immersion defined by the ideal (tn).
The Gauß-Manin connection

∇ : Hi
dR(X /S)→ Ω̂

1
S/k⊗̂Hi

dR(X /S)

is trivializable over S by [Kt, Prop. 8.9], yielding an isomorphism from the
horizontal de Rham classes over S to de Rham classes over k

Φ : Hi
dR(X /S)∇ ∼

−→ Hi
dR(X1/k).
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An important property, which is central to this article, is that Φ does not in-
duce an isomorphism of the Hodge filtrations

Hi
dR(X /S)∇∩FrHi

dR(X /S) !

−→ FrHi
dR(X1/k)

in general. This Hodge theoretic property of the map Φ relates to the exact
obstruction sequence

Pic(Xn)→Pic(Xn−1) Ob
−−→ H2(X1,OX1)

via the first Chern class in de Rham cohomology, see [B1].
These observations produce a proof for line bundles of the following version

of Grothendieck’s variational Hodge conjecture [G, p. 103].

Conjecture 1.1. For ξ1 ∈ K0(X1)Q such that

Φ
−1 ◦ch(ξ1) ∈

⊕

r
FrH2r

dR(X /S),

there is a ξ ∈ K0(X )Q, such that ch(ξ|X1 )= ch(ξ1) ∈
⊕

r H2r
dR(X1/k). Here ch is the

Chern character.

In fact, using Deligne’s “partie fixe” [De2, Sec. 4.1] one shows that Conjec-
ture 1.1 is equivalent to Grothendieck’s original formulation of the variational
Hodge conjecture and it would therefore be a consequence of the Hodge con-
jecture.

A p-adic analog of Conjecture 1.1 is suggested by Fontaine-Messing, it is
usually called the p-adic variational Hodge conjecture. Before we state it, we
again motivate it by the case of line bundles.

Let k be a perfect field of characteristic p > 0, W = W(k) be the ring of Witt
vectors over k, K = frac(W), X /S be a smooth projective variety, Xn !→ X be
the closed immersion defined by (pn); so Xn = X ⊗W Wn,Wn = W /(pn). Then
Berthelot constructs a crystalline-de Rham comparison isomorphism

Φ : Hi
dR(X /W) ∼

−→ Hi
cris(X1/W),

which is recalled in Section 2. One also has a crystalline Chern character, see
(2.16),

ch : K0(X1)−→
⊕

r
H2r

cris(X1/W)K .

Let us assume p > 2. Then one has the exact obstruction sequence

lim
←−−

n
Pic(Xn)→Pic(X1)

Ob
−−→ H2(X , pOX )(1.1)

coming from the short exact sequence of sheaves

1→ (1+ pOXn )→O
×
Xn

→O
×
X1

→ 1(1.2)

and the p-adic logarithm isomorphism

log : 1+ pOXn

∼
−→ pOXn .(1.3)

Grothendieck’s formal existence theorem [EGA3, Thm. 5.1.4] gives an alge-
braization isomorphism

Pic(X )
∼
−→ lim

←−−
n

Pic(Xn).
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Using an idea of Deligne [De1, p. 124 b)], Berthelot-Ogus [BO1] relate the
obstruction map in (1.1) to the Hodge level of the crystalline Chern class of
a line bundle. So altogether they prove the line bundle version of Fontaine-
Messing’s p-adic variational Hodge conjecture:

Conjecture 1.2. For ξ1 ∈ K0(X1)Q such that

Φ
−1 ◦ch(ξ1) ∈

⊕

r
FrH2r

dR(XK /K ),

there is a ξ ∈ K0(X )Q, such that ch(ξ|X1)= ch(ξ1) ∈
⊕

r H2r
cris(X1/W)K .

In fact the conjecture can be stated more generally over any p-adic com-
plete discrete valuation ring with perfect residue field. Note that there is no
analog of the absolute Hodge conjecture available over p-adic fields, which
would comprise the p-adic variational Hodge conjecture. So its origin is more
mysterious than the variational Hodge conjecture in characteristic zero.

Applications of Conjecture 1.2 to modular forms are studied by Emerton
and Mazur, see [Em].

We suggest to decompose the problem into two parts: firstly a formal defor-
mation part and secondly an algebraization part

K0(X ) !! lim
←−−n

K0(Xn)

algebraization

""""
!"

#$
%&'()*+,-./0

12
34

56
78

!! K0(X1).

deformation

#### 9:
!"

#$
%&'()*+,-./0

12
;<

56

Unlike for Pic, there is no general approach to the algebraization problem
known. In this note, we study the deformation problem. Our main result,
whose proof is finished in Section 10, states:

Theorem 1.3. Let k be a perfect field of characteristic p > 0, let X /W be smooth
projective scheme over W with closed fibre X1. Assume p > d +6, where d =

dim(X1). Then for ξ1 ∈ K0(X1)Q the following are equivalent

(a) we have
Φ

−1 ◦ch(ξ1) ∈
⊕

r
FrH2r

dR(X /S),

(b) there is a ξ̂ ∈
(
lim
←−−n

K0(Xn)
)
Q, such that ξ̂|X1 = ξ1 ∈ K0(X1)Q.

Before we describe the methods we use in our proof, we make three remarks.

(i) We do not handle the case where the ground ring is p-adic complete
and ramified over W . The reason is that we use techniques related to
integral p-adic Hodge theory, which do not exist over ramified bases.
In fact, Theorem 1.3 is not integral, but a major intermediate result,
Theorem 7.5, is valid with integral coefficients and this theorem would
not hold integrally over ramified bases.

(ii) The precise form of the condition p > d +6 on the characteristic has
technical reasons. However, the rough condition that p is big relative
to d is essential for our method for the same reasons explained in (i)
for working over the base W .

(iii) Note, we literally lift the K0(X1)Q class to an element in
(
lim
←−−n

K0(Xn)
)
Q,

not only its Chern character in crystalline cohomology. One thus should
expect that in order to algebraize ξ̂ and in order to obtain the required
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class over X in Conjecture 1.2, one might have to move it to another
pro-class with the same Chern character.

We now describe our method. We first construct for p > r in an ad hoc way
a motivic pro-complex ZX

!

(r) of the p-adic formal scheme X! associated to X
on the Nisnevich site of X1. For this we glue the Suslin-Voeveodsky motivic
complex on X1 with the Fontaine-Messing-Kato syntomic complex on X!, see
Definition 6.1. In Sections 4 and 6 we construct a fundamental triangle

p(r)Ω<r
X
!

[−1]→ZX
!

(r)→ZX1 (r)→ · · ·(1.4)

which in weight r = 1 specializes to (1.2) and (1.3). Here p(r)Ω<r
X
!

is a subcom-
plex of the truncated de Rham complex of X!, which is isomorphic to it tensor
Q. In Section 7 we define continuous Chow groups as continuous cohomology
of our motivic pro-complex by the Bloch type formula

CHcont(X!)= H2r
cont(X1,ZX

!

(r)).

From (1.4) we obtain the higher codimension analog of the obstruction se-
quence (1.1)

(1.5) CHr
cont(X!)→CHr(X1) Ob

−−→ H2r
cont(X1, p(r)Ω<r

X
!

).

In Sections 5 and 7 we relate the obstruction map in (1.5) to the Hodge the-
oretic properties of the cycle class in crystalline cohomology. Using this we
prove the analog, Theorem 7.5, of our Main Theorem 1.3 with lim

←−−n
K0(Xn)

replaced by CHcont(X!).
We then define continuous K -theory K cont

0 (X!) of the p-adic formal scheme
X! in Section 8. The continuous K0-group maps surjectively to lim

←−−n
K0(Xn), so

lifting classes in K0(X1) to continous K0 is equivalent to lifting classes as in
Theorem 1.3.

Using the method of Grothendieck and Gillet [Gil] and relying on ideas of
Deligne for the calculation of cohomology of classifying spaces, we define a
Chern character

ch : K cont
0 (X!)Q →

⊕

r≤d
CHr

cont(X!)Q.(1.6)

Finally, using deep results from topological cyclic homology theory due to
Geisser-Hesselholt-Madsen, recalled in Section 9, we show in Section 10 that
the Chern character is an isomorphism for p > d+6 by reducing it to an étale
local problem with Z/p-coefficients. In Section 10 we also complete the proof
of Theorem 1.3.

Acknowledgements: It is our pleasure to thank Lars Hesselholt for explaining
to us topological cyclic homology and Marc Levine for many important com-
ments. We also thank Markus Spitzweck and Chuck Weibel for helpful discus-
sions. We are grateful to the mathematicians from the Feza Gürsey Institute
in Istanbul for giving us the opportunity to present a preliminary version of
our results in March 2011.
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2. CRYSTALLINE AND DE RHAM COHOMOLOGY

In this section we study the de Rham complex of a p-adic formal scheme X!

and the de Rham-Witt complex of its special fibre X1. We also introduce cer-
tain subcomplexes, which coincide with the usual de Rham and de Rham-Witt
complex tensor Q. These subcomplexes play an important rôle in the obstruc-
tion theory of cohomological Chow groups as studied in Section 7. We will
think of the de Rham complex of X! and the de Rham-Witt complex of X1 as
pro-systems on the small Nisnevich site of X1.

To fix notation let S be a complete adic noetherian ring. Fix an ideal of
definition I ⊂ S. We write Sn = S/I n. Let SchS

!

be the category of I -adic
formal schemes X! which are quasi-projective over Specf(S) and such that
Xn = X!⊗S S/I n is syntomic [FM] over Sn = S/I n for all n ≥ 1. By SmS

!

we
denote the full subcategory of SchS

!

of formal schemes which are (formally)
smooth over S!.

In the following let S =W =W(k) be the ring of Witt vectors of a perfect field
k, p = chark > 0 and fix the ideal of definition I = (p). Let X! be in SchW

!

.

Definition 2.1. For Sét resp. SNis the small étale resp. Nisnevich site of X1,
we write

Spro(X1)ét/Nis for Spro(Sét/Nis)

Shpro(X1)ét/Nis for Shpro(Sét/Nis)

Cpro(X1)ét/Nis for Cpro(Sét/Nis)

Dpro(X1)ét/Nis for Dpro(Sét/Nis),

where the right hand side is defined in generality in Appendix A and B. If we
do not specify topology we usually mean Nisnevich topology.

Note that the étale (resp. Nisnevich) sites of X1 and Xn (n ≥ 1) are isomor-
phic.

Definition 2.2.

(a) We define

Ω
•
X
!

∈Cpro(X1)ét/Nis(2.1)

as the pro-system of de Rham complexes n .→Ω•
Xn /Wn

.
(b) We define

W!Ω
•
X1

∈Cpro(X1)ét/Nis(2.2)

as the pro-system of de Rham-Witt complexes [Il].

