SNAITH'S CONSTRUCTION OF COMPLEX K-THEORY

The purpose of this note is to explain a purely "algebraic" construction (starting with \mathbb{CP}^{∞}), due to Snaith, of complex K-theory as a spectrum.

Consider the space \mathbb{CP}^{∞} ; this is a topological abelian group (as a $K(\mathbb{Z},2)$) with a multiplication map $m: \mathbb{CP}^{\infty} \times \mathbb{CP}^{\infty} \to \mathbb{CP}^{\infty}$ and a unit map $e: * \to \mathbb{CP}^{\infty}$. It follows that if we take \mathbb{CP}^{∞}_+ (that is, if we add a disjoint basepoint), then we can make \mathbb{CP}^{∞}_+ into an commutative algebra object in the category of *pointed* spaces, via the map

$$\mathbb{CP}_+^{\infty} \wedge \mathbb{CP}_+^{\infty} \simeq (\mathbb{CP}^{\infty} \times \mathbb{CP}^{\infty})_+ \overset{m_+}{\to} \mathbb{CP}_+^{\infty},$$

and the unit map

$$e_+: S^0 \to \mathbb{CP}_+^\infty$$
.

Taking suspension spectra, we find that $\Sigma^{\infty}\mathbb{CP}_{+}^{\infty}$ is a commutative ring spectrum: in fact, even an E_{∞} ring spectrum because \mathbb{CP}^{∞} was a strictly commutative topological monoid. The claim is going to be that we can build K from this spectrum.

The first thing to check is whether $\Sigma^{\infty}\mathbb{CP}_{+}^{\infty}$ is complex-oriented, because K-theory is. To give a complex orientation, we have to give a map

$$\Sigma^{-2}\mathbb{CP}^{\infty} \to \Sigma^{\infty}\mathbb{CP}^{\infty}_{+}$$

which restricts to the unit map on $\Sigma^{-2}\mathbb{CP}^1 \simeq S^0$. Now, we don't quite have this, but we do definitely have a map

$$\mathbb{CP}^{\infty} \to \Sigma^{\infty} \mathbb{CP}_{+}^{\infty}$$

which restricts on \mathbb{CP}^1 to a certain element $\beta \in \pi_2(\Sigma^{\infty}\mathbb{CP}_+^{\infty})$. (In fact, we have a stable splitting $\Sigma^{\infty}\mathbb{CP}_+^{\infty} \simeq S \oplus \Sigma^{\infty}\mathbb{CP}_+^{\infty}$.)

This is in the wrong degree to be a complex orientation; however, if β were invertible, then we would get a complex orientation. In fact, since $\Sigma^{\infty}\mathbb{CP}_{+}^{\infty}$ is an E_{∞} -ring spectrum, there is a good theory of localization, and we can formally invert β to give an E_{∞} -ring spectrum $R[\beta^{-1}]$ together with a map of E_{∞} -ring spectra $R \to R[\beta^{-1}]$. Then we have:

Theorem 1 (Snaith [3]). K-theory, as a ring spectrum, is the localization $\Sigma^{\infty}\mathbb{CP}_{+}^{\infty}[\beta^{-1}]$.

The proof here is not the original proof; I learned this argument from Michael Hopkins (though any errors are mine).

1. The formal group law of
$$\Sigma^{\infty}\mathbb{CP}^{\infty}_{+}[\beta^{-1}]$$

To show that we get K-theory from Snaith's construction, let's look at the formal group law of the ring spectrum $\Sigma^{\infty}\mathbb{CP}_{+}^{\infty}[\beta^{-1}]$: this is the key observation. For simplicity, let's write

$$R = \Sigma^{\infty} \mathbb{CP}_{+}^{\infty}, \ R[\beta^{-1}] = \Sigma^{\infty} \mathbb{CP}_{+}^{\infty}[\beta^{-1}].$$

Then $R[\beta^{-1}]$ is complex-oriented, via the map

$$\mathbb{CP}^{\infty} \to R \to R[\beta^{-1}],$$

which gives an element of $R[\beta^{-1}]^0(\mathbb{CP}^{\infty})$ whose restriction to S^2 is an invertible element of $\pi_*R[\beta^{-1}]$.

Let x be the identity map $x: \Sigma^{\infty} \mathbb{CP}_{+}^{\infty} \to R$. Then the complex orientation corresponds to x-1 under the stable splitting $\Sigma^{\infty} \mathbb{CP}_{+}^{\infty} = S \oplus \Sigma^{\infty} \mathbb{CP}^{\infty}$. Here 1 means the unit map $S \to \Sigma^{\infty} \mathbb{CP}_{+}^{\infty}$.

