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Chapter 3

Three important functors

There are three functors that will be integral to our study of commutative algebra in the future:
localization, the tensor product, and Hom. While localization is an exact functor, the tensor
product and Hom are not. The failure of exactness in those cases leads to the theory of flatness
and projectivity (and injectivity), and eventually the derived functors Tor and Ext that crop up
in commutative algebra.

§1 Localization

Localization is the process of making invertible a collection of elements in a ring. It is a general-
ization of the process of forming a quotient field of an integral domain.

1.1 Geometric intuition

We first start off with some of the geometric intuition behind the idea of localization. Suppose
we have a Riemann surface X (for example, the Riemann sphere). Let A(U) be the ring of
holomorphic functions over some neighborhood U ⊂ X. Now, for holomorphicity to hold, all that
is required is that a function doesn’t have a pole inside of U , thus when U = X, this condition
is the strictest and as U gets smaller functions begin to show up that may not arise from the
restriction of a holomorphic function over a larger domain. For example, if we want to study
holomorphicity “near a point z0” all that we should require is that the function doesn’t pole at
z0. This means that we should consider quotients of holomorphic functions f/g where g(z0) 6= 0.
This process of inverting a collection of elements is expressed through the algebraic construction
known as “localization.”

1.2 Localization at a multiplicative subset

Let R be a commutative ring. We start by constructing the notion of localization in the most
general sense.

We have already implicitly used this definition, but nonetheless, we make it formally:

Definition 1.1 A subset S ⊂ R is a multiplicative subset if 1 ∈ S and if x, y ∈ S implies
xy ∈ S.

We now define the notion of localization. Formally, this means inverting things. This will give
us a functor from R-modules to R-modules.

Definition 1.2 If M is an R-module, we define the module S−1M as the set of formal fractions

{m/s,m ∈M, s ∈ S}
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modulo an equivalence relation: where m/s ∼ m′/s′ if and only if

t(s′m−m′s) = 0

for some t ∈ S. The reason we need to include the t in the definition is that otherwise the relation
would not be transitive (i.e. would not be an equivalence relation).

So two fractions agree if they agree when clearing denominators and multiplication.
It is easy to check that this is indeed an equivalence relation. Moreover S−1M is an abelian

group with the usual addition of fractions

m

s
+
m′

s′
=
s′m+ sm′

ss′

and it is easy to check that this is a legitimate abelian group.

Definition 1.3 Let M be an R-module and S ⊂ R a multiplicative subset. The abelian group
S−1M is naturally an R-module. We define

x(m/s) = (xm)/s, x ∈ R.

It is easy to check that this is well-defined and makes it into a module.
Finally, we note that localization is a functor from the category of R-modules to itself. Indeed,

given f : M → N , there is a naturally induced map S−1M
S−1f→ S−1N .

We now consider the special case when the localized module is the initial ring itself. Let
M = R. Then S−1R is an R-module, and it is in fact a commutative ring in its own right. The
ring structure is quite tautological:

(x/s)(y/s′) = (xy/ss′).

There is a map R→ S−1R sending x→ x/1, which is a ring-homomorphism.

Definition 1.4 For S ⊂ R a multiplicative set, the localization S−1R is a commutative ring as
above. In fact, it is an R-algebra; there is a natural map φ : R→ S−1R sending r → r/1.

We can, in fact, describe φ : R→ S−1R by a universal property. Note that for each s ∈ S, φ(s)
is invertible. This is because φ(s) = s/1 which has a multiplicative inverse 1/s. This property
characterizes S−1R.

For any commutative ringB, Hom(S−1R,B) is naturally isomorphic to the subset of Hom(R,B)
that send S to units. The map takes S−1R → B to the pull-back R → S−1R → B. The proof of
this is very simple. Suppose that f : R → B is such that f(s) ∈ B is invertible for each s ∈ S.
Then we must define S−1R → B by sending r/s to f(r)f(s)−1. It is easy to check that this is
well-defined and that the natural isomorphism as claimed is true.

Let R be a ring, M an R-module, S ⊂ R a multiplicatively closed subset. We defined a ring
of fractions S−1R and an R-module S−1M . But in fact this is a module over the ring S−1R. We
just multiply (x/t)(m/s) = (xm/st).

In particular, localization at S gives a functor from R-modules to S−1R-modules.

Exercise 3.1 LetR be a ring, S a multiplicative subset. Let T be theR-algebraR[{xs}s∈S ]/({sxs − 1}).
This is the polynomial ring in the variables xs, one for each s ∈ S, modulo the ideal generated by
sxs = 1. Prove that this R-algebra is naturally isomorphic to S−1R, using the universal property.

Exercise 3.2 Define a functor Rings→ Sets sending a ring to its set of units, and show that it
is corepresentable (use Z[X,X−1]).
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1.3 Local rings

A special case of great importance in the future is when the multiplicative subset is the complement
of a prime ideal, and we study this in the present subsection. Such localizations will be “local rings”
and geometrically correspond to the process of zooming at a point.

Example 1.5 Let R be an integral domain and let S = R − {0}. This is a multiplicative subset
because R is a domain. In this case, S−1R is just the ring of fractions by allowing arbitrary nonzero
denominators; it is a field, and is called the quotient field. The most familiar example is the
construction of Q as the quotient field of Z.

We’d like to generalize this example.

Example 1.6 Let R be arbitrary and p is a prime ideal. This means that 1 /∈ p and x, y ∈ R− p
implies that xy ∈ R − p. Hence, the complement S = R − p is multiplicatively closed. We get a
ring S−1R.

Definition 1.7 This ring is denoted Rp and is called the localization at p. If M is an R-module,
we write Mp for the localization of M at R− p.

This generalizes the previous example (where p = (0)).

There is a nice property of the rings Rp. To elucidate this, we start with a lemma.

Lemma 1.8 Let R be a nonzero commutative ring. The following are equivalent:

1. R has a unique maximal ideal.

2. If x ∈ R, then either x or 1− x is invertible.

Definition 1.9 In this case, we call R local. A local ring is one with a unique maximal ideal.

Proof (Proof of the lemma). First we prove (2) =⇒ (1).
Assume R is such that for each x, either x or 1−x is invertible. We will find the maximal ideal.

Let M be the collection of noninvertible elements of R. This is a subset of R, not containing 1,
and it is closed under multiplication. Any proper ideal must be a subset of M, because otherwise
that proper ideal would contain an invertible element.

We just need to check that M is closed under addition. Suppose to the contrary that x, y ∈M
but x+ y is invertible. We get (with a = x/(x+ y))

1 =
x

x+ y
+

y

x+ y
= a+ (1− a).

Then one of a, 1 − a is invertible. So either x(x + y)−1 or y(x + y)−1 is invertible, which implies
that either x, y is invertible, contradiction.

Now prove the reverse direction. Assume R has a unique maximal ideal M. We claim that
M consists precisely of the noninvertible elements. To see this, first note that M can’t contain
any invertible elements since it is proper. Conversely, suppose x is not invertible, i.e. (x) ( R.
Then (x) is contained in a maximal ideal by Proposition 4.5, so (x) ⊂M since M is unique among
maximal ideals. Thus x ∈M.

Suppose x ∈ R; we can write 1 = x+ (1− x). Since 1 /∈M, one of x, 1− x must not be in M,
so one of those must not be invertible. So (1) =⇒ (2). The lemma is proved. N

Let us give some examples of local rings.

Example 1.10 Any field is a local ring because the unique maximal ideal is (0).

5
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Example 1.11 Let R be any commutative ring and p ⊂ R a prime ideal. Then Rp is a local ring.
We state this as a result.

Proposition 1.12 Rp is a local ring if p is prime.

Proof. Let m ⊂ Rp consist of elements x/s for x ∈ p and s ∈ R− p. It is left as an exercise (using
the primality of p) to the reader to see that whether the numerator belongs to p is independent of
the representation x/s used for it.

Then I claim that m is the unique maximal ideal. First, note that m is an ideal; this is evident
since the numerators form an ideal. If x/s, y/s′ belong to m with appropriate expressions, then
the numerator of

xs′ + ys

ss′

belongs to p, so this sum belongs to m. Moreover, m is a proper ideal because 1
1 is not of the

appropriate form.
I claim that m contains all other proper ideals, which will imply that it is the unique maximal

ideal. Let I ⊂ Rp be any proper ideal. Suppose x/s ∈ I. We want to prove x/s ∈ m. In other
words, we have to show x ∈ p. But if not x/s would be invertible, and I = (1), contradiction. This
proves locality. N

Exercise 3.3 Any local ring is of the form Rp for some ring R and for some prime ideal p ⊂ R.

Example 1.13 Let R = Z. This is not a local ring; the maximal ideals are given by (p) for p
prime. We can thus construct the localizations Z(p) of all fractions a/b ∈ Q where b /∈ (p). Here
Z(p) consists of all rational numbers that don’t have powers of p in the denominator.

Exercise 3.4 A local ring has no idempotents other than 0 and 1. (Recall that e ∈ R is idempotent
if e2 = e.) In particular, the product of two rings is never local.

It may not yet be clear why localization is such a useful process. It turns out that many
problems can be checked on the localizations at prime (or even maximal) ideals, so certain proofs
can reduce to the case of a local ring. Let us give a small taste.

Proposition 1.14 Let f : M → N be a homomorphism of R-modules. Then f is injective if and
only if for every maximal ideal m ⊂ R, we have that fm : Mm → Nm is injective.

Recall that, by definition, Mm is the localization at R−m.
There are many variants on this (e.g. replace with surjectivity, bijectivity). This is a general

observation that lets you reduce lots of commutative algebra to local rings, which are easier to
work with.

Proof. Suppose first that each fm is injective. I claim that f is injective. Suppose x ∈ M − {0}.
We must show that f(x) 6= 0. If f(x) = 0, then fm(x) = 0 for every maximal ideal m. Then by
injectivity it follows that x maps to zero in each Mm. We would now like to get a contradiction.

Let I = {a ∈ R : ax = 0 ∈M}. This is proper since x 6= 0. So I is contained in some maximal
ideal m. Then x maps to zero in Mm by the previous paragraph; this means that there is s ∈ R−m
with sx = 0 ∈M . But s /∈ I, contradiction.

Now let us do the other direction. Suppose f is injective and m a maximal ideal; we prove fm
injective. Suppose fm(x/s) = 0 ∈ Nm. This means that f(x)/s = 0 in the localized module, so
that f(x) ∈ M is killed by some t ∈ R − m. We thus have f(tx) = t(f(x)) = 0 ∈ M . This means
that tx = 0 ∈M since f is injective. But this in turn means that x/s = 0 ∈Mm. This is what we
wanted to show. N

6



CRing Project, Chapter 3

1.4 Localization is exact

Localization is to be thought of as a very mild procedure.
The next result says how inoffensive localization is. This result is a key tool in reducing

problems to the local case.

