SNAITH’S CONSTRUCTION OF COMPLEX K-THEORY

The purpose of this note is to explain a purely “algebraic” construction (starting with CP>), due to
Snaith, of complex K-theory as a spectrum.

Consider the space CP°; this is a topological abelian group (as a K(Z,2)) with a multiplication map
m : CP* x CP* — CP* and a unit map e : x — CP*. It follows that if we take CPY (that is, if we add a
disjoint basepoint), then we can make CPY into an commutative algebra object in the category of pointed
spaces, via the map

CPL A CPY =~ (CP™® x CP™), ¥ CPY,
and the unit map
et 1 ¥ — CPY.
Taking suspension spectra, we find that X°°CP?° is a commutative ring spectrum: in fact, even an E ring
spectrum because CP™ was a strictly commutative topological monoid. The claim is going to be that we
can build K from this spectrum.

The first thing to check is whether X*°CPF is complex-oriented, because K-theory is. To give a complex
orientation, we have to give a map

2T2CP® — 2°CPY

which restricts to the unit map on X 2CP' ~ % Now, we don’t quite have this, but we do definitely have
a map

CP™ — £°CPY

which restricts on CP' to a certain element § € mo(X°CPY). (In fact, we have a stable splitting X*°CPY ~
S & X°CP™.)

This is in the wrong degree to be a complex orientation; however, if 8 were invertible, then we would get
a complex orientation. In fact, since X*°CPS is an E-ring spectrum, there is a good theory of localization,
and we can formally invert 3 to give an E,.-ring spectrum R[3~!] together with a map of E.-ring spectra
R — R[B7!]. Then we have:

Theorem 1 (Snaith [3]). K-theory, as a ring spectrum, is the localization °CP[3~1].
The proof here is not the original proof; I learned this argument from Michael Hopkins (though any errors

are mine).

1. THE FORMAL GROUP LAW OF L*°CPY[57]

To show that we get K-theory from Snaith’s construction, let’s look at the formal group law of the ring
spectrum Y°°CP[37]: this is the key observation. For simplicity, let’s write

R =¥*CPY, R[] = 2*°CPT[57].
Then R[3~!] is complex-oriented, via the map
CP>™ — R — R[],

which gives an element of R[371]°(CP>) whose restriction to S? is an invertible element of m, R[37!].
Let x be the identity map = : ¥*°CPS” — R. Then the complex orientation corresponds to 2 — 1 under
the stable splitting X*°CPT = S @ X°°CP>. Here 1 means the unit map S — X*°CPZF.

Proposition 1. The formal group law of R[3~!] is the multiplicative one.
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Proof. To see this, we have to compute the pull-back
CP> x CP* &8 CP™ — R — R[B™!].
But we have a commutative diagram:
(CPY) A (CPY) ™™~ RAR,
-

CPy u R
from the definition of the product structure on the ring spectrum R. In other words, the pull-back of the
map CPY — R to CP” A CP is just the product, i.e.

m’y (z) = pi(z)p3(z) € R*(CP™).
This works just as well in R[37!]. Since the complex orientation on R[37!] corresponds to x — 1, we find
m’ (z — 1) = pi(z)p3(z) — 1 = pi(z — Dp3(z — 1) + pi(z — 1) + p3(z — 1);

in other words, the formal group law of R[37!] is as claimed.

O

We don’t yet know what the coefficient ring of R[37!] is, though. Note that if we use the convention that
a complex orientation lives in R[3~!]?(CP™), then the formal group law becomes z + y + Bzy.

2. m,R[B71] 1S TORSION-FREE AND EVENLY GRADED

Classical K-theory is complex oriented and even-periodic, and comes with a map of ring spectra
MU = K

classifying the multiplicative formal group law f(z,y) = = + y + tay as well, over 7, K ~ Z[t,t~1] (or the
multiplicative formal group law f(z,y) = 4+ y + zy over moK ~ Z if one uses even periodicity). Landweber
exactness gives an isomorphism for every spectrum X,

K.(X) ~ MU(X) ®x. v T K.

As we saw in the previous section, R[3~!] is also complex oriented (via a map MU — R[B~!]) classifying
the multiplicative formal group law = + y + Sxy, and we would like to use Landweber exactness again of the
multiplicative formal group law to write

(RIB'])«(X) = MU(X) ®r,mv m R[]

for any spectrum X. Unfortunately, we can’t do this: we don’t know that 7. R[37!] is torsion-free, so we
can’t apply the exact functor theorem to R[37!] yet.
So we need a result:

Proposition 2. m,R[37!] is torsion-free, and moqqR[3~1] = 0.
The latter statement implies that R[37!] is even periodic.

Proof. The strategy here is to compute m, K A R[37!] and to use the Landweber-exactness of K. Namely,
T K ACPY ~ K, (CP®) ~ Z[t,t '] {ag, 1, q0,...}, dega; =2i

is a free module on 7, K ~ Z[t,t!], because K is complex-oriented. We can even get the algebra structure
because it is (pre)dual to the coalgebra structure on K*(CP™). Localizing at 3, we find that 7, K A R[3~}]
is itself torsion-free.

Now we want to go from here to concluding that 7, R[37!] is torsion-free. In fact, we have an isomorphism
given by Landweber exactness (of K-theory)

K.(R[B™"]) = MUL(R[B™"]) @x, mv T K.

