
Contents

4 The Spec of a ring 3
1 The spectrum of a ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Definition and examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 The radical ideal-closed subset correspondence . . . . . . . . . . . . . . . . 5
1.3 A meta-observation about prime ideals . . . . . . . . . . . . . . . . . . . . . 7
1.4 Functoriality of Spec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 A basis for the Zariski topology . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Nilpotent elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1 The radical of a ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Lifting idempotents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Vista: sheaves on SpecR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1 Presheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Sheaves on SpecA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Copyright 2011 the CRing Project. This file is part of the CRing Project, which
is released under the GNU Free Documentation License, Version 1.2.

1



CRing Project, Chapter 4

2



Chapter 4

The Spec of a ring

The notion of the Spec of a ring is fundamental in modern algebraic geometry. It is the scheme-
theoretic analog of classical affine schemes. The identification occurs when one identifies the
maximal ideals of the polynomial ring k[x1, . . . , xn] (for k an algebraically closed field) with the
points of the classical variety Ank = kn. In modern algebraic geometry, one adds the “non-closed
points” given by the other prime ideals. Just as general varieties were classically defined by gluing
affine varieties, a scheme is defined by gluing open affines.

This is not a book on schemes, but it will nonetheless be convenient to introduce the Spec con-
struction, outside of the obvious benefits of including preparatory material for algebraic geometry.
First of all, it will provide a convenient notation. Second, and more importantly, it will provide a
convenient geometric intuition. For example, an R-module can be thought of as a kind of “vector
bundle”—technically, a sheaf—over the space SpecR, with the caveat that the rank might not be
locally constant (which is, however, the case when the module is projective).

§1 The spectrum of a ring

We shall now associate to every commutative ring a topological space SpecR in a functorial manner.
That is, there will be a contravariant functor

Spec : CRing→ Top

where Top is the category of topological spaces. This construction is the basis for scheme-theoretic
algebraic geometry and will be used frequently in the sequel.

The motivating observation is the following. If k is an algebraically closed field, then the
maximal ideals in k[x1, . . . , xn] are of the form (x1−a1, . . . , xn−an) for (a1, . . . , an) ∈ k[x1, . . . , xn].
This is the Nullstellensatz, which we have not proved yet. We can thus identify the maximal ideals
in the polynomial ring with the space kn. If I ⊂ k[x1, . . . , xn] is an ideal, then the maximal ideals
in k[x1, . . . , xn] correspond to points where everything in I vanishes. See Example 1.5 for a more
detailed explanation. Classical affine algebraic geometry thus studies the set of maximal ideals in
an algebra finitely generated over an algebraically closed field.

The Spec of a ring is a generalization of this construction. In general, it is more natural to use
all prime ideals instead of just maximal ideals.

1.1 Definition and examples

We start by defining Spec as a set. We will next construct the Zariski topology and later the
functoriality.

Definition 1.1 Let R be a commutative ring. The spectrum of R, denoted SpecR, is the set of
prime ideals of R.
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We shall now make SpecR into a topological space. First, we describe a collection of sets which
will become the closed sets. If I ⊂ R is an ideal, let

V (I) = {p : p ⊃ I} ⊂ SpecR.

Proposition 1.2 There is a topology on SpecR such that the closed subsets are of the form V (I)
for I ⊂ R an ideal.

Proof. Indeed, we have to check the familiar axioms for a topology:

1. ∅ = V ((1)) because no prime contains 1. So ∅ is closed.

2. SpecR = V ((0)) because any ideal contains zero. So SpecR is closed.

3. We show the closed sets are stable under intersections. Let Kα = V (Iα) be closed subsets of
SpecR for α ranging over some index set. Let I =

∑
Iα. Then

V (I) =
⋂
Kα =

⋂
V (Iα),

which follows because I is the smallest ideal containing each Iα, so a prime contains every
Iα iff it contains I.