Proposition 1. The formal group law of $R[\beta^{-1}]$ is the multiplicative one.

Date: June 11, 2012.

1

Proof. To see this, we have to compute the pull-back

$$\mathbb{CP}^{\infty} \times \mathbb{CP}^{\infty} \xrightarrow{m} \mathbb{CP}^{\infty} \to R \to R[\beta^{-1}].$$

But we have a commutative diagram:

$$(\mathbb{CP}_{+}^{\infty}) \wedge (\mathbb{CP}_{+}^{\infty}) \xrightarrow{x \wedge x} R \wedge R ,$$

$$\downarrow^{m_{+}} \qquad \qquad \downarrow^{w}$$

$$\mathbb{CP}_{+}^{\infty} \xrightarrow{x} R$$

from the definition of the product structure on the ring spectrum R. In other words, the pull-back of the map $\mathbb{CP}_+^{\infty} \to R$ to $\mathbb{CP}_+^{\infty} \wedge \mathbb{CP}_+^{\infty}$ is just the product, i.e.

$$m_+^*(x) = p_1^*(x)p_2^*(x) \in R^*(\mathbb{CP}^\infty).$$

This works just as well in $R[\beta^{-1}]$. Since the complex orientation on $R[\beta^{-1}]$ corresponds to x-1, we find

$$m_{+}^{*}(x-1) = p_{1}^{*}(x)p_{2}^{*}(x) - 1 = p_{1}^{*}(x-1)p_{2}^{*}(x-1) + p_{1}^{*}(x-1) + p_{2}^{*}(x-1);$$

in other words, the formal group law of $R[\beta^{-1}]$ is as claimed.

We don't yet know what the coefficient ring of $R[\beta^{-1}]$ is, though. Note that if we use the convention that a complex orientation lives in $R[\beta^{-1}]^2(\mathbb{CP}^{\infty})$, then the formal group law becomes $x + y + \beta xy$.

2.
$$\pi_* R[\beta^{-1}]$$
 is torsion-free and evenly graded

Classical K-theory is complex oriented and even-periodic, and comes with a map of ring spectra

$$MU \rightarrow K$$

classifying the multiplicative formal group law f(x,y) = x + y + txy as well, over $\pi_*K \simeq \mathbb{Z}[t,t^{-1}]$ (or the multiplicative formal group law f(x,y) = x + y + xy over $\pi_0K \simeq \mathbb{Z}$ if one uses even periodicity). Landweber exactness gives an isomorphism for every spectrum X,

$$K_*(X) \simeq MU_*(X) \otimes_{\pi_*MU} \pi_*K.$$

As we saw in the previous section, $R[\beta^{-1}]$ is also complex oriented (via a map $MU \to R[\beta^{-1}]$) classifying the multiplicative formal group law $x + y + \beta xy$, and we would like to use Landweber exactness again of the multiplicative formal group law to write

$$(R[\beta^{-1}])_*(X) \simeq MU_*(X) \otimes_{\pi_*MU} \pi_*R[\beta^{-1}]$$

for any spectrum X. Unfortunately, we can't do this: we don't know that $\pi_*R[\beta^{-1}]$ is torsion-free, so we can't apply the exact functor theorem to $R[\beta^{-1}]$ yet.

So we need a result:

Proposition 2. $\pi_*R[\beta^{-1}]$ is torsion-free, and $\pi_{odd}R[\beta^{-1}] = 0$.

The latter statement implies that $R[\beta^{-1}]$ is even periodic.

Proof. The strategy here is to compute $\pi_*K \wedge R[\beta^{-1}]$ and to use the Landweber-exactness of K. Namely,

$$\pi_* K \wedge \mathbb{CP}_+^{\infty} \simeq K_*(\mathbb{CP}^{\infty}) \simeq \mathbb{Z}[t, t^{-1}] \{\alpha_0, \alpha_1, \alpha_2, \dots\}, \quad \deg \alpha_i = 2i$$

is a free module on $\pi_*K \simeq \mathbb{Z}[t,t^{-1}]$, because K is complex-oriented. We can even get the algebra structure because it is (pre)dual to the coalgebra structure on $K^*(\mathbb{CP}^{\infty})$. Localizing at β , we find that $\pi_*K \wedge R[\beta^{-1}]$ is itself torsion-free.

Now we want to go from here to concluding that $\pi_*R[\beta^{-1}]$ is torsion-free. In fact, we have an isomorphism given by Landweber exactness (of K-theory)

$$K_*(R[\beta^{-1}]) \simeq MU_*(R[\beta^{-1}]) \otimes_{\pi_*MU} \pi_*K.$$

The ring $MU_*R[\beta^{-1}]$ is given by $(\pi_*R[\beta^{-1}])[b_1,b_2,...]$: that is, it classifies the formal group law which is obtained from the multiplicative group law on $\pi_*R[\beta^{-1}]$ by a universal strict change of coordinates $x+b_1x^2+\ldots$, i.e. the map $\pi_*MU \to MU_*R[\beta^{-1}]$ classifies this formal group law.