The ring MU, R[B™}] is given by (m.R[371])[b1,bs,...]: that is, it classifies the formal group law which is
obtained from the multiplicative group law on 7, R[3~!] by a universal strict change of coordinates z+b;x? +
..., i.e. the map m,MU — MU,R[B7!] classifies this formal group law.
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It follows from the tensor product description that K,(R[37!]) is the ring classifying (on 7. R[37!] al-
gebras) an isomorphism of the multiplicative formal group law. More precisely, we can say that, given a
graded-commutative ring C,, to give a map K.(R[37!]) — C. is equivalent to giving maps (of graded-
commutative rings) m. R[] — C, and Z[t,t~!] — C, together with a sequence of elements (of appropriate
even degree) by, bo,--- € C, which give a strict isomorphism x + byz? + ... between the two formal group
laws z + y + Szy and = + y + toy over Ceyern. In particular, we find that, as graded-commutative rings,

K.(R[™")) ~ MU.(K) ®x,mu R[],

since the latter ring also has an equivalent description. Since we know that the left-hand-side is torsion-free
and concentrated in even degrees, we want to conclude the same about m, R[37!].

We will prove this prime by prime. Fix a prime p. Then we have an isomorphism K*(R[B*I])(p) ~
MU.(K) (p) @r, MU, T R[B"] (). Note that the two maps m. MU,y — MUL(K)(py, T MUy — R[] ()
have the property that they invert the element v1 (which is the coefficient of P in the p-series of the formal
group law), as they classify the multiplicative formal group laws. It follows that

(1) K.(RIB™) ) = MUL(K) ) @, a1, o) T RIB™ -
Lemma 1. The map 7. MU, [v; '] = MU.(K)(,) is faithfully flat.

Proof. Write L = m, MU for the Lazard ring. Then the map L — MU, (K) classifies the formal group law
obtained from the multiplicative formal group law f(x,y) = x + y + tzy via a universal strict change of
coordinates x + b1z 4 .... Alternatively, it classifies the formal group law obtained from the multiplicative
formal group law x + y + 2y via a universal (not necessarily strict) change of coordinates t(x + byz? +...)
where ¢ is invertible. Another way of saying this is that we have a pull-back square

SpecM U, (K) —— SpecL ,

| |

SpecZ ——— Mrpq

where Mp¢ is the moduli stack of formal groups.! The horizontal bottom map classifies the multiplicative
formal group x + y + zy over Z.
If we localize at p, we get a pull-back square

SpecMU* (K)(p) _— SpecL(p)

| |

SpecZ(p) _— MFG X SpecZ SpecZ(p)

and the map SpecZ(p) — MFpg Xspecz SpecZ(p) factors through the open substack of Mrg Xspecz SpecZ(p)
given by the invertibility of v;. So we have another pull-back square

SpecMU, (K )y ———— SpecL,)[v; ] )

| |

SpeCZ(p) —— (MFG' X SpecZ SpeCZ(p))[Ul_l}
and consequently, the assertion of the lemma will follow if we show that
SpecZ(p) — (MFG X SpecZ SpeCZ(p))[Ul_l]

is faithfully flat. However, the map is flat (essentially by Landweber exactness), and it is faithfully flat
because there is a unique “point” of the stack (Mpg Xspecz SpecZ(p))[vfl] (in view of Lazard’s classification
of formal groups over an algebraically closed field). This proves the lemma. O

For this point of view on Mpg and Landweber exactness, see [2] and [1].
Anyway, we now find from the isomorphism (1) and the faithful flatness proved in the lemma that in fact,
W*R[ﬂfl](p) must be torsion-free and concentrated in even degrees. This completes the proof. O

LNot formal group laws!
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3. COMPLETION OF THE PROOF

In the previous section, we showed that the ring spectrum R[3~!] was complex-oriented and even periodic,
with no torsion in its homotopy groups. From this, it will be straightforward to show that it must be K.
We can produce a map of ring spectra
R— K

by using the virtual bundle on CPY given by O(1) on CP™ and 0 on *, to define the map X*CPT — K.
In other words, it is the map
YPCPY ~ S X°CP* - K

sending S to K via the unit and °CP* to K via O(1) — 1. Alternatively, it is given by the element of
K*(CP™) classified by O(1). Note that the pull-back of O(1) to CP> x CP* under the multiplication map
m : CP* x CP* — CP* is precisely piO(1) ® p5O(1). This implies that R — K is a morphism of ring
spectra.

This is in fact a map of complez-oriented ring spectra, and, since it sends S to the (invertible) Bott
element in 7K, it factors through a map of complex-oriented ring spectra?

¢: R[] — K.

To prove Snaith’s theorem, we need to see that it is an equivalence. That is, we need to show that it
is an isomorphism on .. We know that ¢, : m.R[37!] — m.K is a morphism of torsion-free rings. Now
moR[B71] = Z (to see this, one localizes at Q after which the result is immediate as 7, R® Q ~ H,(CP*;Q),
and one notes that there is a map moR[37!] — moK =~ Z). Consequently, the map moR[37!] — moK must
be an isomorphism, and thus R[3~!] — K is a weak equivalence by periodicity and m,q4qR[37!] = 0. This
completes the proof of Snaith’s theorem.
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’In fact, R[371] as a spectrum is the homotopy colimit R ﬁ) Y2R ﬁ) ... and the map R — K uniquely extends to the
whole diagram, and thus to the homotopy colimit as K°%¢(R) = 0. One sees that it is a morphism of ring spectra similarly.