Definition 2.3. We define

W!Ω
r
X1,log ∈Shpro(X1)ét/Nis

as pro-system of étale or Nisnevich subsheaves in WnΩ
r
X1

which are locally
generated by symbols

d log{[a1], . . . , [ar]},

with a1, . . . ,ar ∈O
×
X1

local sections and where [−] is the Teichmüller lift ([Il], p.
505, formula (1.1.7)).

Clearly ε∗WnΩ
r
X ,Nis =WnΩ

r
X ,ét and Kato shows [K1]
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Proposition 2.4. The natural map

(2.3) WnΩ
r
X ,log,Nis

∼
−→ ε∗WnΩ

r
X ,log,ét

is an isomorphism, in other words ε∗WnΩ
r
X ,log,ét is Nisnevich locally generated

by symbols in the sense of Definition 2.3.

Definition 2.5. For r < p we define

p(r)Ω•
X
!

∈Cpro(X1)ét/Nis

as the de Rham complex

pr
OX

!

→ pr−1
Ω

1
X
!

→ . . .→ pΩr−1
X
!

→Ω
r
X
!

→Ω
r+1
X
!

→ . . . .

For r < p we define

q(r)W!Ω
•
X1

∈Cpro(X1)ét/Nis

as the de Rham–Witt complex

pr−1VW!OX1 → pr−2VW!Ω
1
X1

→ . . .

→ pVW!Ω
r−2
X1

→VW!Ω
r−1
X1

→W!Ω
r
X1

→W!Ω
r
X1

→W!Ω
r+1
X1

→ . . .

here V stands for the Verschiebung homomorphism (see [Il, p. 505]).

Remark 2.6. It is of course possible to define analogous complexes p(r)Ω•
X
!

and q(r)W!Ω
•
X1

in case r ≥ p by introducing divided powers [FM]. Unfortu-
nately, doing so introduces a number of problems both with regard to syn-
tomic cohomology and later in section 9, so we have chosen to assume r < p
throughout.

In the rest of this section we explain the construction of canonical isomor-
phisms

Ω
•
X
!

0W!Ω
•
X1

in Dpro(X1)(2.4)

p(r)Ω•
X
!

0 q(r)W!Ω
•
X1

in Dpro(X1).(2.5)

Recall the following construction, see [Il, Sec. II.1], [K2, Section 1]. For
the moment we let X! be a not necessarily smooth object in SchW

!

. We fix
a closed embedding X! → Z!, where Z!/W! in SmW

!

is endowed with a lifting
F : Z! → Z! over F : W! → W! of Frobenius on Z1. One defines the PD envelop
Xn → Dn = DXn (Zn). Recall that Dn is endowed with a de Rham complex
Ω•

Dn/Wn
:= ODn ⊗OZn

Ω•
Zn/Wn

satisfying dγn(x) = γn−1(x) dx where n! ·γn(x) = xn.
We define Jn to be the ideal of Xn ⊂ Dn and In = (Jn, p) to be the ideal sheaf of
X1 ⊂ Dn. Then Jn and In are nilpotent sheaves on X1,ét with divided powers
J[ j]

n and I [ j]
n . If j < p one has J[ j]

n = J j
n and I [ j]

n = I j
n.

As before the étale (resp. Nisnevich) sites of X1 and Dn (n ≥ 1) are isomor-
phic. In the following by abuse of notation we identify these equivalent sites.

We continue to assume r < p.



p-ADIC DEFORMATION 7

Definition 2.7. (see [K2, p.211]) One defines J(r)Ω•
D
!

∈ Cpro(D!)ét/Nis as the
complex

Jr
! → J(r−1)

! ⊗OZ
!

Ω
1
Z
!

→ . . .→ J!⊗OZ
!

Ω
r−1
Z
!

→OD
!

⊗OZ
!

Ω
r
Z
!

→ . . . .

One defines I(r)Ω•
D
!

∈Cpro(D!)ét/Nis as the complex

Ir
! → I (r−1)

! ⊗OZ
!

Ω
1
Z
!

→ . . .→ I!⊗OZ
!

Ω
r−1
Z
!

→OD
!

⊗OZ
!

Ω
r
Z
!

→ . . . .

For the rest of this section we assume X! is in SmW
!

. The lifting of Frobenius
F defines a morphism

ODn →
n∏

1
ODn , x .→ (x,F(x), . . . ,Fn−1(x)),

which induces a well defined morphism Φ(F) : ODn → WnOX1 , which in turn
induces a quasi-isomorphism of differential graded algebras [Il, Sec. II.1]

(2.6) Φ(F) :Ω•
Dn

→WnΩ
•
X1

.

The restriction homomomorphisms

Ω
•
Dn

∼
−→Ω

•
Xn

(2.7)

J(r)Ω•
Dn

∼
−→Ω

≥r
Xn

(2.8)

I(r)Ω•
Dn

∼
−→ p(r)Ω•

Xn
(2.9)

are quasi-isomorphisms of differential graded algebras [BO1, 7.26.3]. We get
isomorphisms

Ω•
X
!

(∗)

Ω•
D
!

∼$$

Φ(F)1

%%

W!Ω
•
X1

(2.10)

which induce a canonical dotted isomorphism (∗) in Dpro(X1)ét/Nis, indepen-
dent of the choice of Z.

Proposition 2.8. For X! ∈SmW
!

the diagram (2.10) induces the diagram

p(r)Ω•
X
!

(∗)

I(r)Ω•
D
!

∼$$

Φ(F)1

%%

q(r)W!Ω
•
X1

whose maps are isomorphisms in Dpro(X1)ét/Nis. They induce a canonical iso-
morphism (∗), independent of the choice of Z.

Proof. We have to show that Φ(F) is an isomorphism in Dpro(X1)ét/Nis. By
(2.9) we can without loss of generality assume X! = Z! = D! are affine with
Frobenius lift F. Let d = dim X1. Consider sequences ν∗ := ν0 ≥ ν1 ≥ · · ·≥ νd ≥

νd+1 ≥ 0 with νi+1 ≥ νi −1 and νi < p for all 0 ≤ i ≤ d. We also assume νd+1 =

max(0,νd −1). To any such sequence we associate a subcomplex q(ν∗)W!Ω
•
X1

of W!Ω
•
X1

as follows:

(2.11) q(ν∗)W!Ω
i
X1

=

{
pνiW!Ω

i
X1

for νi = νi+1

pνi+1VW!Ω
i
X1

for νi = νi+1 +1
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This is indeed a subcomplex (because VW!Ω
i
X1

⊃ pW!Ω
i
X1

). correspond to the
sequence νi =max(0, r− i). We get a map

(2.12) Φ(F) : pν•Ω
•
X
!

→ q(ν∗)W!Ω
•
X1

.

Lemma 2.9. The map Φ(F) in (2.12) induces an isomorphism in Dpro(X1)ét/Nis.

We proceed by induction on N =
∑
νi. If N = 0 the assertion is that Ω•

A.
→

WΩA1 is a quasi-isomorphism, which is Illusie’s result [Il, Thm. II.1.4]. Sup-
pose N > 0 and assume the result for smaller values of N. Let i be such that
ν0 = ·· · = νi > νi+1. Define a sequence µ∗ such that µ j = ν j for j ≥ i+1 and such
that µ j = ν j−1 for j ≤ i. By induction pµ•Ω•

X
!

→ q(µ∗)W!Ω
•
X1

is an isomorphism
in Dpro(X1)ét/Nis. One has, up to isomorphism

pµ•Ω
•
X
!

/pν•Ω
•
X
!

∼=OX1 → · · ·→Ω
i
X1

(2.13)

q(µ∗)W!Ω
•
X1

/q(ν∗)W!Ω
•
X1

∼=(2.14)

W(X1)/pW(X1)→ · · ·→W!Ω
i−1
X1

/pW!Ω
i−1
X1

→W!Ω
i
X1

/VW!Ω
i
X1

Complexes (2.13) and (2.14) are quasi-isomorphic by [Il, Cor. I.3.20], prov-
ing the lemma. Note we are using throughout that multiplication by p is a
monomorphism on W!Ω

•
X1

. "

For X1/k projective we work with the crystalline cohomology groups

(2.15) Hi
cris(X1/W)= Hi

cont(X1,W!Ω
•
X1

)

and the refined crystalline cohomology groups Hi
cont(X1, q(r)W!Ω

•
X1

). The defi-
nition of continuous cohomology groups is recalled in Definition B.6. Note that
because Hi(X1,WnΩ

r
X1

) are Wn-modules of finite type, we have

Hi
cont(X1,W!Ω

•
X1

)= lim
←−−

n
Hi(X1,WnΩ

•
X1

)

Hi
cont(X1, q(r)W!Ω

•
X1

)= lim
←−−

n
Hi(X1, q(r)WnΩ

•
X1

).

For the same reason we have for de Rham cohomology

Hi
cont(X1,Ω•

X
!

)= lim
←−−

n
Hi(X1,Ω•

Xn
)

Hi
cont(X1, p(r)Ω•

X
!

)= lim
←−−

n
Hi(X1, p(r)Ω•

Xn
).

In particular if X! is the p-adic formal scheme associated to a smooth projec-
tive scheme X /W we get Hi

cont(X1,Ω•
X
!

)= Hi(X ,Ω•
X /W ) by [EGA3, Sec. 4.1].

Gros [G] constructs the crystalline Chern character

(2.16) K0(X1) ch
−→

⊕

r
H2r

cris(X1/W)Q

using the method of Grothendieck, i.e. using the projective bundle formula.
The crystalline Chern character is a ring homomorphism.
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3. SYNTOMIC COMPLEX AND DE RHAM-WITT SHEAVES

We introduce the syntomic complex [K2] in the étale and Nisnevich topologies
and collect some facts about de Rham-Witt sheaves.

Let X! be in SchW
!

and let X! !→ D! be as in Section 2. Assume r < p. Then

the morphism Ω•
Dn

pr

−→Ω•
Dn+r

of complexes of sheaves on X1,ét is injective, and
the Frobenius map

J(r)Ω•
Dn+r

F
−→Ω

•
Dn+r

factors through Ω•
Dn

pr

−→Ω•
Dn+r

, see [K2, Section 1].

Definition 3.1. ([K2, Cor.1.5]) One defines the morphism

fr : J(r)Ω•
D
!

→Ω
•
D
!

of complexes in Shpro(X1)ét via the factorization

F : J(r)Ω•
Dn+r

→ J(r)Ω•
Dn

fr
−→Ω

•
Dn

pr

−→Ω
•
Dn+r

of the Frobenius F.

Note that fr is defined using the existence of Xn+r , not directly on Xn.

Definition 3.2. ([K2, Defn. 1.6]) We define the syntomic complex SX
!

