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Chapter 13

Various topics

This chapter is currently a repository for various topics that may or may not reach a status worthy
of their own chapters in the future, but in any event should be included.

§1 Linear algebra over rings

1.1 The determinant trick

We want to understand what IN = N means.
Let I ⊂ R and RM finitely generated. Let E = EndR(M), which is not commutative in general.

We may view M as an E-module EM . Since every element in R commutes with all of E, E is an
R-algebra (i.e. There is a homomorphism R→ E sending R into the center of E).

Lemma 1.1 (Determinant Trick)

1. Every φ ∈ E such that φ(M) ⊂ IM satisfies a monic equation of the form φn + a1φ
n−1 +

· · ·+ an = 0, where each ai ∈ I, i.e. φ is “integral over I”.

2. IM = M if and only if (1− a)M = 0 for some a ∈ I.

Proof. (1) Fix a finite set of generators, M = Rm1 + · · ·+Rmn. Then we have φ(mi) =
∑
j aijmj ,

with aij ∈ I by assumption. Let A = (aij). Then these equations tell us that (Iφ − A)~m = 0.
Multiplying by the adjoint of the matrix Iφ − A, we get that det(Iφ − A)mi = 0 for each i. It
follows that det(Iφ−A) = 0 ∈ E. But det(Iφ−A) = φn + a1φ

n−1 + · · ·+ an for some ai ∈ I.
(2) The “if” part is clear. The “only if” part follows from (1), applied to φ = idM . N

Remark Determinant trick (part 2) actually includes Nakayama’s Lemma, because if I is in
RadR, (1− a) is a unit, so M = (1− a)M = 0.

Corollary 1.2 For a finitely generated ideal I ⊂ R, I = I2 if and only if I = eR for some e = e2.

Proof. (⇐) clear.
(⇒) Apply determinant trick (part 2) to the case M = RI. We get (1− e)I = 0 for some e ∈ I,

so (1 − e)a = 0 for each a ∈ I, so a = ea, so I is generated by e. Letting a = e, we see that e is
idempotent. N

Corollary 1.3 (Vasconcelos-Strooker Theorem) For any finitely generated module M over
any commutative R. If φ ∈ EndR(M) is onto, then it is injective.

Proof. We can view M as a module over R[t], where t acts by φ. Apply the determinant trick (part
2) to I = t·R[t] ⊂ R[t]. We have that IM = M because φ is surjective, som = φ(m0) = t·m0 ∈ IM .
It follows that there is some th(t) such that (1− th(t))M = 0. In particular, if m ∈ kerφ, we have
that 0 = (1− h(t)t)m = 1 ·m = m, so φ is injective. N
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1.2 Determinantal ideals

Definition 1.4 An ideal I ⊂ R is called dense if rI = 0 implies r = 0. This is denoted I ⊂d R.
This is the same as saying that RI is a faithful module over R.

If I is a principal ideal, say Rb, then I is dense exactly when b ∈ C(R). The easiest case is when
R is a domain, in which case an ideal is dense exactly when it is non-zero.

If R is an integral domain, then by working over the quotient field, one can define the rank
of a matrix with entries in R. But if R is not a domain, rank becomes tricky. Let Di(A) be the
i-th determinantal ideal in R, generated by all the determinants of i × i minors of A. We define
D0(A) = R. If i ≥ min{n,m}, define Di(A) = (0).

Note that Di+1(A) ⊃ Di(A) because you can expand by minors, so we have a chain

R = D0(A) ⊃ D1(A) ⊃ · · · ⊃ (0).

Definition 1.5 Over a non-zero ring R, the McCoy rank (or just rank) of A to be the maximum
i such that Di(A) is dense in R. The rank of A is denoted rk(A).

If R is an integral domain, then rk(A) is just the usual rank. Note that over any ring, rk(A) ≤
min{n,m}.

If rk(A) = 0, then D1(A) fails to be dense, so there is some non-zero element r such that
rA = 0. That is, r zero-divides all of the entries of A.

If A ∈Mn,n(R), then A has rank n (full rank) if and only if detA is a regular element.

Exercise 13.1 Let R = Z/6Z, and let A = diag(0, 2, 4), diag(1, 2, 4), diag(1, 2, 3), diag(1, 5, 5)
(3× 3 matrices). Compute the rank of A in each case.