Proposition 1.15 Suppose f : M → N, g : N → P and M → N → P is exact. Let S ⊂ R be
multiplicatively closed. Then

S−1M → S−1N → S−1P

is exact.

Or, as one can alternatively express it, localization is an exact functor.
Before proving it, we note a few corollaries:

Corollary 1.16 If f : M → N is surjective, then S−1M → S−1N is too.

Proof. To say that A→ B is surjective is the same as saying that A→ B → 0 is exact. From this
the corollary is evident. N

Similarly:

Corollary 1.17 If f : M → N is injective, then S−1M → S−1N is too.

Proof. To say that A→ B is injective is the same as saying that 0→ A→ B is exact. From this
the corollary is evident. N

Proof (Proof of the proposition). We adopt the notation of the proposition. If the composite g ◦ f
is zero, clearly the localization S−1M → S−1N → S−1P is zero too. Call the maps S−1M →
S−1N,S−1N → S−1P as φ, ψ. We know that ψ ◦ φ = 0 so ker(ψ) ⊃ Im(φ). Conversely, suppose
something belongs to ker(ψ). This can be written as a fraction

x/s ∈ ker(ψ)

where x ∈ N, s ∈ S. This is mapped to

g(x)/s ∈ S−1P,

which we’re assuming is zero. This means that there is t ∈ S with tg(x) = 0 ∈ P . This means
that g(tx) = 0 as an element of P . But tx ∈ N and its image of g vanishes, so tx must come from
something in M . In particular,

tx = f(y) for some y ∈M.

In particular,
x

s
=
tx

ts
=
f(y)

ts
= φ(y/ts) ∈ Im(φ).

This proves that anything belonging to the kernel of ψ lies in Im(φ). N

1.5 Nakayama’s lemma

We now state a very useful criterion for determining when a module over a local ring is zero.

Lemma 1.18 (Nakayama’s lemma) If R is a local ring with maximal ideal m. Let M be a
finitely generated R-module. If mM = M , then M = 0.

7
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Note that mM is the submodule generated by products of elements of m and M .

Remark Once one has the theory of the tensor product, this equivalently states that if M is
finitely generated, then

M ⊗R R/m = M/mM 6= 0.

So to prove that a finitely generated module over a local ring is zero, you can reduce to studying
the reduction to R/m. This is thus a very useful criterion.

Nakayama’s lemma highlights why it is so useful to work over a local ring. Thus, it is useful to
reduce questions about general rings to questions about local rings. Before proving it, we note a
corollary.

Corollary 1.19 Let R be a local ring with maximal ideal m, and M a finitely generated module.
If N ⊂M is a submodule such that N + mN = M , then N = M .

Proof. Apply Nakayama above (Lemma 1.18) to M/N . N

We shall prove more generally:

Proposition 1.20 Suppose M is a finitely generated R-module, J ⊂ R an ideal. Suppose JM =
M . Then there is a ∈ 1 + J such that aM = 0.

If J is the maximal ideal of a local ring, then a is a unit, so that M = 0.

Proof. Suppose M is generated by {x1, . . . , xn} ⊂ M . This means that every element of M is a
linear combination of elements of xi. However, each xi ∈ JM by assumption. In particular, each
xi can be written as

xi =
∑

aijxj , where aij ∈ m.

If we let A be the matrix {aij}, then A sends the vector (xi) into itself. In particular, I − A kills
the vector (xi).

Now I − A is an n-by-n matrix in the ring R. We could, of course, reduce everything modulo
J to get the identity; this is because A consists of elements of J . It follows that the determinant
must be congruent to 1 modulo J .

In particular, a = det(I−A) lies in 1+J . Now by familiar linear algebra, aI can be represented
as the product of A and the matrix of cofactors; in particular, aI annihilates the vector (xi), so
that aM = 0. N

Before returning to the special case of local rings, we observe the following useful fact from
ideal theory:

Proposition 1.21 Let R be a commutative ring, I ⊂ R a finitely generated ideal such that I2 = I.
Then I is generated by an idempotent element.

Proof. We know that there is x ∈ 1 + I such that xI = 0. If x = 1 + y, y ∈ I, it follows that

yt = t

for all t ∈ I. In particular, y is idempotent and (y) = I. N

Exercise 3.5 Proposition 1.21 fails if the ideal is not finitely generated.

Exercise 3.6 Let M be a finitely generated module over a ring R. Suppose f : M → M is a
surjection. Then f is an isomorphism. To see this, consider M as a module over R[t] with t acting
by f ; since (t)M = M , argue that there is a polynomial Q(t) ∈ R[t] such that Q(t)t acts as the
identity on M , i.e. Q(f)f = 1M .

8
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Exercise 3.7 Give a counterexample to the conclusion of Nakayama’s lemma when the module
is not finitely generated.

Exercise 3.8 Let M be a finitely generated module over the ring R. Let I be the Jacobson
radical of R (cf. ?? 1.26). If IM = M , then M = 0.

Exercise 3.9 (A converse to Nakayama’s lemma) Suppose conversely that R is a ring, and
a ⊂ R an ideal such that aM 6= M for every nonzero finitely generated R-module. Then a is
contained in every maximal ideal of R.

Exercise 3.10 Here is an alternative proof of Nakayama’s lemma. Let R be local with maximal
ideal m, and let M be a finitely generated module with mM = M . Let n be the minimal number
of generators for M . If n > 0, pick generators x1, . . . , xn. Then write x1 = a1x1 + · · · + anxn
where each ai ∈ m. Deduce that x1 is in the submodule generated by the xi, i ≥ 2, so that n was
not actually minimal, contradiction.

Let M,M ′ be finitely generated modules over a local ring (R,m), and let φ : M → M ′ be a
homomorphism of modules. Then Nakayama’s lemma gives a criterion for φ to be a surjection:
namely, the map φ : M/mM → M ′/mM ′ must be a surjection. For injections, this is false. For
instance, if φ is multiplication by any element of m, then φ is zero but φ may yet be injective.
Nonetheless, we give a criterion for a map of free modules over a local ring to be a split injection.

Proposition 1.22 Let R be a local ring with maximal ideal m. Let F, F ′ be two finitely generated
free R-modules, and let φ : F → F ′ be a homomorphism. Then φ is a split injection if and only if
the reduction φ

F/mF
φ→ F ′/mF ′

is an injection.

Proof. One direction is easy. If φ is a split injection, then it has a left inverse ψ : F ′ → F such
that ψ ◦ φ = 1F . The reduction of ψ as a map F ′/mF ′ → F/mF is a left inverse to φ, which is
thus injective.

Conversely, suppose φ injective. Let e1, . . . , er be a “basis” for F , and let f1, . . . , fr be the
images under φ in F ′. Then the reductions f1, . . . , fr are linearly independent in the R/m-vector
space F ′/mF ′. Let us complete this to a basis of F ′/mF ′ by adding elements g1, . . . , gs ∈ F ′/mF ′,
which we can lift to elements g1, . . . , gs ∈ F ′. It is clear that F ′ has rank r + s since its reduction
F ′/mF ′ does.

We claim that the set {f1, . . . , fr, g1, . . . , gs} is a basis for F ′. Indeed, we have a map

Rr+s → F ′

of free modules of rank r + s. It can be expressed as an r + s-by-r + s matrix M ; we need to
show that M is invertible. But if we reduce modulo m, it is invertible since the reductions of
f1, . . . , fr, g1, . . . , gs form a basis of F ′/mF ′. Thus the determinant of M is not in m, so by locality
it is invertible. The claim about F ′ is thus proved.

We can now define the left inverse F ′ → F of φ. Indeed, given x ∈ F ′, we can write it uniquely
as a linear combination

∑
aifi+

∑
bjgj by the above. We define ψ(

∑
aifi+

∑
bjgj) =

∑
aiei ∈ F .

It is clear that this is a left inverse N

We next note a slight strenghtening of the above result, which is sometimes useful. Namely,
the first module does not have to be free.

9
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Proposition 1.23 Let R be a local ring with maximal ideal m. Let M,F be two finitely generated
R-modules with F free, and let φ : M → F ′ be a homomorphism. Then φ is a split injection if and
only if the reduction φ

M/mM
φ→ F/mF

is an injection.

It will in fact follow that M is itself free, because M is projective (see ?? below) as it is a direct
summand of a free module.

Proof. Let L be a “free approximation” to M . That is, choose a basis x1, . . . , xn for M/mM (as
an R/m-vector space) and lift this to elements x1, . . . , xn ∈M . Define a map

L = Rn →M

by sending the ith basis vector to xi. Then L/mL→M/mM is an isomorphism. By Nakayama’s
lemma, L→M is surjective.

Then the composite map L→M → F is such that the L/mL→ F/mF is injective, so L→ F
is a split injection (by Proposition 1.22). It follows that we can find a splitting F → L, which
when composed with L→M is a splitting of M → F . N

Exercise 3.11 Let A be a local ring, and B a ring which is finitely generated and free as an
A-module. Suppose A → B is an injection. Then A → B is a split injection. (Note that any
nonzero morphism mapping out of a field is injective.)

§2 The functor Hom

In any category, the morphisms between two objects form a set.1 In many categories, however, the
hom-sets have additional structure. For instance, the hom-sets between abelian groups are them-
selves abelian groups. The same situation holds for the category of modules over a commutative
ring.

Definition 2.1 Let R be a commutative ring and M,N to be R-modules. We write HomR(M,N)
for the set of all R-module homomorphisms M → N . HomR(M,N) is an R-module because one
can add homomorphisms f, g : M → N by adding them pointwise: if f, g are homomorphisms
M → N , define f + g : M → N via (f + g)(m) = f(m) + g(m); similarly, one can multiply
homomorphisms f : M → N by elements a ∈ R: one sets (af)(m) = a(f(m)).

Recall that in any category, the hom-sets are functorial. For instance, given f : N → N ′,
post-composition with f defines a map HomR(M,N) → HomR(M,N ′) for any M . Similarly
precomposition gives a natural map HomR(N ′,M) → HomR(N,M). In particular, we get a
bifunctor Hom, contravariant in the first variable and covariant in the second, of R-modules into
R-modules.

2.1 Left-exactness of Hom

We now discuss the exactness properties of this construction of forming Hom-sets. The following
result is basic and is, in fact, a reflection of the universal property of the kernel.

Proposition 2.2 If M is an R-module, then the functor

N → HomR(M,N)

is left exact (but not exact in general).

1Strictly speaking, this may depend on your set-theoretic foundations.
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This means that if

0→ N ′ → N → N ′′

is exact, then

0→ HomR(M,N ′)→ HomR(M,N)→ HomR(M,N ′′)

is exact as well.