(r)ét in
the étale topology by

SX
!

(r)ét = cone
(
J(r)Ω•

D
!

1−fr
−−−→Ω

•
D
!

)
[−1],

which we usually consider as an object in Dpro(X1)ét.
In the Nisnevich topology we define SX

!

(r) ∈Dpro(X1)Nis to be

SX
!

(r)= τ≤rRε∗SX
!

(r)ét.

Here ε : X1,ét → X1,Nis is the morphism of sites and τ≤r is the ‘good’ trunca-
tion. This definition does not depend on the choices (Z,F), see comment after
[K2, Defn. 1.6].

It is well known, see [K2, Thm. 6.1(1)], that

ε∗SX
!

(r)=SX
!

(r)ét.

For the rest of this section let X1 be a smooth quasi-projective scheme over
k and let p, r ∈ N be arbitrary. Recall from [Il, Prop. I.3.3, (3.3.1)] that the

internal Frobenius Wn+1Ω
r
X1

F
−→WnΩ

r
X1

induces a well defined homomorphism

Fr : WnΩ
r
X1

→WnΩ
r
X1

/dV n−1
Ω

r−1
X1

by first lifting local sections of WnΩ
r
X1

to Wn+1Ω
r
X1

and then applying F to it.
Furthermore, by definition of fr, one has a commutative diagram in Shpro(X1)

J(r)Ωr
D
!

Φ(F)
%%

fr !! Ωr
D
!

Φ(F)
%%

W!Ω
r
X1

Fr !! W!Ω
r
X1

/dV n−1
Ω

r
X1
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Lemma 3.3. One has a short exact sequence

0→WnΩ
r
X1,log

→WnΩ
r
X1

/dVWn−1Ω
r−1
X1

1−Fr
−−−→WnΩ

r
X1

/dWnΩ
r−1
X1

→ 0

on X1,ét. On X1,Nis the sequence is still exact on the left and in the middle.

Proof. Consider first the situation in the étale topology. One has a commuta-
tive diagram with exact columns

0 !! WnΩ
r
X1,log

!! WnΩ
r
X1

/dVWn−1Ω
r−1
X1

1−Fr !! WnΩ
r
X1

/dWnΩ
r−1
X1

!! 0

0 !! WnΩ
r
X1,log

!! WnΩ
r
X1

1−Fr !!

&&&&

WnΩ
r
X1

/dV n−1Ωr−1
X1

&&&&

!! 0

dVWn−1Ω
r−1
X1

φ:=1−Fr !!
&&

&&

dWnΩ
r−1
X1

/dV n−1Ωr−1
X1

&&

&&

By [CTSS, Lem. 1.2] the middle row is exact. Thus the top row is exact if
and only if the map φ is an isomorphism.

The map V : dWnΩ
r−1
X1

→Wn+1Ω
r
X1

is divisible by p. Denote by ψ the factor-
ization

V : dWnΩ
r−1
X1

ψ
−→WnΩ

r
X1

p
−→Wn+1Ω

r
X1

.

The image of ψ lies in dVWn−1Ω
r−1
X1

as V d = pdV . The inverse of φ is given
by ψ+ψ2 +ψ3 +·· · .

Finally, for the Nisnevich topology, starting with the basic result for a coher-
ent sheave E that ε∗Eét = ENis and Riε∗Eét = (0) for i ≥ 1, one gets ε∗WnΩ

r
X1,ét =

WnΩ
r
X1,Nis. Then, using results from [Il], Section 3.E, p. 579, one gets

ε∗

(
WnΩ

r
X1,ét/dVWn−1Ω

r−1
X1,ét

)
=WnΩ

r
X1,Nis/dVWn−1Ω

r−1
X1,Nis.

One concludes using proposition 2.4 and left-exactness of ε∗. "

Denote by Fr : τ≥r q(r)WnΩ
•
X1

→ τ≥rWnΩ
•
X1

the morphism which in degree
r+ i is induced by pi F.

Lemma 3.4. For i > 0, r ≥ 0 the map

(1−Fr) : WnΩ
r+i
X1

→WnΩ
r+i
X1

is an isomorphism in Sh(X1)ét/Nis.

Proof. This is [Il, I.Lem.3.30]. "

In Shpro(X1)Nis the internal Frobenius F : q(r)W!Ω
i
X1

→W!Ω
i
X1

is divisible by
pr−i for i < r. Indeed, for a local section pr−1−iVα ∈ q(r)W!Ω

i
X1

, F(pr−1−iVα)=
pr−1−iFV (α) and FV = p ([Il, I. Lem.4.4]). We denote this divided Frobenius
by

Fr : q(r)W!Ω
i
X1

→W!Ω
i
X1

as a morphism in Cpro(X1)Nis.
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Lemma 3.5. In Dpro(X1)ét/Nis the map

(1−Fr) : τ<r q(r)W!Ω
•
X1

→ τ<rW!Ω
•
X1

becomes an isomorphism.

Proof. Applying [Il, I, Lem. 4.4], one has for i ≤ r−1 and α a local section in
W!Ω

i
X1,ét

(1−Fr)(−pr−i−1Vα)=α− pr−i−1Vα,

thus

α= (1−Fr)(β), β=−(pr−1−iV )
∞∑

n=0
(pr−1−iV )n(α) ∈ pr−i−1VW!Ω

i
X1,ét

.

On the other hand, clearly if W!Ω
i
X1,ét

4α= pr−i−1Vα, then α ∈ (pr−i−1V )nW!Ω
i
X1,ét

for all n ≥ 1, thus α= 0. This finishes the proof.
"

Putting Lemmas 3.3, 3.4 and 3.5 together we get

Corollary 3.6. In Dpro(X1)ét there is an exact triangle

W!Ω
r
X1,log[−r]→ q(r)W!Ω

•
X1

1−Fr
−−−→W!Ω

•
X1

[1]
−−→ · · · .

Remark 3.7. To end this section we remark that one can define the syntomic
complex in Dpro(SchW

!
,ét/Nis), where SchW

!
,ét/Nis is the big étale resp. Nisnevich

site with underlying category SchW
!

. For this one uses the syntomic site and
the crystalline Frobenius instead of the immersion X! !→ Z! and the Frobenius
lift on Z!, see [GK], [FM].

4. FUNDAMENTAL TRIANGLE

Let X! be in SmW
!

and assume r < p. The goal of this section is to decompose
the Nisnevich syntomic complex SX

!

(r) in a part W!Ω
r
X1,log[−r] stemming from

the reduced fibre X1 and a ‘deformation part’ p(r)Ω<r
X
!

[−1].
As a technical device we need a variant of the syntomic complex with J(r)

replaced by I(r). In analogy with Definition 3.1 we propose:

Definition 4.1. Let fr be the canonical factorization of Frobenius map

F : I(r)Ω•
Dn+r

fr
−→Ω

•
Dn

pr

−→Ω
•
Dn+r

.

Note that this time there is no factorization of the form

fr : I(r)Ω•
Dn+r

rest
−−→ I(r)Ω•

Dn
→Ω

•
Dn

.

We write

I(r)Ω•
D
!

fr
−→Ω

•
D
!

for the induced morphism in Cpro(X1).



12 SPENCER BLOCH, HÉLÈNE ESNAULT, AND MORITZ KERZ

Definition 4.2. One defines

S
I
X
!

(r)ét = cone(I(r)Ω•
D
!

1−fr
−−−→Ω

•
D
!

)[−1]

in Dpro(X1)ét. In the Nisnevich topology we define

S
I
X
!

(r)= τ≤rRε∗S
I
X
!

(r)ét

in Dpro(X1)Nis.

Proposition 4.3. For X! in SmW
!

the map Φ(F) induces an isomorphism

S
I
X
!

(r)ét
ΦI

−−→W!Ω
r
X1,log[−r]

in Dpro(X1)ét. In particular applying the composed functor τ≤r ◦Rε∗ we also
get an isomorphism

S
I
X
!

(r) Φ
I

−−→W!Ω
r
X1,log[−r]

in Dpro(X1)Nis.

Proof. Indeed we have the chain of isomorphisms in Dpro(X1)ét.

(4.1) SI
X
!

(r)ét

Φ(F)(1)
%%

cone(q(r)W!Ω
• 1−Fr
−−−→W!Ω

•)[−1]

(2)
%%

cone(W!Ω
r/dVW!Ω

r−1 1−Fr
−−−→W!Ω

r/dW!Ω
r−1)[−r−1]

W!Ω
r
X1,log[−r]

(3)

&&

where (1) is an isomorphism by Proposition 2.8, (2) is defined and an isomor-
phism by Lemmas 3.4 and 3.5 and (3) is an isomorphism by Lemma 3.3.

For Nisnevich topology we have

τ≤0 ◦Rε∗WnΩ
r
X ,log,ét = ε∗WnΩ

r
X ,log,ét =WnΩ

r
X ,log,Nis

by Proposition 2.4. "

Recall that we work in Nisnevich topology if not specified otherwise.

Theorem 4.4 (Fundamental triangle). For X! in SmW
!

one has an exact trian-
gle

p(r)Ω<r
X
!

[−1]→SX
!

(r) ΦJ

−−→W!Ω
r
X1,log[−r] [1]

−−→ . . .

in Dpro(X1). In particular, the support of SX
!

(r) lies in degrees [1, r] for r ≥ 1.

Proof. We first construct the étale version of the triangle. Let

W(r)= cone(J(r)Ω•
D
!

−→ I(r)Ω•
D
!

)[−1].

Proposition 4.3 implies that one has an exact triangle

W(r)→SX
!

(r)ét
ΦJ

−−→W!Ω
r
X1,log[−r] [1]

−−→ . . .(4.2)
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in Dpro(X1)ét.
By Proposition 2.8 we conclude that the restriction map from D! to X! in-

duces an isomorphism

W(r) rest
−−→ p(r)Ω≤r−1

X
!

[−1]

in Dpro(X1)ét.
We now come to the Nisnevich version. One has to show that applying

τ≤r ◦ Rε∗ to exact triangle (4.2), one obtains an exact triangle in Nisnevich
topology. One has an isomorphism

ε∗p(r)Ω≤r−1
X
!

[−1]
0
−→ Rε∗p(r)Ω≤r−1

X
!

[−1]

in Dpro(X1)Nis, thus in particular the latter complex has support in cohomo-
logical degrees [1, r]. Applying Lemma A.1 finishes the proof.

"

Remark 4.5. In analogy with Remark 3.7 the complex SI
X
!

(r)ét/Nis extends to
an object in the global category Dpro(SchW

!
,ét/Nis). The isomorphism in Propo-

sition 4.3 extends to an isomorphism in Dpro(SmW
!
,ét/Nis). Although the con-

struction in the proof is valid only on the small site X1,ét/Nis, the isomorphism
for different X! glue canonically. So it follows that also the fundamental tri-
angle in Theorem 4.4 extends to Dpro(SmW

!
,Nis).

