
SNAITH’S CONSTRUCTION OF COMPLEX K-THEORY

The purpose of this note is to explain a purely “algebraic” construction (starting with CP∞), due to
Snaith, of complex K-theory as a spectrum.

Consider the space CP∞; this is a topological abelian group (as a K(Z, 2)) with a multiplication map
m : CP∞ × CP∞ → CP∞ and a unit map e : ∗ → CP∞. It follows that if we take CP∞+ (that is, if we add a
disjoint basepoint), then we can make CP∞+ into an commutative algebra object in the category of pointed
spaces, via the map

CP∞+ ∧ CP∞+ ' (CP∞ × CP∞)+
m+→ CP∞+ ,

and the unit map

e+ : S0 → CP∞+ .

Taking suspension spectra, we find that Σ∞CP∞+ is a commutative ring spectrum: in fact, even an E∞ ring
spectrum because CP∞ was a strictly commutative topological monoid. The claim is going to be that we
can build K from this spectrum.

The first thing to check is whether Σ∞CP∞+ is complex-oriented, because K-theory is. To give a complex
orientation, we have to give a map

Σ−2CP∞ → Σ∞CP∞+
which restricts to the unit map on Σ−2CP1 ' S0. Now, we don’t quite have this, but we do definitely have
a map

CP∞ → Σ∞CP∞+
which restricts on CP1 to a certain element β ∈ π2(Σ∞CP∞+ ). (In fact, we have a stable splitting Σ∞CP∞+ '
S ⊕ Σ∞CP∞.)

This is in the wrong degree to be a complex orientation; however, if β were invertible, then we would get
a complex orientation. In fact, since Σ∞CP∞+ is an E∞-ring spectrum, there is a good theory of localization,
and we can formally invert β to give an E∞-ring spectrum R[β−1] together with a map of E∞-ring spectra
R→ R[β−1]. Then we have:

Theorem 1 (Snaith [3]). K-theory, as a ring spectrum, is the localization Σ∞CP∞+ [β−1].

The proof here is not the original proof; I learned this argument from Michael Hopkins (though any errors
are mine).

1. The formal group law of Σ∞CP∞+ [β−1]

To show that we get K-theory from Snaith’s construction, let’s look at the formal group law of the ring
spectrum Σ∞CP∞+ [β−1]: this is the key observation. For simplicity, let’s write

R = Σ∞CP∞+ , R[β−1] = Σ∞CP∞+ [β−1].

Then R[β−1] is complex-oriented, via the map

CP∞ → R→ R[β−1],

which gives an element of R[β−1]0(CP∞) whose restriction to S2 is an invertible element of π∗R[β−1].
Let x be the identity map x : Σ∞CP∞+ → R. Then the complex orientation corresponds to x − 1 under

the stable splitting Σ∞CP∞+ = S ⊕ Σ∞CP∞. Here 1 means the unit map S → Σ∞CP∞+ .

Proposition 1. The formal group law of R[β−1] is the multiplicative one.
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Proof. To see this, we have to compute the pull-back

CP∞ × CP∞ m→ CP∞ → R→ R[β−1].

But we have a commutative diagram:

(CP∞+ ) ∧ (CP∞+ )

m+

��

x∧x // R ∧R

��
CP∞+

x // R

,

from the definition of the product structure on the ring spectrum R. In other words, the pull-back of the
map CP∞+ → R to CP∞+ ∧ CP∞+ is just the product, i.e.

m∗+(x) = p∗1(x)p∗2(x) ∈ R∗(CP∞).

This works just as well in R[β−1]. Since the complex orientation on R[β−1] corresponds to x− 1, we find

m∗+(x− 1) = p∗1(x)p∗2(x)− 1 = p∗1(x− 1)p∗2(x− 1) + p∗1(x− 1) + p∗2(x− 1);

in other words, the formal group law of R[β−1] is as claimed.
�

We don’t yet know what the coefficient ring of R[β−1] is, though. Note that if we use the convention that
a complex orientation lives in R[β−1]2(CP∞), then the formal group law becomes x+ y + βxy.