Proof. First, we have to show that the map HomR(M,N ′) → HomR(M,N) is injective; this is
because N ′ → N is injective, and composition with N ′ → N can’t kill any nonzero M → N ′.
Similarly, exactness in the middle can be checked easily, and follows from ?? 1.17; it states simply
that a map M → N has image landing inside N ′ (i.e. factors through N ′) if and only if it composes
to zero in N ′′. N

This functor HomR(M, ·) is not exact in general. Indeed:

Example 2.3 Suppose R = Z, and consider the R-module (i.e. abelian group) M = Z/2Z. There
is a short exact sequence

0→ 2Z→ Z→ Z/2Z→ 0.

Let us apply HomR(M, ·). We get a complex

0→ Hom(Z/2Z, 2Z)→ Hom(Z/2Z,Z)→ Hom(Z/2Z,Z/2Z)→ 0.

The second-to-last term is Z/2Z; everything else is zero. Thus the sequence is not exact, and in
particular the functor HomZ(Z/2,−) is not an exact functor.

We have seen that homming out of a module is left-exact. Now, we see the same for homming
into a module.

Proposition 2.4 If M is a module, then HomR(−,M) is a left-exact contravariant functor.

We write this proof in slightly more detail than Proposition 2.2, because of the contravariance.

Proof. We want to show that Hom(·,M) is a left-exact contravariant functor, which means that if

A
u−→ B

v−→ C → 0 is exact, then so is

0→ Hom(C,M)
v−→ Hom(B,M)

u−→ Hom(A,M)

is exact. Here, the bold notation refers to the induced maps of u, v on the hom-sets: if f ∈
Hom(B,M) and g ∈ Hom(C,M), we define u and v via v(g) = g ◦ v and u(f) = f ◦ u.

Let us show first that v is injective. Suppose that g ∈ Hom(C,M). If v(g) = g ◦ v = 0 then
(g ◦ v)(b) = 0 for all b ∈ B. Since v is a surjection, this means that g(C) = 0 and hence g = 0.
Therefore, v is injective, and we have exactness at Hom(C,M).

Since v ◦ u = 0, it is clear that u ◦ u = 0.
Now, suppose that f ∈ ker(u) ⊂ Hom(B,M). Then u(f) = f ◦ u = 0. Thus f : B → M

factors through B/ Im(u). However, Im(u) = ker(v), so f factors through B/ ker(v). Exactness
shows that there is an isomorphism B/ ker(v) ' C. In particular, we find that f factors through
C. This is what we wanted. N

Exercise 3.12 Come up with an example where HomR(−,M) is not exact.

Exercise 3.13 Over a field, Hom is always exact.

11
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2.2 Projective modules

Let M be an R-module for a fixed commutative ring R. We have seen that HomR(M,−) is
generally only a left-exact functor. Sometimes, however, we do have exactness. We axiomatize
this with the following.

Definition 2.5 An R-module M is called projective if the functor HomR(M, ·) is exact.2

One may first observe that a free module is projective. Indeed, let F = RI for an indexing
set. Then the functor N → HomR(F,N) is naturally isomorphic to N → N I . It is easy to see
that this functor preserves exact sequences (that is, if 0 → A → B → C → 0 is exact, so is
0→ AI → BI → CI → 0). Thus F is projective. One can also easily check that a direct summand
of a projective module is projective.

It turns out that projective modules have a very clean characterization. They are precisely the
direct summands in free modules.

TO BE ADDED: check this

Proposition 2.6 The following are equivalent for an R-module M :

1. M is projective.

2. Given any map M → N/N ′ from M into a quotient of R-module N/N ′, we can lift it to a
map M → N .

3. There is a module M ′ such that M ⊕M ′ is free.

Proof. The equivalence of 1 and 2 is just unwinding the definition of projectivity, because we
just need to show that HomR(M, ·) preserves surjective maps, i.e. quotients. (HomR(M, ·) is
already left-exact, after all.) To say that HomR(M,N) → HomR(M,N/N ′) is surjective is just
the statement that any map M → N/N ′ can be lifted to M → N .

Let us show that 2 implies 3. Suppose M satisfies 2. Then choose a surjection P � M where
P is free, by ??. Then we can write M ' P/P ′ for a submodule P ′ ⊂ P . The isomorphism
map M → P/P ′ leads by 2 to a lifting M → P . In particular, there is a section of P → M ,
namely this lifting. Since a section leads to a split exact sequence by ??, we find then that
P ' ker(P →M)⊕ Im(M → P ) ' ker(P →M)⊕M , verifying 3 since P is free.

Now let us show that 3 implies 2. Suppose M ⊕M ′ is free, isomorphic to P . Then a map
M → N/N ′ can be extended to

P → N/N ′

by declaring it to be trivial on M ′. But now P → N/N ′ can be lifted to N because P is free, and
we have observed that a free module is projective above; alternatively, we just lift the image of
a basis. This defines P → N . We may then compose this with the inclusion M → P to get the
desired map M → P → N , which is a lifting of M → N/N ′. N

Of course, the lifting P → N of a given map P → N/N ′ is generally not unique, and in fact is
unique precisely when HomR(P,N ′) = 0.

So projective modules are precisely those with the following lifting property. Consider a diagram

P

��
M // M ′′ // 0

2It is possible to define a projective module over a noncommutative ring. The definition is the same, except that
the Hom-sets are no longer modules, but simply abelian groups.

12
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where the bottom row is exact. Then, if P is projective, there is a lifting P → M making
commutative the diagram

P

��}}z
z

z
z

M // M ′′ // 0

Corollary 2.7 Let M be a module. Then there is a surjection P �M , where P is projective.

Proof. Indeed, we know (Proposition 6.6) that we can always get a surjection from a free module.
Since free modules are projective by Proposition 2.6, we are done. N

Exercise 3.14 Let R be a principal ideal domain, F ′ a submodule of a free module F . Show that
F ′ is free. (Hint: well-order the set of generators of F , and climb up by transfinite induction.) In
particular, any projective modules is free.

2.3 Example: the Serre-Swan theorem

We now briefly digress to describe an important correspondence between projective modules and
vector bundles. The material in this section will not be used in the sequel.

Let X be a compact space. We shall not recall the topological notion of a vector bundle here.
We note, however, that if E is a (complex) vector bundle, then the set Γ(X,E) of global sections

is naturally a module over the ring C(X) of complex-valued continuous functions on X.

Proposition 2.8 If E is a vector bundle on a compact Hausdorff space X, then there is a surjec-
tion ON � E for some N .

Here ON denotes the trivial bundle.
It is known that in the category of vector bundles, every epimorphism splits. In particular, it

follows that E can be viewed as a direct summand of the bundle ON . Since Γ(X,E) is then a
direct summand of Γ(X,ON ) = C(X)N , we find that Γ(X,E) is a direct summand of a projective
C(X)-module. Thus:

Proposition 2.9 Γ(X,E) is a finitely generated projective C(X)-module.

Theorem 2.10 (Serre-Swan) The functor E 7→ Γ(X,E) induces an equivalence of categories
between vector bundles on X and finitely generated projective modules over C(X).

2.4 Injective modules

We have given a complete answer to the question of when the functor HomR(M,−) is exact. We
have shown that there are a lot of such projective modules in the category of R-modules, enough
that any module admits a surjection from one such. However, we now have to answer the dual
question: when is the functor HomR(−, Q) exact?

Let us make the dual definition:

Definition 2.11 An R-module Q is injective if the functor HomR(−, Q) is exact.

Thus, a module Q over a ring R is injective if whenever M → N is an injection, and one has
a map M → Q, it can be extended to N → Q: in other words, HomR(N,Q) → HomR(M,Q) is
surjective. We can visualize this by a diagram

0 // M //

��

N

~~}
}

}
}

Q

13
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where the dotted arrow always exists if Q is injective.
The notion is dual to projectivity, in some sense, so just as every module M admits an epimor-

phic map P →M for P projective, we expect by duality that every module admits a monomorphic
map M → Q for Q injective. This is in fact true, but will require some work. We start, first, with
a fact about injective abelian groups.

Theorem 2.12 A divisible abelian group (i.e. one where the map x → nx for any n ∈ N is
surjective) is injective as a Z-module (i.e. abelian group).

Proof. The actual idea of the proof is rather simple, and similar to the proof of the Hahn-Banach
theorem. Namely, we extend bit by bit, and then use Zorn’s lemma.

The first step is that we have a subgroup M of a larger abelian group N . We have a map of
f : M → Q for Q some divisible abelian group, and we want to extend it to N .

Now we can consider the poset of pairs (f̃ ,M ′) where M ′ ⊃ M , and f̃ : M ′ → N is a map
extending f . Naturally, we make this into a poset by defining the order as “(f̃ ,M ′) ≤ (f̃ ′,M ′′) if
M ′′ contains M ′ and f̃ ′ is an extension of f̃ . It is clear that every chain has an upper bound, so
Zorn’s lemma implies that we have a submodule M ′ ⊂ N containing M , and a map f̃ : M ′ → N
extending f , such that there is no proper extension of f̃ . From this we will derive a contradiction
unless M ′ = N .

So suppose we have M ′ 6= N , for M ′ the maximal submodule to which f can be extended, as
in the above paragraph. Pick m ∈ N −M ′, and consider the submodule M ′ + Zm ⊂ N . We are
going to show how to extend f̃ to this bigger submodule. First, suppose Zm ∩M ′ = {0}, i.e. the
sum is direct. Then we can extend f̃ because M ′ + Zm is a direct sum: just define it to be zero
on Zm.

The slightly harder part is what happens if Zm ∩M ′ 6= {0}. In this case, there is an ideal
I ⊂ Z such that n ∈ I if and only if nm ∈ M ′. This ideal, however, is principal; let g ∈ Z − {0}
be a generator. Then gm = p ∈ M ′. In particular, f̃(gm) is defined. We can “divide” this by g,
i.e. find u ∈ Q such that gu = f̃(gm).

Now we may extend to a map f̃ ′ from Zm + M ′ into Q as follows. Choose m′ ∈ M ′, k ∈ Z.
Define f̃ ′(m′+ km) = f̃(m′) + ku. It is easy to see that this is well-defined by the choice of u, and
gives a proper extension of f̃ . This contradicts maximality of M ′ and completes the proof. N

Exercise 3.15 Theorem 2.12 works over any principal ideal domain.

Exercise 3.16 (Baer) Let N be an R-module such that for any ideal I ⊂ R, any morphism
I → N can be extended to R→ N . Then N is injective. (Imitate the above argument.)

From this, we may prove:

Theorem 2.13 Any R-module M can be imbedded in an injective R-module Q.

Proof. First of all, we know that any R-module M is a quotient of a free R-module. We are going
to show that the dual (to be defined shortly) of a free module is injective. And so since every
module admits a surjection from a free module, we will use a dualization argument to prove the
present theorem.