Solution A D1(A) D2(A) D3(A)
diag(0, 2, 4) (2) (2) (0) 3 · (2) = 0, so rk = 0
diag(1, 2, 4) R (2) (2) 3 · (2) = 0, so rk = 1
diag(1, 2, 3) R R (2) 3 · (2) = 0, so rk = 2
diag(1, 5, 5) R R R so rk = 3

1.3 Lecture 2

Let A ∈ Mn,m(R). If R is a field, the rank of A is the dimension of the image of A : Rm → Rn,
and m−rk(A) is the dimension of the null space. That is, whenever rk(A) < m, there is a solution
to the system of linear equations

0 = A · x (13.1)

which says that the columns αi ∈ Rn of A satisfy the dependence
∑
xiαi = 0. The following

theorem of McCoy generalizes this so that R can be any non-zero commutative ring.

Theorem 1.6 (McCoy) If R is not the zero ring, the following are equivalent:

1. The columns α1, . . . , αm are linearly dependent.

2. Equation 13.1 has a nontrivial solution.

3. rk(A) < m.

Corollary 1.7 If R 6= 0, the following hold
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(a) If n < m (i.e. if there are “more variables than equations”), then Equation 13.1 has a
nontrivial solution.

(b) R has the “strong rank property”: Rm ↪→ Rn =⇒ m ≤ n.

(c) R has the “rank property”: Rn � Rm =⇒ m ≤ n.

(d) R has the “invariant basis property”: Rm ∼= Rn =⇒ m = n.

Proof (Proof of Corollary). (a) If n < m, then rk(A) ≤ min{n,m} = n < m, so by Theorem 1.6,
Equation 13.1 has a non-trivial solution.

(a ⇒ b) If m > n, then by (a), any R-linear map Rm → Rn has a kernel. Thus, Rm ↪→ Rn

implies m ≤ n.
(b ⇒ c) If Rn � Rm, then since Rm is free, there is a section Rm ↪→ Rn (which must be

injective), so m ≤ n.
(c⇒ d) If Rm ∼= Rn, then we have surjections both ways, so m ≤ n ≤ m, so m = n. N

Corollary 1.8 Let R 6= 0, and A some n × n matrix. Then the following are equivalent (1)
detA ∈ C(R); (2) the columns of A are linearly independent; (3) the rows of A are linearly
independent.

Proof. The columns are linearly independent if and only if Equation 13.1 has no non-trivial solu-
tions, which occurs if and only if the rank of A is equal to n, which occurs if and only if detA is a
non-zero-divisor.

The transpose argument shows that detA ∈ C(R) if and only if the rows are independent. N

Proof (Proof of the Theorem). 0 = Ax =
∑
αixi if and only if the αi are dependent, so (1) and

(2) are equivalent.
(2 ⇒ 3) Let x ∈ Rm be a non-zero solution to A · x = 0. If n < m, then rk(A) ≤ n < m

and we’re done. Otherwise, let B be any m × m minor of A (so B has as many columns as
A, but perhaps is missing some rows). Then Bx = 0; multiplying by the adjoint of B, we get
(detB)x = 0, so each xi annihilates detB. Since x 6= 0, some xi is non-zero, and we have shown
that xi · Dm(A) = 0, so rk(A) < m.

(3⇒ 2) Assume r = rk(A) < m. We may assume r < n (adding a row of zeros to A if needed).
Fix a nonzero element a such that a ·Dr+1(A) = 0. If r = 0, then take x to be the vector with an a
in each place. Otherwise, there is some r× r minor not annihilated by a. We may assume it is the
upper left r× r minor. Let B be the upper left (r+ 1)× (r+ 1) minor, and let d1, . . . , dr+1 be the
cofactors along the (r+ 1)-th row. We claim that the column vector x = (ad1, . . . , adr+1, 0, . . . , 0)
is a solution to Equation 13.1 (note that it is non-zero because adr+1 6= 0 by assumption). To
check this, consider the product of x with the i-th row, (ai1, . . . , aim). This will be equal to a
times the determinant of B′, the matrix B with the (r + 1)-th row replaced by the i-th row of A.
If i ≤ r, the determinant of B′ is zero because it has two repeated rows. If i > r, then B′ is an
(r + 1)× (r + 1) minor of A, so its determinant is annihilated by a. N

Corollary 1.9 Suppose a module RM over a non-zero ring R is generated by β1, . . . , βn ∈M . If
M contains n linearly independent vectors, γ1, . . . , γn, then the βi form a free basis.