4. The union of two closed sets is closed. Indeed, if K,K ′ ⊂ SpecR are closed, we show K ∪K ′
is closed. Say K = V (I),K ′ = V (I ′). Then we claim:

K ∪K ′ = V (II ′).

Here, as usual, II ′ is the ideal generated by products ii′, i ∈ I, i′ ∈ I ′. If p is prime and
contains II ′, it must contain one of I, I ′; this implies the displayed equation above and
implies the result. N

Definition 1.3 The topology on SpecR defined above is called the Zariski topology. With it,
SpecR is now a topological space.

Exercise 4.1 What is the Spec of the zero ring?

In order to see the geometry of this construction, let us work several examples.

Example 1.4 Let R = Z, and consider SpecZ. Then every prime is generated by one element,
since Z is a PID. We have that SpecZ = {(0)}∪

⋃
p prime{(p)}. The picture is that one has all the

familiar primes (2), (3), (5), . . . , and then a special point (0).
Let us now describe the closed subsets. These are of the form V (I) where I ⊂ Z is an ideal, so

I = (n) for some n ∈ Z.

1. If n = 0, the closed subset is all of SpecZ.

2. If n 6= 0, then n has finitely many prime divisors. So V ((n)) consists of the prime ideals
corresponding to these prime divisors.

The only closed subsets besides the entire space are the finite subsets that exclude (0).

Example 1.5 Say R = C[x, y] is a polynomial ring in two variables. We will not give a complete
description of SpecR here. But we will write down several prime ideals.
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1. For every pair of complex numbers s, t ∈ C, the collection of polynomials f ∈ R such that
f(s, t) = 0 is a prime ideal ms,t ⊂ R. In fact, it is maximal, as the residue ring is all of C.
Indeed, R/ms,t ' C under the map f → f(s, t).

In fact,

Theorem 1.6 The ms,t are all the maximal ideals in R.

This will follow from the Hilbert Nullstellensatz to be proved later (Theorem 4.5).

2. (0) ⊂ R is a prime ideal since R is a domain.

3. If f(x, y) ∈ R is an irreducible polynomial, then (f) is a prime ideal. This is equivalent to
unique factorization in R.1

To draw SpecR, we start by drawing C2, which is identified with the collection of maximal
ideals ms,t, s, t ∈ C. SpecR has additional (non-closed) points too, as described above, but for now
let us consider the topology induced on C2 as a subspace of SpecR.

The closed subsets of SpecR are subsets V (I) where I is an ideal, generated by polynomials
{fα(x, y)}. It is of interest to determine the subset of C2 that V (I) induces. In other words, we
ask:

What points of C2 (with (s, t) identified with ms,t) lie in V (I)?

Now, by definition, we know that (s, t) corresponds to a point of V (I) if and only if I ⊂ ms,t. This
is true iff all the fα lie in ms,t, i.e. if fα(s, t) = 0 for all α. So the closed subsets of C2 (with the
induced Zariski topology) are precisely the subsets that can be defined by polynomial equations.

This is much coarser than the usual topology. For instance, {(z1, z2) : <(z1) ≥ 0} is not Zariski-
closed. The Zariski topology is so coarse because one has only algebraic data (namely, polynomials,
or elements of R) to define the topology.

Exercise 4.2 Let R1, R2 be commutative rings. Give R1 ×R2 a natural structure of a ring, and
describe Spec(R1 ×R2) in terms of SpecR1 and SpecR2.

Exercise 4.3 Let X be a compact Hausdorff space, C(X) the ring of real continuous functions
X → R. The maximal ideals in SpecC(X) are in bijection with the points of X, and the topology
induced on X (as a subset of SpecC(X) with the Zariski topology) is just the usual topology.

Exercise 4.4 Prove the following result: if X,Y are compact Hausdorff spaces and C(X), C(Y )
the associated rings of continuous functions, if C(X), C(Y ) are isomorphic as R-algebras, then X
is homeomorphic to Y .