2. π∗R[β−1] is torsion-free and evenly graded

Classical K-theory is complex oriented and even-periodic, and comes with a map of ring spectra

MU → K

classifying the multiplicative formal group law f(x, y) = x + y + txy as well, over π∗K ' Z[t, t−1] (or the
multiplicative formal group law f(x, y) = x+ y+ xy over π0K ' Z if one uses even periodicity). Landweber
exactness gives an isomorphism for every spectrum X,

K∗(X) 'MU∗(X)⊗π∗MU π∗K.

As we saw in the previous section, R[β−1] is also complex oriented (via a map MU → R[β−1]) classifying
the multiplicative formal group law x+ y+ βxy, and we would like to use Landweber exactness again of the
multiplicative formal group law to write

(R[β−1])∗(X) 'MU∗(X)⊗π∗MU π∗R[β−1]

for any spectrum X. Unfortunately, we can’t do this: we don’t know that π∗R[β−1] is torsion-free, so we
can’t apply the exact functor theorem to R[β−1] yet.

So we need a result:

Proposition 2. π∗R[β−1] is torsion-free, and πoddR[β−1] = 0.

The latter statement implies that R[β−1] is even periodic.

Proof. The strategy here is to compute π∗K ∧R[β−1] and to use the Landweber-exactness of K. Namely,

π∗K ∧ CP∞+ ' K∗(CP
∞) ' Z[t, t−1] {α0, α1, α2, . . . } , degαi = 2i

is a free module on π∗K ' Z[t, t−1], because K is complex-oriented. We can even get the algebra structure
because it is (pre)dual to the coalgebra structure on K∗(CP∞). Localizing at β, we find that π∗K ∧R[β−1]
is itself torsion-free.

Now we want to go from here to concluding that π∗R[β−1] is torsion-free. In fact, we have an isomorphism
given by Landweber exactness (of K-theory)

K∗(R[β−1]) 'MU∗(R[β−1])⊗π∗MU π∗K.

The ring MU∗R[β−1] is given by (π∗R[β−1])[b1, b2, . . . ]: that is, it classifies the formal group law which is
obtained from the multiplicative group law on π∗R[β−1] by a universal strict change of coordinates x+b1x

2+
. . . , i.e. the map π∗MU →MU∗R[β−1] classifies this formal group law.
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It follows from the tensor product description that K∗(R[β−1]) is the ring classifying (on π∗R[β−1] al-
gebras) an isomorphism of the multiplicative formal group law. More precisely, we can say that, given a
graded-commutative ring C∗, to give a map K∗(R[β−1]) → C∗ is equivalent to giving maps (of graded-
commutative rings) π∗R[β−1]→ C∗ and Z[t, t−1]→ C, together with a sequence of elements (of appropriate
even degree) b1, b2, · · · ∈ C∗ which give a strict isomorphism x + b1x

2 + . . . between the two formal group
laws x+ y + βxy and x+ y + txy over Ceven. In particular, we find that, as graded-commutative rings,

K∗(R[β−1]) 'MU∗(K)⊗π∗MU π∗R[β−1],

since the latter ring also has an equivalent description. Since we know that the left-hand-side is torsion-free
and concentrated in even degrees, we want to conclude the same about π∗R[β−1].

We will prove this prime by prime. Fix a prime p. Then we have an isomorphism K∗(R[β−1])(p) '
MU∗(K)(p)⊗π∗MU(p)

π∗R[β−1](p). Note that the two maps π∗MU(p) →MU∗(K)(p), π∗MU(p) → π∗R[β−1](p)
have the property that they invert the element v1 (which is the coefficient of xp in the p-series of the formal
group law), as they classify the multiplicative formal group laws. It follows that

(1) K∗(R[β−1])(p) 'MU∗(K)(p) ⊗π∗MU(p)[v
−1
1 ] π∗R[β−1](p).