Proof. Since the βi generate, we have γ = β ·A for some n× n matrix A. If Ax = 0 for some non-
zero x, then γ · x = βAx = 0, contradicting independence of the γi. By Theorem 1.6, rk(A) = n,
so d = det(A) is a regular element.

Over R[d−1], there is an inverse B to A. If β · y = 0 for some y ∈ Rn, then γBy = βy = 0.
But the γi remain independent over R[d−1] since we can clear the denominators of any linear
dependence to get a dependence over R (this is where we use that d ∈ C(R)), so By = 0. But then
y = A · 0 = 0. Therefore, the βi are linearly independent, so they are a free basis for M . N
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§2 Finite presentation

2.1 Compact objects in a category

Let C be a category. In general, colimits tell one how to map out of them, not into them, and
there is no a priori reason to assume that if F : I → C is a functor, that

lim−→
i

Hom(X,Fi)→ Hom(X, lim−→Fi) (13.2)

is an isomorphism. In practice, though, it often happens that when I is filtered, the above map
is an isomorphism. For simplicity, we shall restrict to the case when I is a directed set (which is
naturally a category); in this case, we call the limits inductive.

Definition 2.1 The object X is called compact if (13.2) is an isomorphism whenever I is induc-
tive.

The following example motivates the term “compact.”

Example 2.2 Let C be the category of Hausdorff topological spaces and closed inclusions (so that
we do not obtain a full subcategory of the category of topological spaces), and let X be a compact
space. Then X is a compact object in C.

Indeed, suppose {Xi}i∈I is an inductive system of Hausdorff spaces and closed inclusions.
Suppose given a map f : X → lim−→Xi. Then each Xi is a closed subspace of the colimit, so we
need to show that f(X) lands inside one of the Xi. This will easily imply compactness.

Suppose not. Then f(X) contains, for each i, a point xi that belongs to no Xj , j < i. Choose
a countable subset T ⊂ I (if I is finite, then this is automatic!). For each t ∈ T , we get an element
xt ∈ f(X) that belongs to no Xi for i < t. Note that if t′ ∈ T , then it follows that Xt′ ∩ {xt} is
finite.

In particular, if F ⊂ {xt} is any subset, then Xt′ ∩ F is closed for each t′ ∈ T . Thus lim−→T
Xt′

contains the set F as a closed subset, and since this embeds as a closed subset of lim−→Xi, F is thus
closed in there too. The induced topology on {xt} is thus the discrete one.

We have thus seen that the set {xt} is an infinite, discrete closed subset of lim−→Xi. However, it
is a subset of f(X) as well, which is compact, so it is itself compact; this is a contradiction.

This example allows one to run the “small object argument” of Quillen for the category of
topological spaces, and in particular to construct the Quillen model structure on it. See [Hov07].
As an simple example, we may note that if we have a sequence of closed subspaces (such as the
skeleton filtration of a CW complex)

X1 ⊂ X2 ⊂ . . .

it then follows easily from this that (where [K,−] denotes homotopy classes of maps)

[K, lim−→Xi] = lim−→[K,Xi]

for any compact space K. Taking K to be a sphere, one finds that the homotopy group functors
commute with inductive limits of closed inclusions.

This notion is closely related to that of “smallness” introduced in ?? to prove an object can
be imbedded in an injective module. For instance, smallness with respect to any limit ordinal and
the class of all maps is basically equivalent to compactness in this sense.

TO BE ADDED: this should be clarified. Can we replace any inductive limit by an ordinal
one, assuming there’s no largest element?
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2.2 Finitely presented modules

Let us recall that a module M over a ring R is said to be finitely presented if there is an exact
sequence

Rm → Rn →M → 0.

In particular, M can be described by a “finite amount of data:” M is uniquely determined by the
matrix describing the map Rm → Rn. Thus, to hom out of M into an R-module N is to specify
the images of the n generators (that are the images of the standard basis elements in Rn), that is
to pick n elements of N , and these images are required to satisfy m relations (that come from the
map Rm → Rn).

Note that the theory of finitely presented modules is only special and new when one works
with a non-noetherian rings; over a noetherian ring, every finitely generated module is finitely
presented. Nonetheless, the techniques described here are useful even if one restricts one’s attention
to noetherian rings.

Exercise 13.2 Show that a finitely generated projective module is finitely presented.