1.2 The radical ideal-closed subset correspondence

We now return to the case of an arbitrary commutative ring R. If I ⊂ R, we get a closed subset
V (I) ⊂ SpecR. It is called V (I) because one is supposed to think of it as the places where
the elements of I “vanish,” as the elements of R are something like “functions.” This analogy
is perhaps best seen in the example of a polynomial ring over an algebraically closed field, e.g.
Example 1.5 above.

The map from ideals into closed sets is very far from being injective in general, though by
definition it is surjective.

Example 1.7 If R = Z and p is prime, then I = (p), I ′ = (p2) define the same subset (namely,
{(p)}) of SpecR.

1To be proved later ??.
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We now ask why the map from ideals to closed subsets fails to be injective. As we shall see,
the entire problem disappears if we restrict to radical ideals.

Definition 1.8 If I is an ideal, then the radical Rad(I) or
√
I is defined as

Rad(I) = {x ∈ R : xn ∈ I for some n} .

An ideal is radical if it is equal to its radical. (This is equivalent to the earlier Definition 2.5.)

Before proceeding, we must check:

Lemma 1.9 If I an ideal, so is Rad(I).

Proof. Clearly Rad(I) is closed under multiplication since I is. Suppose x, y ∈ Rad(I); we show
x + y ∈ Rad(I). Then xn, yn ∈ I for some n (large) and thus for all larger n. The binomial
expansion now gives

(x+ y)2n = x2n +

(
2n

1

)
x2n−1y + · · ·+ y2n,

where every term contains either x, y with power≥ n, so every term belongs to I. Thus (x+y)2n ∈ I
and, by definition, we see then that x+ y ∈ Rad(I). N

The map I → V (I) does in fact depend only on the radical of I. In fact, if I, J have the same
radical Rad(I) = Rad(J), then V (I) = V (J). Indeed, V (I) = V (Rad(I)) = V (Rad(J)) = V (J)
by:

Lemma 1.10 For any I, V (I) = V (Rad(I)).

Proof. Indeed, I ⊂ Rad(I) and therefore obviously V (Rad(I)) ⊂ V (I). We have to show the
converse inclusion. Namely, we must prove:

If p ⊃ I, then p ⊃ Rad(I).

So suppose p ⊃ I is prime and x ∈ Rad(I); then xn ∈ I ⊂ p for some n. But p is prime, so
whenever a product of things belongs to p, a factor does. Thus since xn = x ·x · · ·x, we must have
x ∈ p. So

Rad(I) ⊂ p,

proving the quoted claim, and thus the lemma. N

There is a converse to this remark:

Proposition 1.11 If V (I) = V (J), then Rad(I) = Rad(J).

So two ideals define the same closed subset iff they have the same radical.

Proof. We write down a formula for Rad(I) that will imply this at once.

Lemma 1.12 For a commutative ring R and an ideal I ⊂ R,

Rad(I) =
⋂
p⊃I

p.

From this, it follows that V (I) determines Rad(I). This will thus imply the proposition. We now
prove the lemma:

Proof. 1. We show Rad(I) ⊂
⋂

p∈V (I) p. In particular, this follows if we show that if a prime

contains I, it contains Rad(I); but we have already discussed this above.
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2. If x /∈ Rad(I), we will show that there is a prime ideal p ⊃ I not containing x. This will
imply the reverse inclusion and the lemma.

We want to find p not containing x, more generally not containing any power of x. In particular,
we want p∩

{
1, x, x2 . . . ,

}
= ∅. This set S = {1, x, . . . } is multiplicatively closed, in that it contains

1 and is closed under finite products. Right now, it does not interset I; we want to find a prime
containing I that still does not intersect {xn, n ≥ 0}.

More generally, we will prove:

Sublemma 1.13 Let S be multiplicatively closed set in any ring R and let I be any ideal with
I ∩ S = ∅. There is a prime ideal p ⊃ I and does not intersect S (in fact, any ideal maximal with
respect to the condition of not intersecting S will do).