First, for any abelian group G, define the dual group as G∨ = HomZ(G,Q/Z). Dualization
is clearly a contravariant functor from abelian groups to abelian groups. By Proposition 2.4 and
Theorem 2.12, an exact sequence of groups

0→ A→ B → C → 0

induces an exact sequence
0→ C∨ → B∨ → A∨ → 0.

In particular, dualization is an exact functor:

14
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Proposition 2.14 Dualization preserves exact sequences (but reverses the order).

Now, we are going to apply this to R-modules. The dual of a left R-module is acted upon by R.
The action, which is natural enough, is as follows. Let M be an R-module, and f : M → Q/Z be
a homomorphism of abelian groups (since Q/Z has in general no R-module structure), and r ∈ R;
then we define rf to be the map M → Q/Z defined via

(rf)(m) = f(rm).

It is easy to check that M∨ is thus made into an R-module.3 In particular, dualization into Q/Z
gives a contravariant exact functor from R-modules to R-modules.

Let M be as before, and now consider the R-module M∨. By ??, we can find a free module F
and a surjection

F →M∨ → 0.

Now dualizing gives an exact sequence of R-modules

0→M∨∨ → F∨.

However, there is a natural map (of R-modules) M → M∨∨: given m ∈ M , we can define a
functional Hom(M,Q/Z)→ Q/Z by evaluation at m. One can check that this is a homomorphism.
Moreover, this morphism M → M∨∨ is actually injective: if m ∈ M were in the kernel, then by
definition every functional M → Q/Z must vanish on m. It is easy to see (using Z-injectivity
of Q/Z) that this cannot happen if m 6= 0: we could just pick a nontrivial functional on the
monogenic subgroup Zm and extend to M .

We claim now that F∨ is injective. This will prove the theorem, as we have the composite of
monomorphisms M ↪→M∨∨ ↪→ F∨ that embeds M inside an injective module.

Lemma 2.15 The dual of a free R-module F is an injective R-module.

Proof. Let 0→ A→ B be exact; we have to show that

HomR(B,F∨)→ HomR(A,F∨)→ 0.

is exact. Now we can reduce to the case where F is the R-module R itself. Indeed, F is a direct
sum of R’s by assumption, and taking hom’s turns them into direct products; moreover the direct
product of exact sequences is exact.

So we are reduced to showing that R∨ is injective. Now we claim that

HomR(B,R∨) = HomZ(B,Q/Z). (3.1)

N

In particular, HomR(−, R∨) is an exact functor because Q/Z is an injective abelian group. The
proof of Eq. (3.1) is actually “trivial.” For instance, a R-homomorphism f : B → R∨ induces
f̃ : B → Q/Z by sending b→ (f(b))(1). One checks that this is bijective.

3If R is noncommutative, this would not work: instead M∨ would be an right R-module. For commutative rings,
we have no such distinction between left and right modules.

15
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2.5 The small object argument

There is another, more set-theoretic approach to showing that any R-module M can be imbedded
in an injective module. This approach, which constructs the injective module by a transfinite
colimit of push-outs, is essentially analogous to the “small object argument” that one uses in
homotopy theory to show that certain categories (e.g. the category of CW complexes) are model
categories in the sense of Quillen; see [Hov07]. While this method is somewhat abstract and more
complicated than the one of Section 2.4, it is also more general. Apparently this method originates
with Baer, and was revisited by Cartan and Eilenberg in [?] and by Grothendieck in [Gro57]. There
Grothendieck uses it to show that many other abelian categories have enough injectives.

We first begin with a few remarks on smallness. Let {Bα}, α ∈ A be an inductive system of
objects in some category C, indexed by an ordinal A. Let us assume that C has (small) colimits.
If A is an object of C, then there is a natural map

lim−→Hom(A,Bα)→ Hom(A, lim−→Bα) (3.2)

because if one is given a map A→ Bβ for some β, one naturally gets a map from A into the colimit
by composing with Bβ → lim−→Bα. (Note that the left colimit is one of sets!)

In general, the map Eq. (3.2) is neither injective or surjective.

Example 2.16 Consider the category of sets. Let A = N and Bn = {1, . . . , n} be the inductive
system indexed by the natural numbers (where Bn → Bm, n ≤ m is the obvious map). Then
lim−→Bn = N, so there is a map

A→ lim−→Bn,

which does not factor as
A→ Bm

for any m. Consequently, lim−→Hom(A,Bn)→ Hom(A, lim−→Bn) is not surjective.

Example 2.17 Next we give an example where the map fails to be injective. LetBn = N/ {1, 2, . . . , n},
that is, the quotient set of N with the first n elements collapsed to one element. There are natural
maps Bn → Bm for n ≤ m, so the {Bn} form an inductive system. It is easy to see that the colimit
lim−→Bn = {∗}: it is the one-point set. So it follows that Hom(A, lim−→Bn) is a one-element set.

However, lim−→Hom(A,Bn) is not a one-element set. Consider the family of maps A→ Bn which
are just the natural projections N→ N/ {1, 2, . . . , n} and the family of maps A→ Bn which map
the whole of A to the class of 1. These two families of maps are distinct at each step and thus are
distinct in lim−→Hom(A,Bn), but they induce the same map A→ lim−→Bn.

Nonetheless, if A is a finite set, it is easy to see that for any sequence of sets B1 → B2 → . . . ,
we have

lim−→Hom(A,Bn) = Hom(A, lim−→Bn).

Proof. Let f : A → lim−→Bn. The range of A is finite, containing say elements c1, . . . , cr ∈ lim−→Bn.
These all come from some elements in BN for N large by definition of the colimit. Thus we can
define f̃ : A→ BN lifting f at a finite stage.

Next, suppose two maps fn : A → Bm, gn : A → Bm define the same map A → lim−→Bn. Then
each of the finitely many elements of A gets sent to the same point in the colimit. By definition of
the colimit for sets, there is N ≥ m such that the finitely many elements of A get sent to the same
points in BN under f and g. This shows that lim−→Hom(A,Bn)→ Hom(A, lim−→Bn) is injective. N

The essential idea is that A is “small” relative to the long chain of compositions B1 → B2 → . . . ,
so that it has to factor through a finite step.

Let us generalize this.
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Definition 2.18 Let C be a category, I a class of maps, and ω an ordinal. An object A ∈ C is
said to be ω-small (with respect to I) if whenever {Bα} is an inductive system parametrized by
ω with maps in I, then the map

lim−→Hom(A,Bα)→ Hom(A, lim−→Bα)

is an isomorphism.

Our definition varies slightly from that of [Hov07], where only “nice” transfinite sequences {Bα}
are considered.

In our applications, we shall begin by restricting ourselves to the category of R-modules for a
fixed commutative ring R. We shall also take I to be the set of monomorphisms, or injections.4

Then each of the maps

Bβ → lim−→Bα

is an injection, so it follows that Hom(A,Bβ) → Hom(A, lim−→Bα) is one, and in particular the
canonical map

lim−→Hom(A,Bα)→ Hom(A, lim−→Bα) (3.3)

is an injection. We can in fact interpret the Bα’s as subobjects of the big module lim−→Bα, and
think of their union as lim−→Bα. (This is not an abuse of notation if we identify Bα with the image
in the colimit.)

We now want to show that modules are always small for “large” ordinals ω. For this, we have
to digress to do some set theory:

Definition 2.19 Let ω be a limit ordinal, and κ a cardinal. Then ω is κ-filtered if every collection
C of ordinals strictly less than ω and of cardinality at most κ has an upper bound strictly less
than ω.

Example 2.20 A limit ordinal (e.g. the natural numbers ω0) is κ-filtered for any finite cardinal
κ.

Proposition 2.21 Let κ be a cardinal. Then there exists a κ-filtered ordinal ω.

Proof. If κ is finite, Example 2.20 shows that any limit ordinal will do. Let us thus assume that κ
is infinite.

Consider the smallest ordinal ω whose cardinality is strictly greater than that of κ. Then we
claim that ω is κ-filtered. Indeed, if C is a collection of at most κ ordinals strictly smaller than ω,
then each of these ordinals is of size at most κ. Thus the union of all the ordinals in C (which is
an ordinal) is of size at most κ, so is strictly smaller than ω, and it provides an upper bound as in
the definition. N

Proposition 2.22 Let M be a module, κ the cardinality of the set of its submodules. Then if ω
is κ-filtered, then M is ω-small (with respect to injections).

The proof is straightforward, but let us first think about a special case. If M is finite, then
the claim is that for any inductive system {Bα} with injections between them, parametrized by a
limit ordinal, any map M → lim−→Bα factors through one of the Bα. But this is clear. M is finite,
so since each element in the image must land inside one of the Bα, so all of M lands inside some
finite stage.

4There are, incidentally, categories, such as the category of rings, where a categorical epimorphism may not be
a surjection of sets.
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Proof. We need only show that the map Eq. (3.3) is a surjection when ω is κ-filtered. Let f : A→
lim−→Bα be a map. Consider the subobjects {f−1(Bα)} of A, where Bα is considered as a subobject

of the colimit. If one of these, say f−1(Bβ), fills A, then the map factors through Bβ .
So suppose to the contrary that all of the f−1(Bα) were proper subobjects of A. However, we

know that ⋃
f−1(Bα) = f−1

(⋃
Bα

)
= A.

Now there are at most κ different subobjects of A that occur among the f−1(Bα), by hypothesis.
Thus we can find a set A of cardinality at most κ such that as α′ ranges over A, the f−1(Bα′)
range over all the f−1(Bα).

However, A has an upper bound ω̃ < ω as ω is κ-filtered. In particular, all the f−1(Bα′) are
contained in f−1(Bω̃). It follows that f−1(Bω̃) = A. In particular, the map f factors through
Bω̃. N

From this, we will be able to deduce the existence of lots of injectives. Let us recall the criterion
of Baer (?? 3.16): a module Q is injective if and only if in every commutative diagram

a

��

// Q

R

??�
�

�
�

for a ⊂ R an ideal, the dotted arrow exists. In other words, we are trying to solve an extension
problem with respect to the inclusion a ↪→ R into the module M .

If M is an R-module, then in general we may have a semi-complete diagram as above. In it,
we can form the push-out

a

��

// Q

��
R // R⊕a Q

.

Here the vertical map is injective, and the diagram commutes. The point is that we can extend
a→ Q to R if we extend Q to the larger module R⊕a Q.

The point of the small object argument is to repeat this procedure transfinitely many times.

Theorem 2.23 Let M be an R-module. Then there is an embedding M ↪→ Q for Q injective.