Proposition 2.3 In the category of R-modules, the compact objects are the finitely presented ones.

Proof. First, let us show that a finitely presented module is in fact finite. Suppose M is finitely
presented and {Ni, i ∈ I} is an inductive system of modules. Suppose given M → lim−→Ni; we show
that it factors through one of the Ni.

There are finitely many generators m1, . . . ,mn, and in the colimit

N = lim−→Ni,

they must all lie in the image of some Nj , j ∈ I. Thus we can choose r
(j)
1 , . . . , r

(j)
n such that r

(j)
k

and mk both map to the same thing in lim−→Ni. This alone does not enable us to conclude that
M → lim−→Ni factors through Nj , since the relations between the m1, . . . ,mn may not be satisfied

between the putative liftings r
(j)
k to Nj .

However, we know that the relations are satisfied when we push down to the colimit. Since
there are only finitely many relations that we need to have satisfied, we can choose j′ > j such

that the relations all do become satisfied by the images of the r
(j)
k in Nj′ . We thus get a lifting

M → Nj′ .
We see from this that the map

lim−→HomR(M,Ni)→ lim−→HomR(M, lim−→Ni)

is in fact surjective. To see that it is injective, note that if two maps f, g : M → Nj become the
same map M → lim−→Ni, then the finite set of generators m1, . . . ,mn must both be mapped to the
same thing in some Nj′ , j

′ > j.
Now suppose M is a compact object in the category of R-modules. First, we claim that M

is finitely generated. Indeed, we know that M is the inductive limit of its finitely generated
submodules. Thus we get a map

M → lim−→
MF⊂M,f. gen

MF ,

and by hypothesis it factors as M → MF for some MF . This implies that M → MF → M is the
identity, and so M = MF and M is finitely generated.

Finally, we need to see that M is finitely presented. Choose a surjection

Rn �M

7
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and let the kernel be K. We would like to show that K is finitely generated. Now M ' Rn/K,
and consequently M is the inductive limit lim−→Rn/KF for KF ranging over the finitely generated
submodules ofK. It follows that the natural isomorphismM ' lim−→Rn/KF factors asM → Rn/KF

for some KF , which is thus an isomorphism. Hence M is finitely presented. N

The above argument shows, incidentally, that ifM is finitely generated, then lim−→HomR(M,Ni)→
lim−→HomR(M, lim−→Ni) is always injective.

TO BE ADDED: any module is an inductive limit of finitely presented modules TO BE
ADDED: Lazard’s theorem on flat modules

2.3 Finitely presented algebras

Let R be a commutative ring.

Definition 2.4 An R-algebra A is called finitely presented if A is isomorphic to an R-algebra
of the form R[x1, . . . , xn]/I, where I ⊂ R[x1, . . . , xn] is a finitely generated ideal in the polynomial
ring. A morphism of rings φ : R → R′ is called finitely presented if it makes R′ into a finitely
presented R-algebra.

For instance, a quotient of R by a finitely generated ideal is a finitely presented R-algebra. If
R is noetherian, then by the Hilbert basis theorem, an R-algebra is finitely presented if and only
if it is finitely generated.

Proposition 2.5 The finitely presented R-algebras are the compact objects in the category of R-
algebras.

We leave the proof to the reader, as it is analogous to Proposition 2.3.
The notion of a finitely presented algebra is analogous to that of a finitely presented module,

insofar as a finitely presented algebra can be specified by a finite amount of “data.” Namely, this
data consists of the generators x1, . . . , xn and the finitely many relations that they are required to
satisfy (these finitely many relations can be taken to be generators of I). Thus, to hom out of A
is “easy:” to map into an R-algebra B, we need to specify n elements of B, which have to satisfy
the finitely many relations that generate the ideal I.

Like most nice types of morphisms, finitely presented morphisms have a “sorite.”

Proposition 2.6 (Le sorite for finitely presented morphisms) Finitely presented morphisms
are preserved under composite and base-change. That is, if φ : A→ B is a finitely presented mor-
phism, then:

1. If A′ is any A-algebra, then φ⊗A′ : A′ → B ⊗A A′ is finitely presented.

2. If ψ : B → C is finitely presented, then C is a finitely presented over A (that is, ψ ◦ φ is
finitely presented).

Proof. First, we show that finitely presented morphisms are preserved under base-change. Suppose
B is finitely presented over A, thus isomorphic to a quotient A[x1, . . . , xn]/I, where I is a finitely
generated ideal in the polynomial ring. Then for any A-algebra A′, we have that

B ⊗A A′ = A′[x1, . . . , xn]/I ′

where I ′ is the ideal in A′[x1, . . . , xn] generated by I. (This follows by right-exactness of the tensor
product.) Thus I ′ is finitely presented and B ⊗A A′ is finitely presented over A′.