In English, any ideal missing S can be enlarged to a prime ideal missing S. This is actually fancier
version of a previous argument. We showed earlier that any ideal not containing the multiplicatively
closed subset {1} can be contained in a prime ideal not containing 1, in Proposition 4.5.

Note that the sublemma clearly implies the lemma when applied to S = {1, x, . . . } .

Proof (Proof of the sublemma). Let P = {J : J ⊃ I, J ∩ S = ∅}. Then P is a poset with respect
to inclusion. Note that P 6= ∅ because I ∈ P . Also, for any nonempty linearly ordered subset of
P , the union is in P (i.e. there is an upper bound). We can invoke Zorn’s lemma to get a maximal
element of P . This element is an ideal p ⊃ I with p ∩ S = ∅. We claim that p is prime.

First of all, 1 /∈ p because 1 ∈ S. We need only check that if xy ∈ p, then x ∈ p or y ∈ p.
Suppose otherwise, so x, y /∈ p. Then (x, p) /∈ P or p would not be maximal. Ditto for (y, p).

In particular, we have that these bigger ideals both intersect S. This means that there are

a ∈ p, r ∈ R such that a+ rx ∈ S

and
b ∈ p, r′ ∈ R such that b+ r′y ∈ S.

Now S is multiplicatively closed, so multiply (a+ rx)(b+ r′y) ∈ S. We find:

ab+ ar′y + brx+ rr′xy ∈ S. N

Now a, b ∈ p and xy ∈ p, so all the terms above are in p, and the sum is too. But this contradicts
p ∩ S = ∅. N

The upshot of the previous lemmata is:

Proposition 1.14 There is a bijection between the closed subsets of SpecR and radical ideals
I ⊂ R.

1.3 A meta-observation about prime ideals

We saw in the previous subsection (?? 1.13) that an ideal maximal with respect to the property
of not intersecting a multiplicatively closed subset is prime. It turns out that this is the case for
many such properties of ideals. A general method of seeing this was developed in [LR08]. In this
(optional) subsection, we digress to explain this phenomenon.

If I is an ideal and a ∈ R, we define the notation

(I : a) = {x ∈ R : xa ∈ I} .

More generally, if J is an ideal, we define

(I : J) = {x ∈ R : xJ ⊂ I} .

7
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Let R be a ring, and F a collection of ideals of R. We are interested in conditions that will
guarantee that the maximal elements of F are prime. Actually, we will do the opposite: the
following condition will guarantee that the ideals maximal at not being in F are prime.

Definition 1.15 The family F is called an Oka family if R ∈ F (where R is considered as an
ideal) and whenever I ⊂ R is an ideal and (I : a), (I, a) ∈ F (for some a ∈ R), then I ∈ F .

Example 1.16 Let us begin with a simple observation. If (I : a) is generated by a1, . . . , an and
(I, a) is generated by a, b1, . . . , bm (where we may take b1, . . . , bm ∈ I, without loss of generality),
then I is generated by aa1, . . . , aan, b1, . . . , bm. To see this, note that if x ∈ I, then x ∈ (I, a) is a
linear combination of the {a, b1, . . . , bm}, but the coefficient of a must lie in (I : a).

As a result, we may deduce that the family of finitely generated ideals is an Oka family.

Example 1.17 Let us now show that the family of principal ideals is an Oka family. Indeed,
suppose I ⊂ R is an ideal, and (I, a) and (I : a) are principal. One can easily check that
(I : a) = (I : (I, a)). Setting J = (I, a), we find that J is principal and (I : J) is too. However, for
any principal ideal J , and for any ideal I ⊂ J ,

I = J(I : J)

as one easily checks. Thus we find in our situation that since J = (I, a) and (I : J) are principal,
I is principal.

Proposition 1.18 ([LR08]) If F is an Oka family of ideals, then any maximal element of the
complement of F is prime.