5. CONNECTING MORPHISM IN FUNDAMENTAL TRIANGLE

Let the notation be as in Section 4, in particular let X! be in SmW
!

. We assume
p > r. The aim of this section is to show the following

Theorem 5.1. The connecting homomorphism

α : W!Ω
r
X1,log[−r]→ p(r)Ω≤r−1

X
!

in the fundamental triangle (Theorem 4.4) is equal to the composite morphism

β : W!Ω
r
X1,log[−r]→W!Ω

≥r
X1

→ q(r)W!Ω
•
X1

Prop. 2.8
−−−−−−−→ p(r)Ω•

X
!

→ p(r)Ω≤r−1
X
!

in Dpro(X1). Here the non-labelled maps are the natural ones.

The theorem will imply the compatibility of α with the cycle class, see Sec-
tion 7.

First of all we observe that it is enough to prove Theorem 5.1 in étale topol-
ogy, i.e. that ε∗(α)= ε∗(β), because α= τ≤r(ε∗ ◦ε∗(α)) and β= τ≤r(ε∗ ◦ε∗(β)).

Definition 3.2 of SX
!

(r)ét as a cone gives a map SX
!

(r)→ J(r)Ω•
D
!

in Cpro(X1)ét.
Note that by Proposition 2.8 there is a natural restriction quasi-isomorphism
J(r)Ω•

D
!

→Ω≥r
X
!

. We let κ(r) be the composite map

SX
!

(r)ét → J(r)Ω•
D
!

→Ω
≥r
X
!

in Cpro(X1)ét.

Definition 5.2. We define S′
X
!

(r)ét = cone(SX
!

(r)ét
κ(r)
−−→Ω≥r

X
!

)[−1] as an object
in Cpro(X1).
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The morphism ΦJ : SX
!

(r) → W!Ω
r
X1,log[−r] in Dpro(X1) from Theorem 4.4

induces a morphism S′
X
!

(r)→W!Ω
r
X1,log[−r], still denoted by ΦJ .

We have a chain of isomorphisms in Dpro(X )ét

(5.1) S′
X
!

(r)ét

(1)
%%

cone(SI
X
!

(r)ét → I(r)Ω•
D
!

)[−1]

(2)
%%

cone
(
cone(q(r)W!Ω

•
X1

1−Fr
−−−→W!Ω

•
X1

)[−1]→ q(r)W!Ω
•
X1

)
[−1]

E(r) := cone(W!Ω
•
X1,log[−r]→ q(r)W!Ω

•
X1

)[−1]

(3)

&&

where (1) follows immediately from Definition 5.2, (2) follows from Proposi-
tion 2.8 and (3) follows from Corollary 3.6.

Proposition 5.3. (1) In Dpro(X1)ét, one has an exact triangle

p(r)Ω•
X
!

[−1]→S
′
X
!

(r) ΦJ

−−→W!Ω
r
X1,log[−r] [+1]

−−−→ · · ·

(2) In Dpro(X1)ét, one has a commutative diagram of exact triangles

q(r)W!Ω
•
X1

[−1] !! E(r) !! W!Ω
r
X1,log[−r]

[+1] !! · · ·

p(r)Ω•
X
!

[−1] !!

%%

&&

S′
X
!

(r) ΦJ
!!

%%

(∗)

&&

W!Ω
r
X1,log[−r]

[+1] !! · · ·

%%

&&

p(r)Ω<r
X
!

[−1] !! SX
!

(r) ΦJ
!! W!Ω

r
X1,log[−r]

[+1] !! · · ·

where (∗) is the composition of morphisms (5.1). The upper triangle
comes from the definition of E(r) as a cone and the lower triangle is the
fundamental triangle (Theorem 4.4).

Proof. For (1) we take the homotopy fibre of the morphism of exact triangles

p(r)Ω<r
X
!

[−1] !!

d
%%

SX
!

(r) ΦJ
!!

κ(r)
%%

W!Ω
r
X1,log[−r]

[+1] !!

%%

· · ·

%%
Ω≥r Ω≥r !! 0

[+1] !! · · ·

where the upper triangle is the fundamental triangle (Theorem 4.4).
We get an exact triangle in Dpro(X1)ét

cone(p(r)Ω<r
X
!

[−1]→Ω
≥r
X
!

)[−1]→S
′
X
!

(r) Φ
J

−−→W!Ω
r
X1,log[−r] [+1]

−−−→ · · ·

and note that cone(p(r)Ω<r
X
!

[−1]→Ω≥r
X
!

) is quasi-isomorphic to p(r)Ω•
X
!

.
Part (2) follows immediately via the isomorphisms (5.1).

"
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Theorem 5.1 follows now from Proposition 5.3 together with (5.1).

6. THE MOTIVIC COMPLEX

The aim of this section is to define a motivic pro-complex of the p-adic
scheme X! as an object in Dpro(X1)Nis. We shall show in Section 7 that liftabil-
ity of the cycle class to a cohomology class of this complex precisely computes
the obstruction for the refined crystalline cycle class to be Hodge.

We recall the definition of Suslin-Voevodsky’s cycle complex on the smooth
scheme X /k for an arbitrary field k, following [SV, Defn. 3.1]. It is defined
as an object Z(r) in the abelian category of complexes of abelian sheaves on
the big Nisnevich site Sm/k. Furthermore, it is a complex of sheaves with
transfers. One has

Z(r)=C
•(Ztr(Ĝr

m))[−r].(6.1)

We explain what this means: We think of Gm =A1 \{0} as a scheme. By Ztr(X )
we denote the presheaf with transfers defined by the formula Ztr(X )(U) =
Cor(U , X ), for any X ∈ Sm/k, where Cor(U , X ) is the free abelian group gen-
erated by closed integral subschemes Z ⊂ U ×k X which are finite and sur-
jective over a component of U ([SV, Section 1]). Wedge product is defined as
Ztr(Ĝr

m) = Ztr(G×r
m )/im(faces), where the faces are defined by (x1, . . . , xr−1) .→

(x1, . . . ,1, . . .xr−1). Finally, for any presheaf of abelian groups F on Sm/k, one
defines the simplicial presheaf C•(F ) by C i(F )(U) = F (U ×∆

i). One sets
C i(F )=C−i(F ). So in sum, one has

Z(r)i(U)=Cor(U ×k ∆
r−i,G r̂

m).

Clearly Z(r) is supported in degrees ≤ r. Its last Nisnevich cohomology
sheaf is the Milnor K -sheaf

H
r(Z(r))=K

M
r .(6.2)

We refer to [SV, Thm. 3.4] where it is computed for fields, and in general,
one needs the Gersten resolution for Milnor K -theory on smooth varieties,
established in [EM],[Ke1] and unpublished work of Gabber. Note that in case
the base field k is finite one has to use a refined version of the usual Milnor
K -sheaves, defined in [Ke2]. See also Section 11 for more details about the
Milnor K -sheaf. The essential property of this refined Milnor K -sheaf that
we need, is that it is locally generated by symbols {a1, . . . ,ar} with ai ∈ O×

X
(1≤ i ≤ r).

For X ∈ Smk we denote by ZX (r) the restriction of Z(r) to the small Nis-
nevich site of X . One has from [MVW, Cor 19.2] and [Ke1, Thm. 1.1]

H2r(X ,ZX (r))= Hr(X ,K M
X ,r)=CHr(X ).(6.3)

From now on the notation is as in Section 5. In particular X!/W! is in SmW
!

and X1 = X ⊗W k. We assume r < p.
We will consider ZX1(r) as an object in D(X1) = D(X1)Nis and also as a con-

stant pro-complex in Dpro(X1) = Dpro(X1)Nis. So (6.2) enables us to define the
map

log :ZX1(r)→H
r(ZX1 (r))[−r]=K

M
X1,r[−r]

d log[ ]
−−−−→W!Ω

r
X1,log[−r](6.4)
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in Dpro(X1), where [ ] is the Teichmüller lift.

Recall that one has a map ΦJ :SX
!

(r)→W!Ω
r
X1,log[−r] in Dpro(X1)=Dpro(X1)Nis

(Theorem 4.4) with SX
!

(r) defined in Definition 3.2.

Definition 6.1. We assume p > r. We define the motivic pro-complex ZX
!

(r) of
X! as an object in Dpro(X1) by

ZX
!

(r)= cone(SX
!

(r)⊕ZX1(r)
ΦJ⊕−log
−−−−−−→W!Ω

r
X1,log[−r])[−1].

Note that by Lemma A.2, the cone is well defined up to unique isomorphism
in the triangulated category Dpro(X1). In fact the map

(6.5) H
r(ZX1 (r))=K

M
X1,r →W!Ω

r
X1,log

is an epimorphism, since W!Ω
r
X1,log is generated by symbols.

Proposition 6.2.

(0) One has ZX
!

(0)=Z, the constant sheaf Z in degree 0.
(1) One has ZX

!

(1)=Gm,X
!

[−1].
(2) The motivic complex ZX

!

(r) has support in cohomological degrees ≤ r.
For r ≥ 1, if the Beilinson-Soulé conjecture is true, it has support in
cohomological degrees [1, r].

(3) One has ZX
!

(r)⊗L
Z Z/p! =SX

!

(r) in Dpro(X1).
(4) One has H r(ZX

!

(r))=K M
X
!
,r in Shpro(X1).

(5) There is a canonical product structure

ZX
!

(r)⊗L
Z ZX

!

(r′)→ZX
!

(r+ r′)

compatible with the products on ZX1(r) and SX
!

(r).

Proof. We show (0). One has W!Ω
0
X1,log = Z/p!, ZX1 (0) = Z and for example by

Theorem 4.4, one has SX
!

(0)=Z/p!. So (0) is clear from Definition 6.1.

We show (2). For all i ∈Z, one has a long exact sequence

. . .→H
i(ZX

!

(r))→H
i(SX

!

(r))⊕H
i(ZX1(r))→H

i(W!Ω
r
X1,log[−r])→ . . .

By Theorem 4.4 the syntomic complex SX
!

(r) has support in degrees [1, r]
for r ≥ 1. The Beilinson-Soulé conjecture predicts the same for the motivic
complex ZX1(r). So (2) follows because (6.5) is an epimorphism.

We show (4). One has an exact sequence

0→H
r(ZX

!

(r))→H
r(SX

!

(r))⊕H
r(ZX1 (r))

ΦJ⊕−log
−−−−−−→W!Ω

r
X1,log → 0

By Theorem 4.4, one has an exact sequence

0→ pΩr−1
X
!

/p2dΩr−2
X
!

→H
r(SX

!