It follows from the tensor product description that $K_*(R[\beta^{-1}])$ is the ring classifying (on $\pi_*R[\beta^{-1}]$ algebras) an isomorphism of the multiplicative formal group law. More precisely, we can say that, given a graded-commutative ring C_* , to give a map $K_*(R[\beta^{-1}]) \to C_*$ is equivalent to giving maps (of graded-commutative rings) $\pi_*R[\beta^{-1}] \to C_*$ and $\mathbb{Z}[t,t^{-1}] \to C$, together with a sequence of elements (of appropriate even degree) $b_1,b_2,\dots \in C_*$ which give a *strict isomorphism* $x+b_1x^2+\dots$ between the two formal group laws $x+y+\beta xy$ and x+y+txy over C_{even} . In particular, we find that, as graded-commutative rings,

$$K_*(R[\beta^{-1}]) \simeq MU_*(K) \otimes_{\pi_*MU} \pi_*R[\beta^{-1}],$$

since the latter ring also has an equivalent description. Since we know that the left-hand-side is torsion-free and concentrated in even degrees, we want to conclude the same about $\pi_*R[\beta^{-1}]$.

We will prove this prime by prime. Fix a prime p. Then we have an isomorphism $K_*(R[\beta^{-1}])_{(p)} \simeq MU_*(K)_{(p)} \otimes_{\pi_*MU_{(p)}} \pi_*R[\beta^{-1}]_{(p)}$. Note that the two maps $\pi_*MU_{(p)} \to MU_*(K)_{(p)}, \pi_*MU_{(p)} \to \pi_*R[\beta^{-1}]_{(p)}$ have the property that they invert the element v_1 (which is the coefficient of x^p in the p-series of the formal group law), as they classify the multiplicative formal group laws. It follows that

(1)
$$K_*(R[\beta^{-1}])_{(p)} \simeq MU_*(K)_{(p)} \otimes_{\pi_* MU_{(p)}[v_1^{-1}]} \pi_* R[\beta^{-1}]_{(p)}.$$

Lemma 1. The map $\pi_*MU_{(p)}[v_1^{-1}] \to MU_*(K)_{(p)}$ is faithfully flat.

Proof. Write $L = \pi_* MU$ for the Lazard ring. Then the map $L \to MU_*(K)$ classifies the formal group law obtained from the multiplicative formal group law f(x,y) = x + y + txy via a universal strict change of coordinates $x + b_1 x^2 + \ldots$ Alternatively, it classifies the formal group law obtained from the multiplicative formal group law x + y + xy via a universal (not necessarily strict) change of coordinates $t(x + b_1 x^2 + \ldots)$ where t is invertible. Another way of saying this is that we have a pull-back square

$$\begin{array}{ccc} \operatorname{Spec} MU_*(K) & \longrightarrow \operatorname{Spec} L \ , \\ & \downarrow & & \downarrow \\ & \operatorname{Spec} \mathbb{Z} & \longrightarrow M_{FG} \end{array}$$

where M_{FG} is the moduli stack of formal groups.¹ The horizontal bottom map classifies the multiplicative formal group x + y + xy over \mathbb{Z} .

If we localize at p, we get a pull-back square

$$\operatorname{Spec} MU_*(K)_{(p)} \longrightarrow \operatorname{Spec} L_{(p)} ,$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\operatorname{Spec} \mathbb{Z}_{(p)} \longrightarrow M_{FG} \times_{\operatorname{Spec} \mathbb{Z}} \operatorname{Spec} \mathbb{Z}_{(p)}$$

and the map $\operatorname{Spec}\mathbb{Z}_{(p)} \to M_{FG} \times_{\operatorname{Spec}\mathbb{Z}} \operatorname{Spec}\mathbb{Z}_{(p)}$ factors through the open substack of $M_{FG} \times_{\operatorname{Spec}\mathbb{Z}} \operatorname{Spec}\mathbb{Z}_{(p)}$ given by the invertibility of v_1 . So we have another pull-back square

$$\begin{split} \operatorname{Spec} & MU_*(K)_{(p)} & \longrightarrow \operatorname{Spec} L_{(p)}[v_1^{-1}] \\ & \downarrow & \downarrow \\ & \operatorname{Spec} \mathbb{Z}_{(p)} & \longrightarrow (M_{FG} \times_{\operatorname{Spec} \mathbb{Z}} \operatorname{Spec} \mathbb{Z}_{(p)})[v_1^{-1}] \end{split}$$