Proof. We start by defining a functor M on the category of R-modules. Given N , we consider the
set of all maps a→ N for a ⊂ R an ideal, and consider the push-out⊕

a //

��

N

��⊕
R // N ⊕⊕

a

⊕
R

(3.4)

where the direct sum of copies of R is taken such that every copy of an ideal a corresponds to
one copy of R. We define M(N) to be this push-out. Given a map N → N ′, there is a natural
morphism of diagrams Eq. (3.4), so M is a functor. Note furthermore that there is a natural
transformation

N →M(N),

which is always an injection.
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The key property of M is that if a → N is any morphism, it can be extended to R →M(N),
by the very construction of M(N). The idea will now be to apply M a transfinite number of times
and to use the small object property.

We define for each ordinal ω a functor Mω on the category of R-modules, together with a
natural injection N →Mω(N). We do this by transfinite induction. First, M1 = M is the functor
defined above. Now, suppose given an ordinal ω, and suppose Mω′ is defined for ω′ < ω. If ω has
an immediate predecessor ω̃, we let

Mω = M ◦Mω̃.

If not, we let Mω(N) = lim−→ω′<ω
Mω′(N). It is clear (e.g. inductively) that the Mω(N) form an

inductive system over ordinals ω, so this is reasonable.
Let κ be the cardinality of the set of ideals in R, and let Ω be a κ-filtered ordinal. The claim

is as follows.

Lemma 2.24 For any N , MΩ(N) is injective.

If we prove this, we will be done. In fact, we will have shown that there is a functorial embedding
of a module into an injective. Thus, we have only to prove this lemma.

Proof. By Baer’s criterion (?? 3.16), it suffices to show that if a ⊂ R is an ideal, then any map
f : a→MΩ(N) extends to R→MΩ(N). However, we know since Ω is a limit ordinal that

MΩ(N) = lim−→
ω<Ω

Mω(N),

so by Proposition 2.22, we find that

HomR(a,MΩ(N)) = lim−→
ω<Ω

HomR(a,Mω(N)).

This means in particular that there is some ω′ < Ω such that f factors through the submodule
Mω′(N), as

f : a→Mω′(N)→MΩ(N).

However, by the fundamental property of the functor M, we know that the map a→Mω′(N) can
be extended to

R→M(Mω′(N)) = Mω′+1(N), N

and the last object imbeds in MΩ(N). In particular, f can be extended to MΩ(N). N

2.6 Split exact sequences

TO BE ADDED: additive functors preserve split exact seq Suppose that 0 //L
ψ //M

f //N //0
is a split short exact sequence. Since HomR(D, ·) is a left-exact functor, we see that

0 // HomR(D,L)
ψ′ // HomR(D,M)

f ′ // HomR(D,N)

is exact. In addition, HomR(D,L⊕N) ∼= HomR(D,L)⊕HomR(D,N). Therefore, in the case that
we start with a split short exact sequence M ∼= L ⊕ N , applying HomR(D, ·) does yield a split
short exact sequence

0 // HomR(D,L)
ψ′ // HomR(D,M)

f ′ // HomR(D,N) //0 .
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Now, assume that

0 // HomR(D,L)
ψ′ // HomR(D,M)

f ′ // HomR(D,N) //0

is a short exact sequence of abelian groups for allR-modulesD. SetD = R and using HomR(R,N) ∼=

N yields that 0 //L
ψ //M

f //N //0 is a short exact sequence.
Set D = N , so we have

0 // HomR(N,L)
ψ′ // HomR(N,M)

f ′ // HomR(N,N) //0

Here, f ′ is surjective, so the identity map of HomR(N,N) lifts to a map g ∈ HomR(N,M) so
that f ◦ g = f ′(g) = id. This means that g is a splitting homomorphism for the sequence

0 //L
ψ //M

f //N //0, and therefore the sequence is a split short exact sequence.

§3 The tensor product

We shall now introduce the third functor of this chapter: the tensor product. The tensor product’s
key property is that it allows one to “linearize” bilinear maps. When taking the tensor product of
rings, it provides a categorical coproduct as well.

3.1 Bilinear maps and the tensor product

Let R be a commutative ring, as usual. We have seen that the Hom-sets HomR(M,N) of R-
modules M,N are themselves R-modules. Consequently, if we have three R-modules M,N,P , we
can think about module-homomorphisms

M
λ→ HomR(N,P ).

Suppose x ∈ M,y ∈ N . Then we can consider λ(x) ∈ HomR(N,P ) and thus we can consider the
element λ(x)(y) ∈ P. We denote this element λ(x)(y), which depends on the variables x ∈M,y ∈
N , by λ(x, y) for convenience; it is a function of two variables M ×N → P .

There are certain properties of λ(·, ·) that we list below. Fix x, x′ ∈ M ; y, y′ ∈ N ; a ∈ R.
Then:

1. λ(x, y + y′) = λ(x, y) + λ(x, y′) because λ(x) is additive.

2. λ(x, ay) = aλ(x, y) because λ(x) is an R-module homomorphism.

3. λ(x+ x′, y) = λ(x, y) + λ(x′, y) because λ is additive.

4. λ(ax, y) = aλ(x, y) because λ is an R-module homomorphism.

Conversely, given a function λ : M ×N → P of two variables satisfying the above properties,
it is easy to see that we can get a morphism of R-modules M → HomR(N,P ).

Definition 3.1 An R-bilinear map λ : M ×N → P is a map satisfying the above listed condi-
tions. In other words, it is required to be R-linear in each variable separately.

The previous discussion shows that there is a bijection between R-bilinear maps M ×N → P
with R-module maps M → HomR(N,P ). Note that the first interpretation is symmetric in M,N ;
the second, by contrast, can be interpreted in terms of the old concepts of an R-module map. So
both are useful.
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Exercise 3.17 Prove that a Z-bilinear map out of Z/2 × Z/3 is identically zero, whatever the
target module.

Let us keep the notation of the previous discussion: in particular, M,N,P will be modules over
a commutative ring R.

Given a bilinear map M ×N → P and a homomorphism P → P ′, we can clearly get a bilinear
map M × N → P ′ by composition. In particular, given M,N , there is a covariant functor from
R-modules to Sets sending any R-module P to the collection of R-bilinear maps M ×N → P . As
usual, we are interested in when this functor is corepresentable. As a result, we are interested in
universal bilinear maps out of M ×N .

Definition 3.2 An R-bilinear map λ : M × N → P is called universal if for all R-modules Q,

the composition of P → Q with M ×N λ→ P gives a bijection

HomR(P,Q) ' {bilinear maps M ×N → Q}

So, given a bilinear map M ×N → Q, there is a unique map P → Q making the diagram

P

��

M ×N

λ

;;wwwwwwwww

##GGGGGGGGG

Q

Alternatively, P corepresents the functor Q→ {bilinear maps M ×N → Q}.

General nonsense says that given M,N , an universal R-bilinear map M × N → P is unique
up to isomorphism (if it exists). This follows from Yoneda’s lemma. For convenience, we give a
direct proof.

Suppose M ×N λ→ P was universal and M ×N λ′→ P ′ is also universal. Then by the universal
property, there are unique maps P → P ′ and P ′ → P making the following diagram commutative:

P

��

M ×N

λ

;;vvvvvvvvv

λ′

##HH
HH

HH
HH

H

P ′

OO

These compositions P → P ′ → P, P ′ → P → P ′ have to be the identity because of the uniqueness
part of the universal property. As a result, P → P ′ is an isomorphism.

We shall now show that this universal object does indeed exist.

Proposition 3.3 Given M,N , a universal bilinear map out of M ×N exists.

Before proving it we make:

Definition 3.4 We denote the codomain of the universal map out of M ×N by M ⊗R N . This
is called the tensor product of M,N , so there is a universal bilinear map out of M × N into
M ⊗R N .
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Proof (Proof of Proposition 3.3). We will simply give a presentation of the tensor product by “gen-
erators and relations.” Take the free R-module M⊗RN generated by the symbols {x⊗ y}x∈M,y∈N
and quotient out by the relations forced upon us by the definition of a bilinear map (for x, x′ ∈
M, y, y′ ∈ N, a ∈ R)

1. (x+ x′)⊗ y = x⊗ y + x′ ⊗ y.

2. (ax)⊗ y = a(x⊗ y) = x⊗ (ay).

3. x⊗ (y + y′) = x⊗ y + x⊗ y′.

We will abuse notation and denote x⊗ y for its image in M ⊗R N (as opposed to the symbol
generating the free module).

There is a bilinear map M ×N →M ⊗RN sending (x, y)→ x⊗y; the relations imposed imply
that this map is a bilinear map. We have to check that it is universal, but this is actually quite
direct.

Suppose we had a bilinear map λ : M×N → P . We must construct a linear map M⊗RN → P .
To do this, we can just give a map on generators, and show that it is zero on each of the relations.
It is easy to see that to make the appropriate diagrams commute, the linear map M ⊗N → P has
to send x⊗ y → λ(x, y). This factors through the relations on x⊗ y by bilinearity and leads to an
R-linear map M ⊗R N → P such that the following diagram commutes:

M ×N //

λ

&&MMMMMMMMMMM M ⊗R N

��
P

.

It is easy to see that M ⊗R N → P is unique because the x⊗ y generate it. N

The theory of the tensor product allows one to do away with bilinear maps and just think of
linear maps.

Given M,N , we have constructed an object M ⊗R N . We now wish to see the functoriality
of the tensor product. In fact, (M,N) → M ⊗R N is a covariant functor in two variables from
R-modules to R-modules. In particular, if M →M ′, N → N ′ are morphisms, there is a canonical
map

M ⊗R N →M ′ ⊗R N ′. (3.5)

To obtain Eq. (3.5), we take the natural bilinear map M × N → M ′ × N ′ → M ′ ⊗R N ′ and use
the universal property of M ⊗R N to get a map out of it.

3.2 Basic properties of the tensor product

We make some observations and prove a few basic properties. As the proofs will show, one powerful
way to prove things about an object is to reason about its universal property. If two objects have
the same universal property, they are isomorphic.

Proposition 3.5 The tensor product is symmetric: for R-modules M,N , we have M ⊗R N '
N ⊗RM canonically.

Proof. This is clear from the universal properties: giving a bilinear map out of M ×N is the same
as a bilinear map out N ×M . Thus M ⊗R N and N ⊗R N have the same universal property. It
is also clear from the explicit construction. N

Proposition 3.6 For an R-module M , there is a canonical isomorphism M →M ⊗R R.
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Proof. If we think in terms of bilinear maps, this statement is equivalent to the statement that a
bilinear map λ : M × R → P is the same as a linear map M → N . Indeed, to do this, restrict λ
to λ(·, 1). Given f : M → N , similarly, we take for λ as λ(x, a) = af(x). This gives a bijection as
claimed. N

Proposition 3.7 The tensor product is associative. There are canonical isomorphisms M ⊗R
(N ⊗R P ) ' (M ⊗R N)⊗R P .