(r)) ΦJ

−−→W!Ω
r
X1,log → 0

which induces the upper row in the commutative diagram with exact rows
(the bottom row is Theorem 11.3)

0 !! pΩr−1
X
!

/p2dΩr−2
X
!

!! H r(ZX
!

(r)) !! H r(ZX1(r)) !! 0

0 !! pΩr−1
X
!

/p2dΩr−2
X
!

!! K M
X
!
,r

!!

(∗)

&&

K M
X1,r

!!

1

&&

0
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Here the arrow (∗) is induced by Kato’s syntomic regulator map [K2, Sec. 3].
By (6.2), the right vertical arrow is an isomorphism, so by the five-lemma (∗)
is also an isomorphism.

From (4) and (2) one deduces (1), since the Beilinson-Soulé vanishing is
clear for r = 1.

We show (3). The sheaf WnΩ
r
X1,log is a sheaf of flat Z/pn-modules, so

W!Ω
r
X1,log ⊗

L
ZZ/p! =W!Ω

r
X1,log in Dpro(X1).

By Theorem 4.4 this also implies that SX
!

(r)⊗L
ZZ/p! =SX

!

(r). Geisser-Levine
show that ZX1(r)⊗L

Z Z/pn = WnΩ
r
X1,log[−r], see [GL]. So from the definition of

ZX
!

(r) we conclude that ZX
!

(r)⊗L
Z Z/p! =SX

!

(r).
We show (5). By a simple argument analogous to the proof of Lemma A.2

having a product morphism as in (5) is equivalent to having two morphisms

ZX
!

(r)⊗L
Z ZX

!

(r′)→ZX1(r+ r′)

ZX
!

(r)⊗L
Z ZX

!

(r′)→SX
!

(r+ r′)

in Dpro(X1), which become equal when composing with the maps to W!Ω
r+r′
X1,log[−r].

We let the two morphisms be induced by the usual product of the Suslin-
Voevodsky motivic complex and the product on the syntomic complex. "

Proposition 6.3 (Motivic fundamental triangle). One has a unique commu-
tative diagram of exact triangles in Dpro(X1)

p(r)Ω<r
X
!

[−1] !! ZX
!

(r)

%%

!! ZX1 (r)

%%

d log
%%

!! · · ·

%%
p(r)Ω<r

X
!

[−1] !! SX
!

(r) !! W!Ω
r
X1,log[−r] !! · · ·

where the bottom exact triangle comes from Theorem 4.4 and the maps in the
right square are the canonical maps.

Proof. The square
ZX

!

(r)

%%

!! ZX1(r)

d log
%%

SX
!

(r) !! W!Ω
r
X1,log[−r]

is homotopy cartesian by definition. So the existence of the commutative dia-
gram in the proposition follows from [Ne, Lemma 1.4.4].

For uniqueness one has to show that the morphism

p(r)Ω≤r−1
X
!

[−1]→ZX
!

(r)

is uniquely defined by the requirements of the proposition. This can be shown
analogously with Lemma A.2.

"

Corollary 6.4. For Y! = X!×Pm one has a projective bundle isomorphism
m⊕

s=0
Hr′−2s

cont (X1,ZX
!

(r− s))
⊕sc1(O (1))s

−−−−−−−→ Hr′
cont(Y1,ZY

!

(r))
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Proof. By Proposition 6.3 one has to show that the analogous maps for Suslin-
Voevodsky motivic cohomology of X1 and for Hodge cohomology are isomor-
phisms. This holds by [MVW, Cor. 15.5] and [SGA7, Exp. XI, Thm. 1.1]. "

7. CRYSTALLINE HODGE OBSTRUCTION AND MOTIVIC COMPLEX

Let the notation be as in Section 5. We additionally assume in this section
that X1/k is proper.

Our goal in this section is to study a cohomological deformation condition
for a rational equivalence class ξ1 ∈CHr(X1)= H2r(X1,ZX1(r)) to lift to a coho-
mology class ξ ∈ H2r

cont(X1,ZX
!

(r)), where ZX
!

(r) is the motivic complex defined
in Section 6. In fact we suggest to interpret the latter group as the codimen-
sion r cohomological Chow group of the formal scheme X!.

Definition 7.1. We define the continuous Chow group of X! to be

CHr
cont(X!)= H2r

cont(X1,ZX
!

(r)).

For the definition of continuous cohomology see Definition B.6. The defor-
mation problem can be understood by means of the fundamental exact triangle
in Proposition 6.3, which gives rise to the exact obstruction sequence

(7.1) CHr
cont(X!)→CHr(X1) Ob

−−→ H2r
cont(X1, p(r)Ω<r

X
!

).

We will compare the obstruction Ob(ξ1) to the cycle class of ξ1 in crystalline
and de Rham cohomology.

Note that by general homological algebra (formula (B.1)) we have an exact
sequence

0→ lim
←−−

n

1H2r−1(X1,ZXn(r))→CHr
cont(X!)→ lim

←−−
n

H2r(X1,ZXn(r))→ 0.

In particular by Proposition 6.2(1) and the vanishing of lim
←−−n

1H0(X1,Gm,Xn) we
get an isomorphism

(7.2) CH1
cont(X!)

∼
−→ lim

←−−
n

Pic(Xn).

Note that if X! is the p-adic formal scheme associated to the smooth projective
scheme X /W there is an algebraization isomorphism [EGA3, Thm. 5.1.4]

(7.3) Pic(X ) ∼
−→ lim

←−−
n

Pic(Xn).

The relation of CHr
cont(X!) to formal systems of vector bundles is explained in

Section 10. Unfortunately, an analog of the algebraization isomorphism (7.3)
is unknown.

We first recall the construction of the crystalline cycle class, as given by
Gros [G, II.4] and Milne [Mi, Section 2], using the Gersten resolution for
W!Ω

r
X1,log [GS, (0.1)] and the Gersten resolution for the Milnor K -sheaf K M

r

[Ke1, Thm. 1.1]. The morphism d log◦[ ] : K M
X1,r → W!Ω

r
X1,log maps the Ger-

sten resolution for K M
X1,r to the one for W!Ω

r
X1,log, where [−] is the Teichmüller

lift. Thus, for any integral codimension r subscheme Z ⊂ X1, one obtains as a
consequence of purity

Z · [Z]= Hr
Z(X1,K M

r )
d log
−−−→Z/p! · [Z]= Hr

Z(X1,W!Ω
r
X1,log),
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where the map Z→Z/pn is just the projection. The image of

1 · [Z] in Hr
cont(X1,W!Ω

r
X1,log),

after forgetting supports, is the cycle class of Z. By Z-linear extension, Gros
and Milne define the cycle class map

CHr(X1)→ Hr
cont(X1,W!Ω

r
X1,log).

Also we observe that the cycle class map is induced, via the Bloch formula
[Ke1]

CHr(X1)= Hr(X1,K M
r ),

by the morphism of pro-sheaves K
M

X ,r →W!Ω
r
X1,log.

On the other hand, one has a natural map of complexes

(7.4) W!Ω
r
X1,log[−r]→W!Ω

≥r
X1

→ q(r)W!Ω
•
X1

in Cpro(X1).

Definition 7.2. For ξ ∈CHr(X1), its refined crystalline cycle class is the class

c(ξ) ∈ H2r
cont(X1, q(r)W!Ω

r
X1

)

induced by (7.4).
The crystalline cycle class of ξ is the image ccris(ξ) of c(ξ) in H2r

cont(X1,W!Ω
•
X1

).

By abuse of notation we make the identifications

Hi
cont(X1, q(r)W!Ω

•
X1

)= Hi
cont(X1, p(r)Ω•

X
!

)

Hi
cont(X1,W!Ω

•
X1

)= Hi
cont(X1,Ω•

X
!

)

using the comparison isomorphism from (2.10) and Proposition 2.8.

Definitions 7.3.

(1) One says that the crystalline (resp. refined crystalline) cycle class
of ξ is Hodge if and only if ccris(ξ) (resp. c(ξ)) lies in the image of
H2r

cont(X1,Ω≥r
X
!

) in H2r
cont(X1,Ω•

X
!

) (resp. in H2r
cont(X1, p(r)Ω•

X
!

)).
(2) One says that ccris(ξ) is Hodge modulo torsion if and only if ccris(ξ)⊗Q

lies in the image of H2r
cont(X1,Ω≥r

X
!

)⊗Q in H2r
cont(X1,Ω•

X
!

)⊗Q.

Remarks 7.4.

(1) By the degeneration of the Hodge-de Rham spectral sequence modulo
torsion, the map H2r

cont(X1,Ω≥r
X
!

)⊗Q→ H2r
cont(X1,Ω•

X
!

)⊗Q is injective.
(2) If Hb

cont(X1,Ωa
X
!

) is a torsion-free W(k)-module for all a, b ∈N, then the
composite map

H2r
cont(X1,Ω≥r

X
!

)→ H2r
cont(X1, p(r)Ω•

X
!

)→ H2r
cont(X1,Ω•

X
!

)

is injective, and thus the left map as well.
(3) The map H2r

cont(X1, p(r)Ω≥r
X
!

)⊗Q→ H2r
cont(X1,Ω•

X
!

)⊗Q is an isomorphism.

Now we formulate one of our main theorems:

Theorem 7.5. Let X!/W! be a smooth projective p-adic formal scheme. Let
ξ1 ∈CHr(X1) be an algebraic cycle class. Then

(1) its refined crystalline class c(ξ1) ∈ H2r
cont(X1, q(r)W!Ω

•
X1

) is Hodge if and
only if ξ1 lies in the image of the restriction map CHr

cont(X!)→CHr(X1),
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(2) its crystalline class ccris(ξ1) ∈ H2r
cont(X1,W!Ω

•
X1

) is Hodge modulo torsion
if and only if ξ1⊗Q lies in the image of the restriction map CHr

cont(X!)⊗
Q→CHr(X1)⊗Q.

Proof. The second part follows from the first one and Remark 7.4(3). For (1)
we observe that we have a commutative diagram with exact rows, extending
(7.1),

CHr
cont(X!) !!

c
%%

CHr(X1) Ob !!

c
%%

H2r
cont(X1, p(r)Ω<r

X
!

)

H2r
cont(p(r)Ω≥r

X
!

) !! H2r
cont(p(r)Ω•

X
!

) !! H2r
cont(p(r)Ω<r

X
!

)

Indeed, the right square commutes by Theorem 5.1. The theorem follows by a
simple diagram chase. "

Remark 7.6. For r = 1 Theorem 7.5 is due to Berthelot-Ogus [BO2], relying
on a construction of a complex similar to our S′

X
!

(1) which was first studied in
[De1, p. 124]. Note the identification (7.2) of CH1

cont(X!) with the Picard group.