Lemma 1. The map π∗MU(p)[v
−1
1 ]→MU∗(K)(p) is faithfully flat.

Proof. Write L = π∗MU for the Lazard ring. Then the map L → MU∗(K) classifies the formal group law
obtained from the multiplicative formal group law f(x, y) = x + y + txy via a universal strict change of
coordinates x+ b1x

2 + . . . . Alternatively, it classifies the formal group law obtained from the multiplicative
formal group law x+ y + xy via a universal (not necessarily strict) change of coordinates t(x+ b1x

2 + . . . )
where t is invertible. Another way of saying this is that we have a pull-back square

SpecMU∗(K)

��

// SpecL

��
SpecZ // MFG

,

where MFG is the moduli stack of formal groups.1 The horizontal bottom map classifies the multiplicative
formal group x+ y + xy over Z.

If we localize at p, we get a pull-back square

SpecMU∗(K)(p)

��

// SpecL(p)

��
SpecZ(p) // MFG ×SpecZ SpecZ(p)

,

and the map SpecZ(p) → MFG ×SpecZ SpecZ(p) factors through the open substack of MFG ×SpecZ SpecZ(p)

given by the invertibility of v1. So we have another pull-back square

SpecMU∗(K)(p)

��

// SpecL(p)[v
−1
1 ]

��
SpecZ(p) // (MFG ×SpecZ SpecZ(p))[v

−1
1 ]

,

and consequently, the assertion of the lemma will follow if we show that

SpecZ(p) → (MFG ×SpecZ SpecZ(p))[v
−1
1 ]

is faithfully flat. However, the map is flat (essentially by Landweber exactness), and it is faithfully flat
because there is a unique “point” of the stack (MFG×SpecZ SpecZ(p))[v

−1
1 ] (in view of Lazard’s classification

of formal groups over an algebraically closed field). This proves the lemma. �

For this point of view on MFG and Landweber exactness, see [2] and [1].
Anyway, we now find from the isomorphism (1) and the faithful flatness proved in the lemma that in fact,

π∗R[β−1](p) must be torsion-free and concentrated in even degrees. This completes the proof. �

1Not formal group laws!
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3. Completion of the proof

In the previous section, we showed that the ring spectrum R[β−1] was complex-oriented and even periodic,
with no torsion in its homotopy groups. From this, it will be straightforward to show that it must be K.

We can produce a map of ring spectra
R→ K

by using the virtual bundle on CP∞+ given by O(1) on CP∞ and 0 on ∗, to define the map Σ∞CP∞+ → K.
In other words, it is the map

Σ∞CP∞+ ' S ⊕ Σ∞CP∞ → K

sending S to K via the unit and Σ∞CP∞ to K via O(1) − 1. Alternatively, it is given by the element of
K∗(CP∞) classified by O(1). Note that the pull-back of O(1) to CP∞ ×CP∞ under the multiplication map
m : CP∞ × CP∞ → CP∞ is precisely p∗1O(1) ⊗ p∗2O(1). This implies that R → K is a morphism of ring
spectra.

This is in fact a map of complex-oriented ring spectra, and, since it sends β to the (invertible) Bott
element in π2K, it factors through a map of complex-oriented ring spectra2

φ : R[β−1]→ K.

To prove Snaith’s theorem, we need to see that it is an equivalence. That is, we need to show that it
is an isomorphism on π∗. We know that φ∗ : π∗R[β−1] → π∗K is a morphism of torsion-free rings. Now
π0R[β−1] ' Z (to see this, one localizes at Q after which the result is immediate as π∗R⊗Q ' H∗(CP∞;Q),
and one notes that there is a map π0R[β−1] → π0K ' Z). Consequently, the map π0R[β−1] → π0K must
be an isomorphism, and thus R[β−1] → K is a weak equivalence by periodicity and πoddR[β−1] = 0. This
completes the proof of Snaith’s theorem.
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