Next, we show that finitely presented morphisms are closed under composition. Suppose
A → B and B → C are finitely presented morphisms. Then B is isomorphic as A-algebra to
A[x1, . . . , xn/I and C is isomorphic as B-algebra to B[y1, . . . , ym]/J , where I, J are finitely gen-
erated ideals. Thus C ' A[x1, . . . , xn, y1, . . . , ym]/(I + J) for I + J the ideal generated by I, J in
A[x1, . . . , xn, y1, . . . , ym]. This is clearly a finitely generated ideal. N
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Finitely presented morphisms have a curious cancellation property that we tackle next. In
algebraic geometry, one often finds properties P of morphisms of schemes such that if a composite

X
f→ Y

g→ Z

has P, then so does f (possibly with weak conditions on g). One example of this (in any category)
is the class of monomorphisms. A more interesting example (for schemes) is the property of
separatedness; the interested reader may consult [GD].

In our case, we shall illustrate this cancellation phenomenon in the category of commutative
rings. Since arrows for schemes go in the opposite direction as arrows of rings, this will look slightly
different.

Proposition 2.7 Suppose we have a composite

A
f→ B

g→ C

such that g◦f : A→ C is finitely presented, and f is of finite type (that is, B is a finitely generated
A-algebra). Then g : B → C is finitely presented.

Proof. We shall prove this using the fact that the codiagonal map in the category of commutative
rings is finitely presented if the initial map is finitely generated:

Lemma 2.8 Let S be a finitely generated R-algebra. Then the map S ⊗R S → S is finitely
presented.

Proof. We shall show that the kernel I of S⊗RS → S is a finitely generated ideal. This will clearly
imply the claim, as S ⊗R S → S is obviously a surjection.

To see this, let α1, . . . , αn ∈ S be generators for S as an R-algebra. The claim is that the
elements 1 ⊗ αi − αi ⊗ 1 generate I as an S ⊗R S-module. Clearly these live in I. Conversely, it
is clear I is generated by elements of the form x⊗ 1− 1⊗ x (because if z =

∑
xk ⊗ yk ∈ I, then

z =
∑

(xk ⊗ 1) (1⊗ yk − yk ⊗ yk) +
∑
xkyk ⊗ 1 and the last term vanishes by definition of I).

In other words, if we define d(α) = α ⊗ 1 − 1 ⊗ α for α ∈ S, then I is generated by elements
d(α). Now d is clearly R-linear, and we have the identity

d(αβ) = αβ ⊗ 1− 1⊗ αβ
= αβ ⊗ 1− α⊗ β + α⊗ β − 1⊗ αβ
= (α⊗ 1)d(β) + (1⊗ β)d(α).

Thus d(αβ) is in the S ⊗R S-module spanned by d(α) and d(β). From this, it is clear that
d(α1), d(α2), . . . , d(αn) generate I as a S ⊗R S-module. N

From this lemma, we will be able to prove the theorem as follows. We can write g : B → C as
the composite

B → B ⊗A C → C

where the first map is the base-change of the finitely presented morphism A→ C and the second
morphism is the base-change of the finitely presented morphism B⊗AB → B. Thus the composite
B → C is finitely presented. N
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§3 Inductive limits of rings

We shall now find ourselves in the following situation. We shall have an inductive system {Aα}α∈I
of rings, indexed by a directed set I. With A = lim−→Aα, we will be interested in relating categories
of modules and algebras over A to the categories over Aα.

The basic idea will be as follows. Given an object (e.g. module) M of finite presentation of A,
we will be able to find an object Mα of finite presentation over some Aα such that M is obtained
from Mα by base-change Aα → A. Moreover, given a morphism M → N of objects over A, we
will be able to “descend” this to a morphism Mα → Nα of objects of finite presentation over some
Aα, which will induce M → N by base-change. In other words, the category of objects over A of
finite presentation will be the inductive limit of the categories of such objects over the Aα.