8. CONTINUOUS K -THEORY AND CHERN CLASSES

The aim of this section is firstly to describe Quillen’s +-construction and Q-
construction for K -theory of the p-adic formal scheme X! in SchW

!

. Secondly,
we show ⊕

r
H2r

cont(BGLW1 ,ZBGLW
!

(r))=Z[c1, c2, . . .]

where the right side is the polynomial ring in the univeral Chern classes cr
of cohomological degree 2r. By pullback we get Chern classes in motivic coho-
mology for continuous higher K -theory for smooth X!.

Let now X! be in SchW
!

.

Definition 8.1. By KX
!

∈ Spro(X1) we denote the pro-system of simplicial
presheaves given by Quillen’s Q-construction. Explicitly, for U! → X! étale
KX

!

(U1) is given by
n .→ΩBQVec(Un) (n ≥ 1),

where Vec(Un) is the exact category of vector bundles on Un, Q is Quillen’s
Q-construction functor and B is the classifying space functor, see [Sr, Sec. 5].

Definition 8.2. Continuous K -theory of X! in SchW
!

is defined by

K cont
i (X!)= [Si

X1
,KX

!

],

where Si
X1

is the constant presheaf pro-system of the simplicial i-sphere in
Spro(X1).

By [BoK, Sec. IX.3] there is a short exact sequence

0→ lim
←−−

n

1Ki+1(Xn)→ K cont
i (X!)→ lim

←−−
n

Ki(Xn)→ 0.

Thomason-Throbaugh [TT, Sec. 10] show that KX
!

satisfies Nisnevich de-
scent.

Proposition 8.3. The K-theory presheaf of Definition 8.1 satisfies Nisnevich
descent in the sense of Definition B.10.
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In particular from Lemma B.8 we get a Bousfield-Kan descent spectral se-
quence

(8.1) Es,t
2 = Hs

cont(X1,KX
!
,t)=⇒ K cont

t−s (X!) t ≥ s.

where KX
!
,t is the pro-system of Nisnevich sheaves of homotopy groups of KX

!

.
Our aim in the rest of this section is to construct a Chern character from

continuous K -theory to continuous motivic cohomology.

Definition 8.4. By BGLm,R (m≥ 1) we denote the simplicial classifying scheme

· · · GLm,R ×GRm,R

!! !!!! GLm,R
!!!!$$$$ {∗}$$

of the general linear group over the base ring R. By BGLR we denote the
ind-simplicial scheme

· · ·→BGLm,R →BGLm+1,R →BGLm+2,R → · · ·

In the usual way one can associate to BGLR its small étale and Nisnevich
sites, denoted by BGLR,ét and BGLR =BGLR,Nis.

The following facts are well known to the experts:
(a) There is a canonical isomorphism

(8.2)
⊕

r
H2r(BGLk,ZBGLk(r))=Z[c1, c2, . . .],

where the ci are Chern classes of the universal bundle on BGLn,k of
cohomoloical degree 2i, see [Pu, Lem. 7].

(b) There is a canonical isomorphism

(8.3)
⊕

r
Hr

cont(BGLk,⊕tΩ
t
BGLW

!

[−t])=W[c1, c2, . . .],

where the ci are Chern classes of the universal bundle on BGLn,k of
cohomoloical bi-degree (r, t)= (2i, i), see Thm. 1.4 and Rmk. 3.6 of [G].

From the Hodge-de Rham spectral sequence and (b) we deduce that

H2r−1
cont (BGLk, p(r)Ω<r

BGLW
!

)= 0,

H2r
cont(BGLk, p(r)Ω<r

BGLW
!

)= 0.

By the fundamental triangle in Proposition 6.3 this implies that
⊕

r
H2r

cont(BGLk,ZBGLW
!

(r)) ∼
−→

⊕

r
H2r(BGLk,ZBGLk (r))

is an isomorphism. We conclude:

Proposition 8.5. There is a canonical isomorphism of graded rings
⊕

r
H2r

cont(BGLW1 ,ZBGLW
!

(r))=Z[c1, c2, . . .],

where the universal Chern classes ci live in cohomological degree 2i.

By the construction of Gillet [Gil] the universal Chern class cr of Proposi-
tion 8.5 leads to a morphism

cr ∈ [BGLX
!

,KZX
!

(r)[2r]]

in the homotopy category hSpro(X1), see Notation B.3. Here K stands for the
Eilenberg-MacLane functor of Proposition B.4 and BGLX

!

is the natural pro-
system of presheaves of simplicial sets on X1,Nis given on Un → Xn étale by
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lim
−−→m

BGLWn,m(Un). By Proposition 8.3 and a functorial version of Quillen’s
+=Q theorem (see the proof of Prop. 2.15 of [Gil]) there is a canonical isomor-
phism

KX
!

∼=Z×Z∞BGLX
!

in hSpro(X1), where Z∞ is the Bousfield-Kan Z-completion functor [BoK]. Com-
pletion therefore induces a map

[BGLX
!

,KZX
!

(r)[2r]]→ [KX
!

,KZX
!

(r)[2r]]

and we get continuous Chern class maps

(8.4) cr : K cont
i (X!)→ H2r−i

cont (X1,ZX
!

(r)),

which are group homomorphisms for i > 0 and satisfy the Whitney formula for
i = 0.

The degree r part of the universal Chern character is a universal polynomial
chr ∈Z[1/r!][c1, . . . ]. As above by pullback we get Chern characters

(8.5) chr : K cont
i (X!)→ H2r−i

cont (X1,ZX
!

(r))Z[ 1
r! ]

,

which are additive and compatible with product. The lower index Z[ 1
r! ] stands

for −⊗ZZ[ 1
r! ]. Note that the canonical morphism

H2r−i
cont (X1,ZX

!

(r))Z[ 1
r! ]

∼
−→ H2r−i

cont (X1,Z[
1
r!

]X
!

(r))

is an isomorphisms for r < p, as follows from Proposition 6.3.

9. RESULTS FROM TOPOLOGICAL CYCLIC HOMOLOGY

We summarize some deep results about K -theory which are proved using the
theory of topological cyclic homology, due to McCarthy, Madsen, Hesselholt,
Geisser and others. Note that we state results not in their general form, but
in a form sufficient for our application.

In this section we work in étale topology only, i.e. all sheaves and cohomol-
ogy groups are in étale topology. The prime p is always assumed to be odd.

Let R be a discrete valuation ring, finite flat over W and write Rn = R/pn.
Let X be in SmR and X! be the associated p-adic formal scheme in SmR

!

, i.e.
Xn = X ⊗R Rn. Denote by i : Xred !→ X the immersion of the reduced closed
fibre and by j : XK → X the immersion of the general fibre, K = frac(R). Using
the arithmetic square [BoK, Sec. VI.8] and the theorems of McCarthy [Mc]
and Goodwillie [Go], Geisser-Hesselholt [GH1, Thm. A] deduce results about
integral K -theory in the relative affine situation Xred !→ Xn. Combining their
result with Thomason’s Zariski descent for K -theory, Proposition 8.3, in order
to reduce to affine Xn and étale decent for topological cyclic homology [GH2,
Cor. 3.3.3] we get:

Proposition 9.1.

(a) The relative K-groups Ks(Xn, Xred) are p-primary torsion of finite expo-
nent for any n ≥ 1, s≥ 0.

(b) The presheaf of simplicial sets KXn,Xred on the small étale site of Xred
satisfies étale descent, see Definition B.10.
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Generalizing the work of Suslin and Panin, Geisser-Hesselholt [GH3] ob-
tain the following continuity result for K -theory with Z/p-coefficients. Let
(K /p)X ,s be the étale sheaf of K -groups with Z/p-coefficients on X and let
similarly (K /p)X

!
,s be the pro-system of K -sheaves on the étale site of Xred.

Proposition 9.2. The restriction map induces an isomorphism of pro-systems
of étale sheaves on Xred

i∗(K /p)X ,s
∼
−→ (K /p)X

!
,s.

Note that one also has a continuity isomorphism

(9.1) i∗Gm,X ⊗L
Z Z/p ∼

−→Gm,X
!

⊗L
Z Z/p

in Dpro(Xred)ét.

In the rest of this section we study the relation of K -theory to a form of
p-adic vanishing cycles.

Definition 9.3. We define

VX (r)= cone(τ≤r R j∗Z/p(r)
res
−−→Ω

r−1
Xred,log[−r])[−1],

where res is the residue map of Bloch-Kato [BK, Thm. 1.4].

Note that the cone in the definition is unique up to unique isomorphism by
Lemma A.2.

Lemma 9.4. The symbol map induces an isomorphism

Gm,X ⊗L
Z Z/p[−1] ∼

−→VX (1)

in D(X )ét.

Proof. We have a short exact sequence of étale sheaves

0→Gm,X → j∗Gm,XK → i∗Z→ 0.

Forming the derived tensor product of the associated exact triangle in D(X )ét
with Z/p and using the isomorphism

j∗Gm,XK ⊗L
ZZ/p = τ≤1R j∗Z/p(1),

we finish the proof of the lemma. "

Assume that R contains a primitive p-th root of unity. We have the following
chain of isomorphisms of pro-systems of étale sheaves on Xred:

(9.2) i∗(K /p)X ,s
tr
−→ i∗(T C

!/p)X ,s
(∗)
−−→

⊕

r≤s
i∗H

2r−s(VX (r)).

Here tr is the Bökstedt-Hsiang-Madsen trace [BHM] from the étale K -sheaf
to the étale pro-sheaf of topological cyclic homology. The map tr is an iso-
morphism by [GH3, Thm. B]. The isomorphism (∗) is the composite of isomor-
phisms induced by [HM, Thm. E] and [GH4, Thm. A].

Fix a primitive p-th root of unity ζ. Recall that the Bott element

β∈ K2(W[ζ];Z/p)

is the unique element which maps to {ζ} ∈ K1(W[ζ];Z/p) under the Bockstein.
Uniqueness of this Bott element follows from Moore’s theorem [Mil, App.],
which says that

K2(W[ζ])=Z/p⊕ (divisible).
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The Bott element

(9.3) β∈ H0(SpecW[ζ],V(1))= ker(Gm(W[ζ])
p
−→Gm(W[ζ]))= ζZ

is by definition the element induced by ζ, where the first isomorphism in (9.3)
is coming from Lemma 9.4.

The composite isomorphism (9.2) can be uniquely characterized as follows:

Proposition 9.5. If R contains the p-th roots of unity there is a unique mor-
phism

i∗(K /p)X ,s
∼
−→

⊕

r≤s
i∗H

2r−s(VX (r))

of étale sheaves mapping the local section βt{a1, . . . ,as−2t} on the left side to the
corresponding local section on right side with au (1 ≤ u ≤ s−2t) local sections
of i∗ j∗O×

XK
for t > 0 and local sections of i∗O×

X for t = 0. This morphism is an
isomorphism.