Proof. There are a few ways to see this: one is to build it explicitly from the construction given,
sending x⊗ (y ⊗ z)→ (x⊗ y)⊗ z.

More conceptually, both have the same universal property: by general categorical nonsense
(Yoneda’s lemma), we need to show that for all Q, there is a canonical bijection

HomR(M ⊗ (N ⊗ P )), Q) ' HomR((M ⊗N)⊗ P,Q)

where the R’s are dropped for simplicity. But both of these sets can be identified with the set of
trilinear maps5 M ×N × P → Q. Indeed

HomR(M ⊗ (N ⊗ P ), Q) ' bilinear M × (N ⊗ P )→ Q

' Hom(N ⊗ P,Hom(M,Q))

' bilinear N × P → Hom(M,Q)

' Hom(N,Hom(P,Hom(M,Q))

' trilinear maps. N

3.3 The adjoint property

Finally, while we defined the tensor product in terms of a “universal bilinear map,” we saw earlier
that bilinear maps could be interpreted as maps into a suitable Hom-set. In particular, fix R-
modules M,N,P . We know that the set of bilinear maps M × N → P is naturally in bijection
with

HomR(M,HomR(N,P ))

as well as with
HomR(M⊗R, N, P ).

As a result, we find:

Proposition 3.8 For R-modules M,N,P , there is a natural bijection

HomR(M,HomR(N,P )) ' HomR(M ⊗R N,P ).

There is a more evocative way of phrasing the above natural bijection. Given N , let us define
the functors FN , GN via

FN (M) = M ⊗R N, GN (P ) = HomR(N,P ).

Then the above proposition states that there is a natural isomorphism

HomR(FN (M), P ) ' HomR(M,GN (P )).

In particular, FN and GN are adjoint functors. So, in a sense, the operations of Hom and ⊗ are
dual to each other.

5Easy to define.

23



CRing Project, Chapter 3

Proposition 3.9 Tensoring commutes with colimits.

In particular, it follows that if {Nα} is a family of modules, and M is a module, then

M ⊗R
⊕

Nα =
⊕

M ⊗R Nα.

Exercise 3.18 Give an explicit proof of the above relation.

Proof. This is a formal consequence of the fact that the tensor product is a left adjoint and
consequently commutes with all colimits. TO BE ADDED: proof N

In particular, by Proposition 3.9, the tensor product commutes with cokernels. That is, if
A→ B → C → 0 is an exact sequence of R-modules and M is an R-module, A⊗RM → B⊗RM →
C ⊗R M → 0 is also exact, because exactness of such a sequence is precisely a condition on the
cokernel. That is, the tensor product is right exact.

We can thus prove a simple result on finite generation:

Proposition 3.10 If M,N are finitely generated, then M ⊗R N is finitely generated.

Proof. Indeed, if we have surjections Rm →M,Rn → N , we can tensor them; we get a surjection
since the tensor product is right-exact. So have a surjection Rmn = Rm ⊗R Rn →M ⊗R N . N

3.4 The tensor product as base-change

Before this, we have considered the tensor product as a functor within a fixed category. Now, we
shall see that when one takes the tensor product with a ring, one gets additional structure. As a
result, we will be able to get natural functors between different module categories.

Suppose we have a ring-homomorphism φ : R → R′. In this case, any R′-module can be
regarded as an R-module. In particular, there is a canonical functor of restriction

R′-modules→ R-modules.

We shall see that the tensor product provides an adjoint to this functor. Namely, if M has an
R-module structure, then M ⊗R R′ has an R′ module structure where R′ acts on the right. Since
the tensor product is functorial, this gives a functor in the opposite direction:

R-modules→ R′-modules.

Let M ′ be an R′-module and M an R-module. In view of the above, we can talk about

HomR(M,M ′)

by thinking of M ′ as an R-module.

Proposition 3.11 There is a canonical isomorphism between

HomR(M,M ′) ' HomR′(M ⊗R R′,M ′).

In particular, the restriction functor and the functor M →M ⊗R R′ are adjoints to each other.
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Proof. We can describe the bijection explicitly. Given an R′-homomorphism f : M ⊗R R′ → M ′,
we get a map

f0 : M →M ′

sending
m→ m⊗ 1→ f(m⊗ 1).

This is easily seen to be an R-module-homomorphism. Indeed,

f0(ax) = f(ax⊗ 1) = f(φ(a)(x⊗ 1)) = af(x⊗ 1) = af0(x)

since f is an R′-module homomorphism.
Conversely, if we are given a homomorphism of R-modules

f0 : M →M ′

then we can define
f : M ⊗R R′ →M ′

by sending m ⊗ r′ → r′f0(m), which is a homomorphism of R′ modules. This is well-defined
because f0 is a homomorphism of R-modules. We leave some details to the reader. N

Example 3.12 In the representation theory of finite groups, the operation of tensor product
corresponds to the procedure of inducing a representation. Namely, if H ⊂ G is a subgroup of a
group G, then there is an obvious restriction functor from G-representations to H-representations.
The adjoint to this is the induction operator. Since a H-representation (resp. a G-representation)
is just a module over the group ring, the operation of induction is really a special case of the tensor
product. Note that the group rings are generally not commutative, so this should be interpreted
with some care.

3.5 Some concrete examples

We now present several concrete computations of tensor products in explicit cases to illuminate
what is happening.

Example 3.13 Let us compute Z/10⊗Z Z/12. Since 1 spans Z/(10) and 1 spans Z/(12), we see
that 1⊗ 1 spans Z/(10)⊗ Z/(12) and this tensor product is a cyclic group.

Note that 1⊗ 0 = 1⊗ (10 · 0) = 10⊗ 0 = 0⊗ 0 = 0 and 0⊗ 1 = (12 · 0)⊗ 1 = 0⊗ 12 = 0⊗ 0 = 0.
Now, 10(1 ⊗ 1) = 10 ⊗ 1 = 0 ⊗ 1 = 0 and 12(1 ⊗ 1) = 1 ⊗ 12 = 1 ⊗ 0 = 0, so the cyclic group
Z/(10) ⊗ Z/(12) has order dividing both 10 and 12. This means that the cyclic group has order
dividing gcd(10, 12) = 2.

To show that the order of Z/(10)⊗ Z/(12), define a bilinear map g : Z/(10)× Z/(12)→ Z/(2)
via g : (x, y) 7→ xy. The universal property of tensor products then says that there is a unique
linear map f : Z/(10)⊗ Z/(12)→ Z/(2) making the diagram

Z/(10)× Z/(12)
⊗ //

g
))RRRRRRRRRRRRRR

Z/(10)⊗ Z/(12)

f

��
Z/(2).

commute. In particular, this means that f(x ⊗ y) = g(x, y) = xy. Hence, f(1 ⊗ 1) = 1, so f is
surjective, and therefore, Z/(10) ⊗ Z/(12) has size at least two. This allows us to conclude that
Z/(10)⊗ Z/(12) = Z/(2).
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We now generalize the above example to tensor products of cyclic groups.

Example 3.14 Let d = gcd(m,n). We will show that (Z/mZ) ⊗ (Z/nZ) ' (Z/dZ), and thus in
particular if m and n are relatively prime, then (Z/mZ) ⊗ (Z/nZ) ' (0). First, note that any
a⊗ b ∈ (Z/mZ)⊗ (Z/nZ) can be written as ab(1⊗ 1), so that (Z/mZ)⊗ (Z/nZ) is generated by
1⊗ 1 and hence is a cyclic group. We know from elementary number theory that d = xm+ yn for
some x, y ∈ Z. We have m(1 ⊗ 1) = m ⊗ 1 = 0 ⊗ 1 = 0 and n(1 ⊗ 1) = 1 ⊗ n = 1 ⊗ 0 = 0. Thus
d(1⊗ 1) = (xm+ yn)(1⊗ 1) = 0, so that 1⊗ 1 has order dividing d.

Conversely, consider the map f : (Z/mZ)× (Z/nZ)→ (Z/dZ) defined by f(a+mZ, b+ nZ) =
ab+ dZ. This is well-defined, since if a′ +mZ = a+mZ and b′ + nZ = b+ nZ then a′ = a+mr
and b′ = b + ns for some r, s and thus a′b′ + dZ = ab + (mrb + nsa + mnrs) + dZ = ab + dZ
(since d = gcd(m,n) divides m and n). This is obviously bilinear, and hence induces a map
f̃ : (Z/mZ)⊗ (Z/nZ)→ (Z/dZ), which has f̃(1⊗ 1) = 1 + dZ. But the order of 1 + dZ in Z/dZ is
d, so that the order of 1⊗ 1 in (Z/mZ)⊗ (Z/nZ) must be at least d. Thus 1⊗ 1 is in fact of order
d, and the map f̃ is an isomorphism between cyclic groups of order d.

Finally, we present an example involving the interaction of Hom and the tensor product.

Example 3.15 Given an R-module M , let us use the notation M∗ = HomR(M,R). We shall
define a functorial map

M∗ ⊗R N → HomR(M,N),

and show that it is an isomorphism when M is finitely generated and free.
Define ρ′ : M∗ × N → HomR(M,N) by ρ′(f, n)(m) = f(m)n (note that f(m) ∈ R, and the

multiplication f(m)n is that between an element of R and an element of N). This is bilinear,

ρ′(af+bg, n)(m) = (af+bg)(m)n = (af(m)+bg(m))n = af(m)n+bg(m)n = aρ′(f, n)(m)+bρ′(g, n)(m)

ρ′(f, an1 + bn2)(m) = f(m)(an1 + bn2) = af(m)n1 + bf(m)n2 = aρ′(f, n1)(m) + bρ′(f, n2)(m)

so it induces a map ρ : M∗ ⊗ N → Hom(M,N) with ρ(f ⊗ n)(m) = f(m)n. This homomor-
phism is unique since the f ⊗ n generate M∗ ⊗N .

Suppose M is free on the set {a1, . . . , ak}. Then M∗ = Hom(M,R) is free on the set {fi : M → R,
fi(r1a1 + · · · + rkak) = ri}, because there are clearly no relations among the fi and because any
f : M → R has f = f(a1)f1 + · · ·+ f(an)fn. Also note that any element

∑
hj ⊗ pj ∈M∗⊗N can

be written in the form
∑k
i=1 fi ⊗ ni, by setting ni =

∑
hj(ai)pj , and that this is unique because

the fi are a basis for M∗.

We claim that the map ψ : HomR(M,N)→M∗ ⊗N defined by ψ(g) =
∑k
i=1 fi ⊗ g(ai) is inverse

to ρ. Given any
∑k
i=1 fi ⊗ ni ∈M∗ ⊗N , we have

ρ(

k∑
i=1

fi ⊗ ni)(aj) =

k∑
i=1

ρ(fi ⊗ ni)(aj) =

k∑
i=1

fi(aj)ni = nj

Thus, ρ(
∑k
i=1 fi⊗ni)(ai) = ni, and thus ψ(ρ(

∑k
i=1 fi⊗ni)) =

∑k
i=1 fi⊗ni. Thus, ψ◦ρ = idM∗⊗N .