3.1 Prologue: fixed points of polynomial involutions over C
Following [Ser09], we give an application of these ideas to a simple concrete problem. This will
help illustrate some of them, even though we have not formally developed the machinery yet.

If k is an algebraically closed field, a map kn → kn is called polynomial if each of the components
is a polynomial function in the input coordinates. So if we identify kn with the closed points of
Spec k[x1, . . . , xn], then a polynomial function is just the restriction to to the closed points of an
endomorphism of Spec k[x1, . . . , xn] induced by an algebra endomorphism.

Theorem 3.1 Let F : Cn → Cn be a polynomial map with F ◦F = 1Cn . Then F has a fixed point.

We can phrase this alternatively as follows. Let σ : C[x1, . . . , xn] → C[x1, . . . , xn] be a C-
involution. Then the map on the Spec’s has a fixed point (which is a closed point1).

Proof. It is clear that the presentation of σ involves only a finite amount of data, so as in ?? we
can construct a finitely generated Z-algebra R ⊂ C and an involution

σ : R[x1, . . . , xn]→ R[x1, . . . , xn]

such that σ is obtained from σ by base-changing R→ C. We can assume that 1
2 ∈ R as well. To see

this explicitly, we simply need only add to R the coefficients of the polynomials σ(x1), . . . , σ(xn),
and 1

2 , and consider the Z-algebra they generate.
Suppose now the system of equations σ(x1, . . . , xn) − (x1, . . . , xn) has no solution in Cn.

This is equivalent to stating that a finite system of polynomials (namely, the σ(xi) − xi) gen-
erate the unit ideal in C[x1, . . . , xn], so that there are polynomials Pi ∈ C[x1, . . . , xn] such that∑
Pi (σ(xi)− xi) = 1.
Let us now enlarge R so that the coefficients of the Pi lie in R. Since the coefficients of the

σ(xi) are already in R, we find that the polynomials σ(xi) − xi will generate the unit ideal in
R[x1, . . . , xn]. If R′ is a homomorphic image of R, then this will be true in R′[x1, . . . , xn].

Choose a maximal ideal m ⊂ R. Then R/m is a finite field, and σ becomes an involution

(R/m)[x1, . . . , xn]→ (R/m)[x1, . . . , xn].

If we let k be the algebraic closure of R/m, then we have an involution

σ̃ : k[x1, . . . , xn]→ k[x1, . . . , xn].

But the induced map by σ̃ on kn has no fixed points. This follows because the σ̃(xi)− xi generate
the unit ideal in k[x1, . . . , xn] (because we can consider the images of the Pi in k[x1, . . . , xn]).
Moreover, chark 6= 2 as 1

2 ∈ R, so 2 is invertible in k as well.

1One can show that if there is a fixed point, there is a fixed point that is a closed point.

10
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So from the initial fixed-point-free involution F (or σ), we have induced a polynomial map
kn → kn with no fixed points. We need only now prove:

Lemma 3.2 If k is the algebraic closure of Fp for p 6= 2, then any involution F : kn → kn which
is a polynomial map has a fixed point.

Proof. This is very simple. There is a finite field Fq in which the coefficients of F all lie; thus F
induces a map

Fnq → Fnq N

which is necessarily an involution. But an involution on a finite set of odd cardinality necessarily
has a fixed point (or all orbits would be even). N

Remark An alternative approach to the above proof is to use a little bit of model theory. There is
a general principle due to Abraham Robinson, that can be stated roughly as follows. If a sentence
P in the first-order logic of fields (that is, one is allowed to refer to the elements 0, 1 and to addition
and multiplication; in addition, one is allowed to make existential and universal quantifications,
negations, disjunctions, and conjunctions) has the property that P is true for an algebraically
closed field of characteristic p for each p � 0, then P holds in every algebraically closed field of
characteristic zero. This principle follows from a combination of the compactness theorem and the
fact that the theory of algebraically closed fields of a fixed characteristic is complete: any statement
is true in all of them, or in none of them.

Consider the statement Sn,d that for any polynomial map F : kn → kn consisting of polynomials
of degree ≤ d such that F ◦ F , there is (x1, . . . , xn) ∈ kn with F (x1, . . . , xn) = (x1, . . . , xn). Then
Sn,d is clearly a statement of first-order logic. Lemma 3.2 shows that Sn,d holds in Fp whenever
p > 2. Thus, Sn,d holds in C by Robinson’s principle.