and consequently, the assertion of the lemma will follow if we show that

$$\operatorname{Spec}\mathbb{Z}_{(p)} \to (M_{FG} \times_{\operatorname{Spec}\mathbb{Z}} \operatorname{Spec}\mathbb{Z}_{(p)})[v_1^{-1}]$$

is faithfully flat. However, the map is flat (essentially by Landweber exactness), and it is faithfully flat because there is a unique "point" of the stack $(M_{FG} \times_{\operatorname{Spec}\mathbb{Z}} \operatorname{Spec}\mathbb{Z}_{(p)})[v_1^{-1}]$ (in view of Lazard's classification of formal groups over an algebraically closed field). This proves the lemma.

For this point of view on M_{FG} and Landweber exactness, see [2] and [1].

Anyway, we now find from the isomorphism (1) and the faithful flatness proved in the lemma that in fact, $\pi_* R[\beta^{-1}]_{(p)}$ must be torsion-free and concentrated in even degrees. This completes the proof.

¹Not formal group laws!

3. Completion of the proof

In the previous section, we showed that the ring spectrum $R[\beta^{-1}]$ was complex-oriented and even periodic, with no torsion in its homotopy groups. From this, it will be straightforward to show that it must be K.

We can produce a map of ring spectra

$$R \to K$$

by using the virtual bundle on \mathbb{CP}_+^{∞} given by $\mathcal{O}(1)$ on \mathbb{CP}^{∞} and 0 on *, to define the map $\Sigma^{\infty}\mathbb{CP}_+^{\infty} \to K$. In other words, it is the map

$$\Sigma^{\infty} \mathbb{CP}_{+}^{\infty} \simeq S \oplus \Sigma^{\infty} \mathbb{CP}^{\infty} \to K$$

sending S to K via the unit and $\Sigma^{\infty}\mathbb{CP}^{\infty}$ to K via $\mathcal{O}(1)-1$. Alternatively, it is given by the element of $K^*(\mathbb{CP}^{\infty})$ classified by $\mathcal{O}(1)$. Note that the pull-back of $\mathcal{O}(1)$ to $\mathbb{CP}^{\infty}\times\mathbb{CP}^{\infty}$ under the multiplication map $m:\mathbb{CP}^{\infty}\times\mathbb{CP}^{\infty}\to\mathbb{CP}^{\infty}$ is precisely $p_1^*\mathcal{O}(1)\otimes p_2^*\mathcal{O}(1)$. This implies that $R\to K$ is a morphism of ring spectra.

This is in fact a map of *complex-oriented* ring spectra, and, since it sends β to the (invertible) Bott element in $\pi_2 K$, it factors through a map of complex-oriented ring spectra²

$$\phi: R[\beta^{-1}] \to K.$$

To prove Snaith's theorem, we need to see that it is an equivalence. That is, we need to show that it is an isomorphism on π_* . We know that $\phi_*: \pi_*R[\beta^{-1}] \to \pi_*K$ is a morphism of torsion-free rings. Now $\pi_0R[\beta^{-1}] \simeq \mathbb{Z}$ (to see this, one localizes at \mathbb{Q} after which the result is immediate as $\pi_*R \otimes \mathbb{Q} \simeq H_*(\mathbb{CP}^\infty; \mathbb{Q})$, and one notes that there is a map $\pi_0R[\beta^{-1}] \to \pi_0K \simeq \mathbb{Z}$). Consequently, the map $\pi_0R[\beta^{-1}] \to \pi_0K$ must be an isomorphism, and thus $R[\beta^{-1}] \to K$ is a weak equivalence by periodicity and $\pi_{odd}R[\beta^{-1}] = 0$. This completes the proof of Snaith's theorem.

References

- 1. Michael Hopkins, Complex oriented cohomology theories and the language of stacks, Lecture notes available at http://www.math.rochester.edu/u/faculty/doug/otherpapers/coctalos.pdf.
- 2. Jacob Lurie, Chromatic homotopy theory, Lecture notes available at http://math.harvard.edu/~lurie/252x.html.
- Victor Snaith, Localized stable homotopy of some classifying spaces, Math. Proc. Cambridge Philos. Soc. 89 (1981), no. 2, 325–330. MR 600247 (82g:55006)

²In fact, $R[\beta^{-1}]$ as a spectrum is the homotopy colimit $R \xrightarrow{\beta} \Sigma^{-2} R \xrightarrow{\beta} \dots$ and the map $R \to K$ uniquely extends to the whole diagram, and thus to the homotopy colimit as $K^{odd}(R) = 0$. One sees that it is a morphism of ring spectra similarly.