Conversely, recall that for g : M → N ∈ HomR(M,N), we defined ψ(g) =
∑k
i=1 fi ⊗ g(ai). Thus,

ρ(ψ(g))(aj) = ρ(

k∑
i=1

fi ⊗ g(ai))(aj) =

k∑
i=1

ρ(fi ⊗ g(ai))(aj) =

k∑
i=1

fi(aj)g(ai) = g(aj)
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and because ρ(ψ(g)) agrees with g on the ai, it is the same element of HomR(M,N) because the
ai generate M . Thus, ρ ◦ ψ = idHomR(M,N).

Thus, ρ is an isomorphism.

We now interpret localization as a tensor product.

Proposition 3.16 Let R be a commutative ring, S ⊂ R a multiplicative subset. Then there exists
a canonical isomorphism of functors:

φ : S−1M ' S−1R⊗RM.

Proof. Here is a construction of φ. If x/s ∈ S−1M where x ∈M, s ∈ S, we define

φ(x/s) = (1/s)⊗m.

Let us check that this is well-defined. Suppose x/s = x′/s′; then this means there is t ∈ S with

xs′t = x′st.

From this we need to check that φ(x/s) = φ(x′/s′), i.e. that 1/s ⊗ x and 1/s′ ⊗ x′ represent
the same elements in the tensor product. But we know from the last statement that

1

ss′t
⊗ xs′t =

1

ss′t
x′st ∈ S−1R⊗M

and the first is just

s′t(
1

ss′t
⊗ x) =

1

s
⊗ x

by linearity, while the second is just
1

s′
⊗ x′

similarly. One next checks that φ is an R-module homomorphism, which we leave to the reader.

Finally, we need to describe the inverse. The inverse ψ : S−1R ⊗ M → S−1M is easy to
construct because it’s a map out of the tensor product, and we just need to give a bilinear map

S−1R×M → S−1M,

and this sends (r/s,m) to mr/s.

It is easy to see that φ, ψ are inverses to each other by the definitions. N

It is, perhaps, worth making a small categorical comment, and offering an alternative argument.
We are given two functors F,G from R-modules to S−1R-modules, where F (M) = S−1R ⊗R M
and G(M) = S−1M . By the universal property, the map M → S−1M from an R-module to a
tensor product gives a natural map

S−1R⊗RM → S−1M,

that is a natural transformation F → G. Since it is an isomorphism for free modules, it is an
isomorphism for all modules by a standard argument.

27



CRing Project, Chapter 3

3.6 Tensor products of algebras

There is one other basic property of tensor products to discuss before moving on: namely, what
happens when one tensors a ring with another ring. We shall see that this gives rise to push-outs
in the category of rings, or alternatively, coproducts in the category of R-algebras. Let R be
a commutative ring and suppose R1, R2 are R-algebras. That is, we have ring homomorphisms
φ0 : R→ R0, φ1 : R→ R1.

Proposition 3.17 R0 ⊗R R1 has the structure of a commutative ring in a natural way.

Indeed, this multiplication multiplies two typical elements x⊗ y, x′ ⊗ y′ of the tensor product
by sending them to xx′ ⊗ yy′. The ring structure is determined by this formula. One ought to
check that this approach respects the relations of the tensor product. We will do so in an indirect
way.

Proof. Notice that giving a multiplication law on R0 ⊗R R1 is equivalent to giving an R-bilinear
map

(R0 ⊗R R1)× (R0 ⊗R1)→ R0 ⊗R R1,

i.e. an R-linear map
(R0 ⊗R R1)⊗R (R0 ⊗R1)→ R0 ⊗R R1

which satisfies certain constraints (associativity, commutativity, etc.). But the left side is isomor-
phic to (R0⊗RR0)⊗R (R1⊗RR1). Since we have bilinear maps R0×R0 → R0 and R1×R1 → R1,
we get linear maps R0 ⊗R R0 → R0 and R1 ⊗R R1 → R1. Tensoring these maps gives the
multiplication as a bilinear map. It is easy to see that these two approaches are the same.

We now need to check that this operation is commutative and associative, with 1⊗ 1 as a unit;
moreover, it distributes over addition. Distributivity over addition is built into the construction
(i.e. in view of bilinearity). The rest (commutativity, associativity, units) can be checked directly
on the generators, since we have distributivity. We shall leave the details to the reader. N

We can in fact describe the tensor product of R-algebras by a universal property. We will
describe a commutative diagram:

R

%%JJJJJJJJJJ

yytttttttttt

R0

$$JJJ
JJJ

JJJ
J R1

zzttt
ttt

ttt
t

R0 ⊗R R1

Here R0 → R0 ⊗R R1 sends x 7→ x ⊗ 1; similarly for R1 7→ R0 ⊗R R1. These are ring-
homomorphisms, and it is easy to see that the above diagram commutes, since r⊗1 = 1⊗r = r(1⊗1)
for r ∈ R. In fact,

Proposition 3.18 R0⊗RR1 is universal with respect to this property: in the language of category
theory, the above diagram is a pushout square.

This means for any commutative ring B, and every pair of maps u0 : R0 → B and u1 : R1 → B
such that the pull-backs R→ R0 → B and R→ R1 → B are the same, then we get a unique map
of rings

R0 ⊗R R1 → B

which restricts on R0, R1 to the morphisms u0, u1 that we started with.
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Proof. If B is a ring as in the previous paragraph, we make B into an R-module by the map
R→ R0 → B (or R→ R1 → B, it is the same by assumption). This map R0 ⊗R R1 → B sends

x⊗ y → u0(x)u1(y).

It is easy to check that (x, y) → u0(x)u1(y) is R-bilinear (because of the condition that the two
pull-backs of u0, u1 to R are the same), and that it gives a homomorphism of rings R0⊗RR1 → B
which restricts to u0, u1 on R0, R1. One can check, for instance, that this is a homomorphism of
rings by looking at the generators.

It is also clear that R0 ⊗R R1 → B is unique, because we know that the map on elements of
the form x⊗ 1 and 1⊗ y is determined by u0, u1; these generate R0 ⊗R R1, though. N

In fact, we now claim that the category of rings has all coproducts. We see that the coproduct
of any two elements exists (as the tensor product over Z). It turns out that arbitrary coproducts
exist. More generally, if {Rα} is a family of R-algebras, then one can define an object⊗

α

Rα,

which is a coproduct of the Rα in the category of R-algebras. To do this, we simply take the
generators as before, as formal objects ⊗

rα, rα ∈ Rα,

except that all but finitely many of the rα are required to be the identity. One quotients by the
usual relations.

Alternatively, one may use the fact that filtered colimits exist, and construct the infinite co-
product as a colimit of finite coproducts (which are just ordinary tensor products).

§4 Exactness properties of the tensor product

In general, the tensor product is not exact; it is only exact on the right, but it can fail to preserve
injections. Yet in some important cases it is exact. We study that in the present section.

4.1 Right-exactness of the tensor product

We will start by talking about extent to which tensor products do preserve exactness under any
circumstance. First, let’s recall what is going on. If M,N are R-modules over the commutative
ring R, we have defined another R-module HomR(M,N) of morphisms M → N . This is left-exact
as a functor of N . In other words, if we fix M and let N vary, then the construction of homming
out of M preserves kernels.

In the language of category theory, this construction N → HomR(M,N) has an adjoint. The
other construction we discussed last time was this adjoint, and it is the tensor product. Namely,
given M,N we defined a tensor product M ⊗R N such that giving a map M ⊗R N → P into
some R-module P is the same as giving a bilinear map λ : M ×N → P , which in turn is the same
as giving an R-linear map

M → HomR(N,P ).

So we have a functorial isomorphism

HomR(M ⊗R N,P ) ' HomR(M,HomR(N,P )).

Alternatively, tensoring is the left-adjoint to the hom functor. By abstract nonsense, it follows
that since Hom(M, ·) preserves cokernels, the left-adjoint preserves cokernels and is right-exact.
We shall see this directly.
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Proposition 4.1 The functor N →M ⊗R N is right-exact, i.e. preserves cokernels.

In fact, the tensor product is symmetric, so it’s right exact in either variable.

Proof. We have to show that if N ′ → N → N ′′ → 0 is exact, then so is

M ⊗R N ′ →M ⊗R N →M ⊗R N ′′ → 0.

There are a lot of different ways to think about this. For instance, we can look at the direct
construction. The tensor product is a certain quotient of a free module.

M ⊗R N ′′ is the quotient of the free module generated by m⊗ n′′,m ∈M,n ∈ N ′′ modulo the
usual relations. The map M ⊗ N → M ⊗ N ′′ sends m ⊗ n → m ⊗ n′′ if n′′ is the image of n in
N ′′. Since each n′′ can be lifted to some n, it is obvious that the map M ⊗R N → M ⊗R N ′′ is
surjective.

Now we know that M ⊗R N ′′ is a quotient of M ⊗R N . But which relations do you have to
impose on M ⊗RN to get M ⊗RN ′′? In fact, each relation in M ⊗RN ′′ can be lifted to a relation
in M ⊗RN , but with some redundancy. So the only thing to quotient out by is the statement that
x⊗ y, x⊗ y′ have the same image in M ⊗N ′′. In particular, we have to quotient out by

x⊗ y − x⊗ y′ , y − y′ ∈ N ′

so that if we kill off x⊗ n′ for n′ ∈ N ′ ⊂ N , then we get M ⊗N ′′. This is a direct proof.
One can also give a conceptual proof. We would like to know that M ⊗N ′′ is the cokernel of

M ⊗N ′ → M ⊗N ′′. In other words, we’d like to know that if we mapped M ⊗R N into some P
and the pull-back to M ⊗R N ′, it’d factor uniquely through M ⊗R N ′′. Namely, we need to show
that

HomR(M ⊗N ′′, P ) = ker(HomR(M ⊗N,P )→ HomR(M ⊗N ′′, P )).

But the first is just HomR(N ′′,HomR(M,P )) by the adjointness property. Similarly, the second is
just

ker(HomR(N,Hom(M,P ))→ HomR(N ′,HomR(M,P ))

but this last statement is HomR(N ′′,HomR(M,P )) by just the statement that N ′′ = coker(N ′ →
N). To give a map N ′′ into some module (e.g. HomR(M,P )) is the same thing as giving a map
out of N which kills N ′. So we get the functorial isomorphism. N

Remark Formation of tensor products is, in general, not exact.