These types of model-theoretic arguments can be used to prove the Ax-Grothendieck the-
orem: an injective polynomial map Cn → Cn is surjective. See [Mar02].

3.2 The inductive limit of categories

TO BE ADDED: general formalism to clarify all this

3.3 The category of finitely presented modules

Throughout, we let {Aα}α∈I be an inductive system of rings, and A = lim−→Aα. We are going
to relate the category of finitely presented modules over A to the categories of finitely presented
modules over the Aα.

We start by showing that any module over A “descends” to one of the Aα.

Proposition 3.3 Suppose M is a finitely presented module over A. Then there is α ∈ I and a
finitely presented Aα-module Mα such that M 'Mα ⊗Aα A.

Proof. Indeed, M is the cokernel of a morphism

f : Am → An

by definition. This morphism is described by a m-by-n (or n-by-m, depending on conventions)
matrix with coefficients in A. Each of these finitely many coefficients must come from various Aα
in the image (by definition of the inductive limit), and choosing α “large” we can assume that
every coefficient in the matrix is in the image of Aα → A. Then we have a morphism

fα : Amα → Anα

that induces f by base-change to A. Then we may let Mα be the cokernel of fα since the tensor
product is right-exact. N

11
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Now, we want to show that if the base-change of two finitely presented modules over Aα to A
become isomorphic, then they “become isomorphic” at some Aβ (for β > α). We shall actually
prove a more general result. Namely, we shall see that a morphism at the colimit “descends” to
one of the steps.

Proposition 3.4 We keep the same notation as above. Suppose Mα, Nα are finitely presented
modules over Aα. Write Mβ = Mα ⊗Aα Aβ , Nβ = Nα ⊗Aα Aβ for each β > α and M,N for the
base-changes to N .

Suppose there is a morphism f : M → N . Then there is β ≥ α such that f is obtained by
base-changing a morphism fβ : Mβ → Nβ. If fβ , fγ are any two morphisms that do this, then
there is δ ≥ β, γ such that fβ , fγ become equal when base-changed to Aδ.

The conclusion of this result is then

HomA(M,N) = lim−→
β

HomAβ (Mβ , Nβ).

The last part is essentially the “uniqueness” that we were discussing previously.

Proof. Suppose the transition maps Aα → Aβ are denoted φαβ , and the natural maps Aα → A
are denoted φα.

We know that there are exact sequences

Amα
M→ Anα →Mα → 0,

and
Apα → Nα → 0.

These are preserved by tensoring with A. Here M is a suitable matrix. So we get exact sequences

Am
φα(M)→ An →M → 0

Ap → N → 0 N

and the projectivity of Ap shows that the map An → M → N can be lifted to a map An → Ap

given by some matrix M′ with coefficients in A. We know that there is M′ ◦ φα(M) = 0 because
the map factors through M .

Now M′ can be written as φβ(M′′) for some matrix with coefficients in Aβ , or in other words
a map Anβ → Apβ . We would like to use this to get a map Mβ → Apβ → Nβ , but for this we need

to check that Anβ → Apβ pulls back to zero in Amβ . In other words, we need that M′′φαβ(M) = 0.
This need not be true, but we know that it is true if base-change to a bigger β (since this matrix
product is zero in the colimit). This allows us to get the map Mβ → Nβ .

Finally, we need uniqueness. Suppose fβ : Mβ → Nβ and fγ : Mγ → Nγ both are such that
the base-changes to A are the same morphism M → N . We need to find a δ as in the proposition.
By replacing β, γ with a mutual upper bound, we may suppose that β = γ; we shall write the two
morphisms as fβ , gβ then.

Consider the pull-backs Anβ
fβ ,gβ→ Nβ . These uniquely determine fβ , gβ (since the map Anβ →Mβ

is a surjection). These pull-backs are specified by n elements of Nβ . If the base-changes of fβ , gβ via
φβ : Aβ → A are the same, then these n elements of Nβ become the same in N = lim−→β′ N ⊗Aβ Aβ′ ;

thus they become equal at some finite stage, so there is β′ > β such that the base changes fβ′ = gβ′ .

Remark The idea of the above proof was to exploit the idea that the homomorphism carries a
finite amount of data, that is the images of the generators and the condition that these images
satisfy finitely many relations. In essence, it is analogous to the argument that finitely presented
modules over a fixed ring are compact objects in that category.