Proof. One just has to note that the isomorphism constructed above is compat-
ible with products and that the target ring of the isomorphism is generated by
the above Bott-symbols [BK, Thm. 1.4]. In fact the Bökstedt-Hsiang-Madsen
trace is compatible with product. This is shown in [GH2, Sec. 6]. "

10. CHERN CHARACTER ISOMORPHISM

In this section we show that under suitable hypotheses our Chern character
from continuous K -theory to continuous motivic cohomology of a smooth p-
adic formal scheme is an isomorphism. Using descent we firstly reduce it to
an étale local problem with Z/p-coefficients. Secondly, we use the fact, Propo-
sition 9.5, that there is some étale local isomorphism, which we show is the
same as our Chern character.

Consider a smooth p-adic formal scheme X! ∈ SmW
!

and let d = dim(X1).
The continuous K -group K cont

0 (X!) was defined in Section 8, as well as the
Chern character map to continuous motivic cohomology.

Theorem 10.1. For p > d+6 the Chern character

ch : K cont
0 (X!)Q →

⊕

r≤d
CHr

cont(X!)Q

is an isomorphism.

Note that we have CHr
cont(X!) = 0 for r > d by Proposition 6.3 and the fact

that there is no lim1-contribution to continuous Hodge cohomology.

Proof. For r+1< p we have a commutative diagram

K cont
1 (Y .)Q

chr !!

∂
%%

H2r+1
cont (Y1,ZY .(r+1))Q

∂
%%

K cont
0 (X .)Q chr

!!

{T}

&&

H2r
cont(X1,ZX .(r))Q

{T}

&&

where Y! = X!×Gm and T is a torus parameter. The maps ∂ in the diagram are
constructed in the standard way by the projective bundle formula for X!×P1

and the Mayer-Vietoris exact sequence, see Corollary 6.4 and [TT, Sec. 6].
Clearly, ∂◦ {T}= id.
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By the diagram it suffices to show that

ch : K cont
1 (Y .)Q →

⊕

r≤d+2
H2r−1

cont (Y1,ZY .(r))Q.

is an isomorphism.
The Chern character induces a morphism of exact sequences of relative the-

ories

K2(Y1)Q !!

ch (1)
%%

K1(Y!,Y1) !!

ch (2)
%%

K1(Y!)Q !!

ch (3)
%%⊕

r≤d+2
H2r−2(ZY1(r))Q !!

⊕

r≤d+2
H2r−2

cont (p(r)Ω<r
Y
!

) !!
⊕

r≤d+2
H2r−1

cont (ZY .(r))Q !!

(10.1)

!! K1(Y1)Q !!

ch (4)
%%

!! K0(Y!,Y1)

ch (5)
%%

!!
⊕

r≤d+2
H2r−1(ZY1(r))Q !!

⊕

r≤d+2
H2r−1

cont (p(r)Ω<r
Y
!

)

where the lower row comes from the fundamental triangle, Proposition 6.3. In
order to show that (3) is an isomorphism it suffices to observe:

(a) the map (1) is surjective and (4) is bijective,
(b) the map (2) is bijective and the map (5) is injective.

Part (a) is shown in [B2, Thm. 9.1]. We show part (b).
From Proposition 9.1(b) and Lemma B.8 we get a convergent étale descent

spectral sequence of Bousfield-Kan type

(10.2) Es,t
2 (K )= Hs

cont(Y1,ét,KY
!
,Y1,t)=⇒ K cont

t−s (Y!,Y1)

As coherent sheaves satisfy étale descent we also get from Lemma B.7 a spec-
tral sequence with Bousfield-Kan type renumbering

(10.3) Es,t
2 (Z(r))= Hs

cont(Y1,ét,H 2r−t−1(p(r)Ω<r
Y
!

))=⇒ H2r−t+s−1
cont (Y1, p(r)Ω<r

Y
!

).

The Chern character gives a morphism of spectral sequences from (10.2) to
(10.3). Note that Es,t

2 (K ) = Es,t
2 (Z(r)) = 0 if s > d +2, because cdp(Y1) ≤ d +1

[SGA4, Thm 5.1, Exp. X] and the relative K -sheaves are p-primary torsion by
Proposition 9.1(a).

By Lemma B.9 in order to show (b) it is enough to show that the Chern
character induces an isomorphism

ch : Es,t
2 (K )→

⊕

r≤d+2
Es,t

2 (Z(r))

for 0≤ t− s≤ 2 and s≤ d+2. This follows from:

Claim 10.2. The Chern character induces an isomorphism of étale pro-sheaves

ch : KY
!
,Y1,a →

⊕

r≤a
H

2r−a−1(p(r)Ω<r
Y
!

)

for 1≤ a≤ d+4< p−2.
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Case a= 1: It is known that KY1,2 is locally generated by Steinberg symbols
[DS], so KY

!
,2 → KY1,2 is surjective and therefore KY

!
,Y1,1 = (Gm)Y

!
,Y1. The

target set of the Chern character for a= 1 is just pOX
!

and the Chern character
is the p-adic logarithm isomorphism in this case.

Case a> 1: By Proposition 9.1(a) there is an isomorphism of pro-sheaves

KY
!
,Y1,a

∼
−→ (K /p!)Y

!
,Y1,a

and similarly for relative motivic cohomology. By a simple dévissage it there-
fore suffices to show that the Chern character of étale pro-sheaves

ch : (K /p)Y
!
,Y1,a →

⊕

r≤a
H

2r−a−1(p(r)Ω<r
Y
!

⊗ZZ/p)

is an epimorphism for 2≤ a≤ d+5 and a monomorphism for 2≤ a≤ d+4.
Observe that

(10.4) ch : (K /p)Y1,a →H
a(ZY1(a)⊗ZZ/p)

is an isomorphism for all a < p. Concerning (10.4), note that H a(ZY1(r)⊗Z

Z/p)= 0 for r 8= a by [GL]. Indeed, Geisser-Levine show that there is precisely
one such morphism (10.4) compatible with Steinberg symbols on both sides,
which our Chern character is, and that this one morphism is an isomorphism.

Using the sheaf analog of the commutative diagram of exact sequences
(10.1), the isomorphism (10.4) and the following claim, we finish the proof
of Theorem 10.1.

Claim 10.3. The Chern character induces an isomorphism

(10.5) ch : (K /p)Y
!
,a →

⊕

r≤a
H

2r−a(ZY
!

(r)⊗ZZ/p)

for 2≤ a≤ d+5< p−1.

In order to prove the claim we can assume that Y! is affine. Then by [E,
Thm. 7] our Y! is the p-adic formal scheme associated to a smooth affine
scheme Y /W . With the notation as in Section 9, in particular with i : Y1 → Y
the immersion of the closed fibre, there is a commutative diagram

i∗(K /p)Y ,a
ch !!

1

%%

⊕
r≤a H 2r−a(VY (r))

1
%%

(K /p)Y
!
,a

ch !!
⊕

r≤a H 2r−a(ZY
!

(r)⊗ZZ/p)

The right vertical isomorphism is due to Kurihara [Ku1] and the left vertical
isomorphism is from Proposition 9.2. The top horizontal map is induced by
Sato’s Chern character [Sa, Sec. 4]. In order to show that the latter induces
an isomorphism in our situation we can make the base change W ⊂W[ζp] with
ζp a primitive p-th root of unity. Then it is clear that Sato’s Chern character
maps the Bott element to the Bott element and is compatible with Steinberg
symbols. Therefore Proposition 9.5 shows that the top horizontal map is an
isomorphism. "

In order to finish the proof of the Main Theorem 1.3, combine Theorem 7.5
with Theorem 10.1.
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11. MILNOR K -THEORY

In this section we recall some properties of Milnor K -theory and we study
the infinitesimal part of Milnor K -groups for smooth rings over Wn, recollect-
ing results of Kurihara [Ku2], [Ku3]. The main result of this section, Theo-
rem 11.3, is used in Proposition 6.2(4) to relate Milnor K -theory and motivic
cohomology of a p-adic scheme.

Consider the functor
F : A .→⊗n≥0(A×)⊗n/St

from commutative rings to graded rings, where St is the graded two-sided
ideal generated by elements a⊗b with a+b = 1.

Let S be a base scheme and let F∼ be the sheaf on the category of schemes
over S associated to the functor F in either the Zariski, Nisnevich or étale
topology. The Milnor K -sheaf K M

∗ is a certain quotient sheaf of F∼, defined in
[Ke2]. In particular it is locally generated by symbols

{x1, . . . , xr} with x1, . . . , xr ∈O
×.

In fact, if the residue fields at all points of S are infinite, the map F∼ →K M
∗

is an isomorphism. For a scheme X /S denote by K
M

X ,∗ the restriction of K
M
∗

to the small site of X .

Let S =Spec k for a perfect field k with chark = p > 0 and let X ∈Smk.

Proposition 11.1.

(a) The sheaf K M
X ,∗ is p-torsion free.

(b) The composite of the Teichmüller lift and the d log-map induces an iso-
morphism

d log[−] : K M
X ,r /pn 0

−→WnΩ
r
X ,log

with the logarithmic de Rham-Witt sheaf.

Proof. Part (a) is due to Izhboldin [Iz]. Part (b) is due to Bloch-Kato [BK]. "

Let R be an essentially smooth local ring over Wn = W(k)/pn. By R1 we
denote R/(p). In this section, we study Milnor K -groups of R.

By the Milnor K -group K M
r (R) we mean the stalk of the Milnor K -sheaf in

Zariski topology over Spec R. We consider the filtration U iK M
r (R) ⊂ K M

r (R)
(i ≥ 1), where U iK M

r (R) is generated by symbols

{1+ pix, x2, . . . , xr}

with x ∈ R and xi ∈ R× (2 ≤ i ≤ r). One easily shows that U1K M
r (R) is equal to

the kernel of K M
r (R)→ K M

r (R1).

Lemma 11.2. The group U1K M
r (R) is p-primary torsion of finite exponent.

Proof. Without loss of generality we can assume r = 2. The theory of pointy
bracket symbols for the relative K -group K2(R, pR) ([SK]), yields generators
〈a, b〉 of U1K M

r (R) defined for a, b ∈ R with at least one of a, b ∈ pR. Relations
for the pointy brackets are:
(i) 〈a, b〉=−〈b,a〉; a ∈ R, b ∈ pR or b ∈ R,a ∈ pR
(ii) 〈a, b〉+ 〈a, c〉= 〈a, b+ c−abc〉; a ∈ pR or b, c ∈ pR
(iii) 〈a, bc〉= 〈ab, c〉+ 〈ac, b〉; a ∈ pR.
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Note that for a fixed, the mapping (b, c) .→ b+c−abc is a formal group law. It
follows that for N ; 0, pN〈a, b〉= 〈a,0〉= 0, so K2(R, pR) is p-primary torsion
of finite exponent. "

Theorem 11.3. For p > 2 the assignment

(11.1) pxd log y1 ∧ . . .∧d log yr−1 .→ {exp(px), y1, . . . , yr−1}

induces an isomorphism

(11.2) Exp : pΩr−1
Rn

/p2dΩr−2
Rn

∼
→U1K M

r (Rn).