Example 4.2 Let R = Z. Let M = Z/2Z. Consider the exact sequence

0→ Z→ Q→ Q/Z→ 0

which we can tensor with M , yielding

0→ Z/2Z→ Q⊗ Z/2Z→ Q/Z⊗ Z/2Z→ 0

I claim that the second thing Q ⊗ Z/2Z is zero. This is because by tensoring with Z/2Z, we’ve
made multiplication by 2 identically zero. By tensoring with Q, we’ve made multiplication by
2 invertible. The only way to reconcile this is to have the second term zero. In particular, the
sequence becomes

0→ Z/2Z→ 0→ 0→ 0

which is not exact.

Exercise 3.19 Let R be a ring, I, J ⊂ R ideals. Show that R/I ⊗R R/J ' R/(I + J).
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4.2 A characterization of right-exact functors

Let us consider additive functors on the category of R-modules. So far, we know a very easy way
of getting such functors: given an R-module N , we have a functor

TN : M →M ⊗R N.

In other words, we have a way of generating a functor on the category of R-modules for each
R-module. These functors are all right-exact, as we have seen. Now we will prove a converse.

Proposition 4.3 Let F be a right-exact functor on the category of R-modules that commutes with
direct sums. Then F is isomorphic to some TN .

Proof. The idea is that N will be F (R).

Without the right-exactness hypothesis, we shall construct a natural morphism

F (R)⊗M → F (M)

as follows. Given m ∈ M , there is a natural map R → M sending 1 → m. This identifies
M = HomR(R,M). But functoriality gives a map F (R)×HomR(R,M)→ F (M), which is clearly
R-linear; the universal property of the tensor product now produces the desired transformation
TF (R) → F .

It is clear that TF (R)(M) → F (M) is an isomorphism for M = R, and thus for M free, as
both TF (R) and F commute with direct sums. Now let M be any R-module. There is a “free
presentation,” that is an exact sequence

RI → RJ →M → 0

for some sets I, J ; we get a commutative, exact diagram

TF (R)(R
I)

��

// TF (R)(R
J)

��

// TF (R)(M)

��

// 0

F (RI) // F (RJ) // F (M) // 0

where the leftmost two vertical arrows are isomorphisms. A diagram chase now shows that
TF (R)(M)→ F (M) is an isomorphism. In particular, F ' TF (R) as functors. N

Without the hypothesis that F commutes with arbitrary direct sums, we could only draw
the same conclusion on the category of finitely presented modules; the same proof as above goes
through, though I and J are required to be finite.6

Proposition 4.4 Let F be a right-exact functor on the category of finitely presented R-modules
that commutes with direct sums. Then F is isomorphic to some TN .

From this we can easily see that localization at a multiplicative subset S ⊂ R is given by
tensoring with S−1R. Indeed, localization is a right-exact functor on the category of R-modules,
so it is given by tensoring with some module M ; applying to R shows that M = S−1R.

6Recall that an additive functor commutes with finite direct sums.
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4.3 Flatness

In some cases, though, the tensor product is exact.

Definition 4.5 Let R be a commutative ring. An R-module M is called flat if the functor
N →M ⊗R N is exact. An R-algebra is flat if it is flat as an R-module.

We already know that tensoring with anything is right exact, so the only thing to be checked
for flatness of M is that the operation of tensoring by M preserves injections.

Example 4.6 Z/2Z is not flat as a Z-module by Example 4.2.

Example 4.7 If R is a ring, then R is flat as an R-module, because tensoring by R is the identity
functor.

More generally, if P is a projective module (i.e., homming out of P is exact), then P is flat.

Proof. If P =
⊕

AR is free, then tensoring with P corresponds to taking the direct sum |A| times,
i.e.

P ⊗RM =
⊕
A

M.

This is because tensoring with R preserves (finite or direct) infinite sums. The functor M →
⊕

AM
is exact, so free modules are flat.

A projective module, as discussed earlier, is a direct summand of a free module. So if P is
projective, P ⊕ P ′ '

⊕
AR for some P ′. Then we have that

(P ⊗RM)⊕ (P ′ ⊗RM) '
⊕
A

M.

If we had an injection M → M ′, then there is a direct sum decomposition yields a diagram of
maps

P ⊗RM

��

// ⊕
AM

��
P ⊗RM ′ // ⊕

AM
′

.

A diagram-chase now shows that the vertical map is injective. Namely, the composition P⊗RM →⊕
AM

′ is injective, so the vertical map has to be injective too. N

Example 4.8 If S ⊂ R is a multiplicative subset, then S−1R is a flat R-module, because local-
ization is an exact functor.

Let us make a few other comments.

Remark Let φ : R → R′ be a homomorphism of rings. Then, first of all, any R′-module can be
regarded as an R-module by composition with φ. In particular, R′ is an R-module.

If M is an R-module, we can define
M ⊗R R′

as an R-module. But in fact this tensor product is an R′-module; it has an action of R′. If x ∈M
and a ∈ R′ and b ∈ R′, multiplication of (x⊗ a) ∈M ⊗R R′ by b ∈ R′ sends this, by definition, to

b(x⊗ a) = x⊗ ab.

It is easy to check that this defines an action of R′ on M ⊗RR′. (One has to check that this action
factors through the appropriate relations, etc.)
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The following fact shows that the hom-sets behave nicely with respect to flat base change.

Proposition 4.9 Let M be a finitely presented R-module, N an R-module. Let S be a flat R-
algebra. Then the natural map

HomR(M,N)⊗R S → HomS(M ⊗R S,N ⊗R S)

is an isomorphism.

Proof. Indeed, it is clear that there is a natural map

HomR(M,N)→ HomS(M ⊗R S,N ⊗R S)

of R-modules. The latter is an S-module, so the universal property gives the map HomR(M,N)⊗R
S → HomS(M ⊗R S,N ⊗R S) as claimed. If N is fixed, then we have two contravariant functors
in M ,

T1(M) = HomR(M,N)⊗R S, T2(M) = HomS(M ⊗R S,N ⊗R S).

We also have a natural transformation T1(M)→ T2(M). It is clear that if M is finitely generated
and free, then the natural transformation is an isomorphism (for example, if M = R, then we just
have the map N ⊗R S → N ⊗R S).

Note moreover that both functors are left-exact: that is, given an exact sequence

M ′ →M →M ′′ → 0,

there are induced exact sequences

0→ T1(M ′′)→ T1(M)→ T1(M ′), 0→ T2(M ′′)→ T2(M)→ T2(M ′).

Here we are using the fact that Hom is always a left-exact functor and the fact that tensoring with
S preserves exactness. (Thus it is here that we use flatness.)

Now the following lemma will complete the proof:

Lemma 4.10 Let T1, T2 be contravariant, left-exact additive functors from the category of R-
modules to the category of abelian groups. Suppose a natural transformation t : T1(M) → T2(M)
is given, and suppose this is an isomorphism whenever M is finitely generated and free. Then it
is an isomorphism for any finitely presented module M .

Proof. This lemma is a diagram chase. Fix a finitely presented M , and choose a presentation

F ′ → F →M → 0,

with F ′, F finitely generated and free. Then we have an exact and commutative diagram

0 // T1(M)

��

// T1(F )

'
��

// T1(F ′)

'
��

0 // T2(M) // T2(F ) // T2(F ′). N

By hypotheses, the two vertical arrows to the right are isomorphisms, as indicated. A diagram
chase now shows that the remaining arrow is an isomorphism, which is what we wanted to prove.N

Example 4.11 Let us now consider finitely generated flat modules over a principal ideal domain
R. By Theorem 5.4, we know that any such M is isomorphic to a direct sum

⊕
R/ai for some

ai ∈ R. But if any of the ai is not zero, then that ai would be a nonzero zerodivisor on M .
However, we know no element of R−{0} can be a zerodivisor on M . It follows that all the ai = 0.
In particular, we have proved:

Proposition 4.12 A finitely generated module over a PID is flat if and only if it is free.
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4.4 Finitely presented flat modules

In Example 4.7, we saw that a projective module over any ring R was automatically flat. In
general, the converse is flat. For instance, Q is a flat Z-module (as tensoring by Q is a form of
localization). However, because Q is divisible (namely, multiplication by n is surjective for any n),
Q cannot be a free abelian group.

Nonetheless:

Theorem 4.13 A finitely presented flat module over a ring R is projective.

Proof. We follow [Wei94].
Let us define the following contravariant functor from R-modules to R-modules. Given M ,

we send it to M∗ = HomZ(M,Q/Z). This is made into an R-module in the following manner:
given φ : M → Q/Z (which is just a homomorphism of abelian groups!) and r ∈ R, we send
this to rφ defined by (rφ)(m) = φ(rm). Since Q/Z is an injective abelian group, we see that
M 7→ M∗ is an exact contravariant functor from R-modules to R-modules. In fact, we note that
0→ A→ B → C → 0 is exact implies 0→ C∗ → B∗ → A∗ → 0 is exact.

Let F be any R-module. There is a natural homomorphism

M∗ ⊗R F → HomR(F,M)∗. (3.6)

This is defined as follows. Given φ : M → Q/Z and x ∈ F , we define a new map Hom(F,M)→ Q/Z
by sending a homomorphism ψ : F →M to φ(ψ(x)). In other words, we have a natural map

HomZ(M,Q/Z)⊗R F → HomZ(HomR(F,M)∗,Q/Z).

Now fix M . This map (3.6) is an isomorphism if F is finitely generated and free. Both are
right-exact (because dualizing is contravariant-exact!). The “finite presentation trick” now shows
that the map is an isomorphism if F is finitely presented. TO BE ADDED: this should be
elaborated on

Fix now F finitely presented and flat, and consider the above two quantities in (3.6) as functors
in M . Then the first functor is exact, so the second one is too. In particular, HomR(F,M)∗ is an
exact functor in M ; in particular, if M �M ′′ is a surjection, then

HomR(F,M ′′)∗ → HomR(F,M)∗

is an injection. But this implies that

HomR(F,M)→ HomR(F,M ′′)

is a surjection, i.e. that F is projective. Indeed:

Lemma 4.14 A→ B → C is exact if and only if C∗ → B∗ → A∗ is exact.

Proof. Indeed, one direction was already clear (from Q/Z being an injective abelian group). Con-
versely, we note that M = 0 if and only if M∗ = 0 (again by injectivity and the fact that (Z/a)∗ 6= 0
for any a). Thus dualizing reflects isomorphisms: if a map becomes an isomorphism after dualized,
then it was an isomorphism already. From here it is easy to deduce the result (by applying the
above fact to the kernel and image). N
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[BBD82] A. A. Bĕılinson, J. Bernstein, and P. Deligne. Faisceaux pervers. In Analysis and topology
on singular spaces, I (Luminy, 1981), volume 100 of Astérisque, pages 5–171. Soc. Math.
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de “platification” d’un module. Invent. Math., 13:1–89, 1971.
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