12
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Remark In fact, we can give an alternative (and slightly simpler) argument for Proposition 3.4.
We know that

HomAβ (Mβ , Nβ) = HomAα(Mα, Nβ)

by the adjoint property of the tensor product, and similarly

HomA(M,N) = HomAα(Mα, N).

So the assertion we are trying to prove is

HomAα(Mα, N) = lim−→
β

HomAα(Mα, Nβ),

which follows from Proposition 2.3.

Exercise 13.3 Give a proof of the following claim. If M is a finitely generated module over a
noetherian ring R, p ∈ SpecR is such that Mp is free over Rp, then there is f ∈ R − p such that
Mf is free over Rf .

3.4 The category of finitely presented algebras

We can treat the category of finitely presented algebras over such an inductive limit in a similar
manner. As before, let {Aα}α∈I be an inductive system of rings with A = lim−→Aα. For each α,
there is a functor from the category of finitely presented Aα-algebras to the category of finitely
presented A-algebras sending C 7→ C ⊗Aα A. (Note that morphisms of finite presentation are
preserved under base-change by Proposition 2.6.)

Proposition 3.5 Suppose B is a finitely presented A-algebra. Then there is α ∈ I and a finitely
presented Aα-algebra Bα such that B ' Bα ⊗Aα A.

Proof. This is analogous to the proof of Proposition 3.3. N

TO BE ADDED: analog of the next result

3.5 Spec and inductive limits

Suppose {Aα}α∈I is an inductive system of commutative rings, as before; we let A = lim−→Aα. Since
Spec is a contravariant functor, we thus find that SpecAα is a projective system of topological
spaces.2 We are now interested in relating SpecA to the individual SpecAα.

Proposition 3.6 SpecA is the projective limit lim←− SpecAα in the category of topological spaces.

Recall that if {Xα} is a projective system of topological spaces with transition maps φβα :
Xβ → Xα whenever α ≤ β, then the projective limit lim←−Xα can be constructed as follows. One
considers the subset of

∏
Xα consisting of sequences (xα) such that φβα(xα) = xβ for every α ≤ β.

One can easily check that this has the universal property of the projective limit.

Proof. Let us first verify that the assertion is true as sets. There are maps

SpecA→ SpecAα

for each α ∈ I, which are obviously compatible (since the {Aα} form an inductive system) so that
they lead to a (continuous) map of topological spaces

SpecA→ lim←− SpecAα.

2Or schemes.

13
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We first verify injectivity. Suppose two primes p, p′ were sent to the same element of lim←− SpecAα.

This means that if φα : Aα → A is the natural morphism for each α, we have φ−1α (p) = φ−1α (p′)
for all α. It follows that the intersections of p, p′ with the image of Aα are identical; since A is the
union of φα(Aα) over all α, this implies p = p′.

Now let us verify surjectivity. Suppose given a sequence pα of primes in Aα, for each α, such
that pα is the pre-image of pβ under Aα → Aβ whenever α ≤ β. We want to form a prime ideal
p ∈ SpecA pulling back to all these. To do this, we decide that x ∈ p if and only if there exists
α ∈ I such that x ∈ φα(pα) (recall that φα : Aα → A is the natural map). This does not depend
on the choice of α, and one verifies easily that this is a prime ideal with the appropriate properties.

We now have to show that the map SpecA → lim←− SpecAα is in fact a homeomorphism. We
have seen that it is continuous and bijective, so we must prove that it is open. If a ∈ A, we will be
done if we can show that the image of the basic open set D(a) ⊂ SpecA is open in lim←− SpecAα.

Suppose a = φβ(aβ) for some aβ ∈ Aβ . Then the claim is that the image of D(a) is precisely
the subset of lim←− SpecAβ such that the βth coordinate (which is in SpecAβ !) lies in D(aβ). This
is clearly an open set, so if we prove this, then we are done. Indeed, if p ∈ D(α) ⊂ SpecA, then
clearly the preimage in Aβ cannot contain aβ (since aβ maps to a). Conversely, if we have a
compatible sequence {pα} of primes such that pβ ∈ D(aβ), then the above construction of a prime
p ∈ SpecA from this shows that a /∈ p. N
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lications Mathématiques de l’IHÉS.
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[Mathematical Documents (Paris)], 3. Société Mathématique de France, Paris, 2003.
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