Proof.

1st step: Exp : pΩr−1
R → K M

r (R) as in (11.1) is well-defined.

Note that Kurihara [Ku3] shows the exponential map is well defined if
K M

r (R) is replaced by its p-adic completion K M
r (R)∧p. By standard arguments,

see [Ku3, Sec. 3.1], we reduce to r = 2. By Proposition 11.1(a) the group
K M

2 (R1) has no p-torsion. This implies that for any n ≥ 1

(11.3) 0→U1K M
2 (R)⊗Z/pn → K M

2 (R)⊗Z/pn → K M
2 (R1)⊗Z/pn → 0

is exact. For n ; 0 Lemma 11.2 says that U1K M
2 (R)⊗Z/pn =U1K M

2 (R). Taking
the inverse limit over n in (11.3) we see that

(11.4) U1K M
2 (R)→ K M

2 (R)∧p
is injective. So the claim follows from the result of Kurihara mentioned above.

2nd step: Exp(p2dΩr−2
R )= 0

Without loss of generality r = 2. The claim follows from the injectivity of
(11.4) and [Ku3, Cor. 1.3].

3rd step: Exp : pΩr−1
Rn

/p2dΩr−2
Rn

→U1K M
r (Rn) is an isomorphism.

Set Gr = pΩr−1
R /p2dΩr−2

R and define a filtration on it by the subgroups
U iGr ⊂Gr (i ≥ 1) given by the images of piΩr−1

R . Note that

griGr =Ω
r−1
R1

/Bi−1Ω
r−1
R1

,

see [Il, Cor. 0.2.3.13]. In [Ku2, Prop. 2.3] Kurihara shows that

griGr → griK M
r (R)

is an isomorphism. This finishes the proof of the theorem. "

APPENDIX A. HOMOLOGICAL ALGEBRA

In this section we collect some standard facts from homological algebra that
we use. Let T be a triangulated category with t-structure, see [BBD, Sec. 1.3].

Lemma A.1. For an integer r and for an exact triangle

A → B →C [1]
−−→ A[1]

in T with A ∈T ≤r the triangle

A → τ≤rB → τ≤rC [1]
−−→ A[1]

is exact.



p-ADIC DEFORMATION 29

Lemma A.2. For A,B ∈ T with A ∈ T ≤r and B ∈ T ≤r ∩T ≥r assume given
an epimorphism H r(A) → H r(B). Then this epimorphism lifts uniquely to a
morphism A →B in T , sitting inside an exact triangle

A → B → C → A[1]

which is unique up to unique isomorphism.

Proof. The existence of such an exact triangle is clear from the axioms of trian-
gulated categories. Note that C ∈T <r. Uniqueness means that there exists a
unique dotted isomorphism α in a commutative diagram with exact triangles
as rows

A !! B !! C

α
%%

!! A[1]

A !! B !! C′ !! A[1]

Existence and uniqueness follow from the exact sequence

0=Hom(C,B)→Hom(C,C′)→Hom(C, A[1])→Hom(C,B[1]).

"

Now we discuss pro-sheaves on sites. Let N be the category with the objects
{1,2,3, . . .} and morphisms n1 → n2 for n1 ≥ n2. By the category of pro-systems
Cpro, for a category C, we mean the category of diagrams in C with index
category N and with morphisms

MorCpro(Y!, Z!)= lim
←−−

n
lim
−−→

m
MorC(Ym, Zn).

Definition A.3. Let S be a small site.

(a) By Sh(S) we denote the category of sheaves of abelian groups on S. By
C(S) we denote the category of unbounded complexes in Sh(S).

(b) By Shpro(S) we denote the category of pro-systems in Sh(S).
(c) By Cpro(S) we denote the category of pro-systems in C(S).
(d) By Dpro(S) we denote the Verdier localization of the homotopy category

of Cpro(S), where we kill objects which are represented by systems of
complexes which have level-wise vanishing cohomology sheaves.

For the construction of Verdier localization in (d) see [Ne, Sec. 2.1].

Lemma A.4. The triangulated category Dpro(S) has a natural t-structure
(D≤0(S),D≥0(S)) with F! ∈ D≤0

pro resp. F! ∈ D≥0
pro if F! is isomorphic in Dpro(S)

to F ′
! with H i(F ′

n) = 0 for all n ∈ N and i > 0 resp. for i < 0. The t-structure
has heart Shpro(S).

We write D+
pro(S), D−

pro(S) and Db
pro(S) for the bounded above, bounded be-

low and bounded objects in D(S) with respect to the t-structure.

APPENDIX B. HOMOTOPICAL ALGEBRA

In this section we introduce certain standard model categories of pro-systems
over a small site S.

Definition B.1.
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(a) Let S(S) be the closed simplicial model category of simplicial presheaves
on S, where cofibrations are injective morphisms of presheaves and
weak equivalences are those maps which induce isomorphisms on ho-
motopy sheaves, cf. [Jar, Sec. 2].

(b) We endow the category of unbounded complexes of abelian sheaves
C(S) with the closed simplicial model structure where cofibrations are
injective morphisms and weak equivalences are those maps which in-
duce isomorphisms on cohomology sheaves, see App. C in [CTHK] and
Thm. 2.3.13 in [Hov].

Definition B.2.

(a) By Spro(S) we denote the closed simplicial model category of pro-systems
of simplicial presheaves on S, where cofibrations are those maps which
have a level representation by levelwise injective morphisms and where
weak equivalences are those maps which have a level representation
which induces a levelwise isomorphism on homotopy sheaves.

(b) We endow Cpro(S) with the closed simplicial model structure, where
cofibrations are those maps which have a level representation by level-
wise injective morphisms and where weak equivalences are those maps
which have a level representation which induces a levelwise isomor-
phism on cohomology sheaves.

Notation B.3. For a model category M we write hM for the associated homo-
topy category.

The pro-model structures in Definition B.2 are due to Isaksen [Isa1]. He
uses all pro-systems indexed by small cofiltering categories, whereas we al-
low only N as index category. This means that in our model categories only
countable inverse limits and finite direct limits exist, cf. [Isa2, Sec. 11]. Also
for our categories the simplicial functors K⊗− resp. (−)K exist only for a finite
resp. countable simplicial set K . So in Definition B.2 we use Quillen’s original
notion of a closed simplicial model category [Q]. Note that Isaksen calls his
pro-category strict model category.

Proposition B.4.

(a) There are Quillen adjoint functors

Spro(S) !! Cpro(S)
K

$$

where the right adjoint K is the composition of the good truncation τ≤0
and the Eilenberg-MacLane space construction.

(b) There is a canonical ismorphism of categories

Dpro(S) 0
−→ hCpro(S)

(c) There are Quillen adjoint functors

S(S) !! Spro(S),
lim
←−

$$

C(S) !! Cpro(S),
lim
←−

$$
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where the left adjoint is the constant pro-system functor and the right
adjoint is the inverse limit functor.

Notation B.5.

• We write
K : hCpro(S)→hSpro(S)

for the functor induced by K : Cpro(S)→Spro(S).
• We write [Y1,Y2] for the set of morphisms from Y1 to Y2 in the homo-

topy category.
• The right derived functor holim : hSpro(S) → hSpro(S) of lim

←−−
: Spro(S) →

S(S) is called homotopy inverse limit. By R lim
←−−

: Dpro(S) → D(S) we
denote the right derived functor of lim

←−−
: Cpro(S)→C(S).

Definition B.6. We define continuous cohomology of F! ∈Dpro(S) by

Hi
cont(S,F!)= [Z[−i],F!],

where Z denotes the constant sheaf of integers.

Continuous cohomology of sheaves was first studied in [Ja]. Note that we
have a short exact sequence

(B.1) 0→ lim
←−−

n

1Hi−1(S,Fn)→ Hi
cont(S,F!)→ lim

←−−
n

Hi(S,Fn)→ 0.

Lemma B.7. For F! ∈D+
pro(S) there is a convergent spectral sequence

Ep,q
2 = Hp

cont(S,H q(F!))=⇒ Hp+q
cont (S,F!)

with differential dr : Ep,q
r → Ep+r,q−r+1

r .

Lemma B.8. Let C! be in Spro(S) and assume that π̃1(Cn) is commutative for
any n ≥ 1. If there is N such that Hi

cont(S, π̃ j(C!)) = 0 for i > N, then there is a
completely convergent Bousfield-Kan spectral sequence

Es,t
2 = Hs

cont(S, π̃t(C!))=⇒ [St−s,C!] with t ≥ s

and differential dr : Es,t
r → Es+r,t+r−1

r .

Here π̃i is the pro-system of sheaves of homotopy groups and H0
cont of the

sheaf of sets π̃0(C!) means simply global sections of the inverse limit. The
indexing of the spectral sequence is as in [BoK, Sec. IX.4.2].

For C! =K(F!) with K as in Proposition B.4(a) and F! as in Lemma B.7 there
is a natural morphism

Es,t
r (F!)→ Es,t

r (K(F!)) (t ≥ s, r ≥ 2),

compatible with the differential dr, where the left side is a Bousfield-Kan
renumbering of the spectral sequence of Lemma B.8 and the right side is the
spectral sequence of Lemma B.8. This morphism is injective for t = s and
bijective for t > s.

Lemma B.8 implies in particular the following lemma.

Lemma B.9. Let C!,C′
! ∈Spro(S) satisfy the assumptions of Lemma B.8 and let

Ψ : C! → C′
! be a morphism.
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(a) Assume that for an integer n ≥ 1 the induced map

(B.2) Hs
cont(S, π̃t(C!))

Ψ∗
−−→ Hs

cont(S, π̃t(C′
!)),

is injective for all t, s with t−s= n−1, bijective for t−s= n and surjective
for t− s= n+1. Then Ψ∗ : [Sn,C!]→ [Sn,C′

!] is an isomorphism.
(b) Assume that (B.2) is surjective for t− s = 1 and injective for t = s. Then

Ψ∗ : [S0,C!]→ [S0,C′
!] is injective.

Definition B.10. An object C! ∈Spro(S) satisfies descent if for any object U ∈S

Γ(U ,C!)→Γ(U ,FC!)

is a an isomorphism in hSpro({∗}). Here FC! is a fibrant replacement in Spro(S).
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