Proof. Suppose I /∈ F is maximal with respect to not being in F but I is not prime. Note that
I 6= R by hypothesis. Then there is a ∈ R such that (I : a), (I, a) both strictly contain I, so they
must belong to F . Indeed, we can find a, b ∈ R − I with ab ∈ I; it follows that (I, a) 6= I and
(I : a) contains b /∈ I.

By the Oka condition, we have I ∈ F , a contradiction. N

Corollary 1.19 (Cohen) If every prime ideal of R is finitely generated, then every ideal of R is
finitely generated.2

Proof. Suppose that there existed ideals I ⊂ R which were not finitely generated. The union of a
totally ordered chain {Iα} of ideals that are not finitely generated is not finitely generated; indeed,
if I =

⋃
Iα were generated by a1, . . . , an, then all the generators would belong to some Iα and

would consequently generate it.
By Zorn’s lemma, there is an ideal maximal with respect to being not finitely generated.

However, by Proposition 1.18, this ideal is necessarily prime (since the family of finitely generated
ideals is an Oka family). This contradicts the hypothesis. N

Corollary 1.20 If every prime ideal of R is principal, then every ideal of R is principal.

Proof. This is proved in the same way. N

Exercise 4.5 Suppose every nonzero prime ideal in R contains a non-zerodivisor. Then R is a
domain. (Hint: consider the set S of nonzerodivisors, and argue that any ideal maximal with
respect to not intersecting S is prime. Thus, (0) is prime.)

2Later we will say that R is noetherian.
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Remark Let R be a ring. Let κ be an infinite cardinal. By applying Example 1.16 and Propo-
sition 1.18 we see that any ideal maximal with respect to the property of not being generated by
κ elements is prime. This result is not so useful because there exists a ring for which every prime
ideal of R can be generated by ℵ0 elements, but some ideal cannot. Namely, let k be a field, let T
be a set whose cardinality is greater than ℵ0 and let

R = k[{xn}n≥1, {zt,n}t∈T,n≥0]/(x2n, z
2
t,n, xnzt,n − zt,n−1)

This is a local ring with unique prime ideal m = (xn). But the ideal (zt,n) cannot be generated by
countably many elements.

1.4 Functoriality of Spec

The construction R → SpecR is functorial in R in a contravariant sense. That is, if f : R → R′,
there is a continuous map SpecR′ → SpecR. This map sends p ⊂ R′ to f−1(p) ⊂ R, which is
easily seen to be a prime ideal in R. Call this map F : SpecR′ → SpecR. So far, we have seen
that SpecR induces a contravariant functor from Rings→ Sets.

Exercise 4.6 A contravariant functor F : C → Sets (for some category C) is called repre-
sentable if it is naturally isomorphic to a functor of the form X → Hom(X,X0) for some X0 ∈ C,
or equivalently if the induced covariant functor on Cop is corepresentable.

The functor R → SpecR is not representable. (Hint: Indeed, a representable functor must
send the initial object into a one-point set.)

Next, we check that the morphisms induced on Spec’s from a ring-homomorphism are in fact
continuous maps of topological spaces.

Proposition 1.21 Spec induces a contravariant functor from Rings to the category Top of topo-
logical spaces.

Proof. Let f : R → R′. We need to check that this map SpecR′ → SpecR, which we call F , is
continuous. That is, we must check that F−1 sends closed subsets of SpecR to closed subsets of
SpecR′.

More precisely, if I ⊂ R and we take the inverse image F−1(V (I)) ⊂ SpecR′, it is just the
closed set V (f(I)). This is best left to the reader, but here is the justification. If p ∈ SpecR′, then
F (p) = f−1(p) ⊃ I if and only if p ⊃ f(I). So F (p) ∈ V (I) if and only if p ∈ V (f(I)).

Example 1.22 Let R be a commutative ring, I ⊂ R an ideal, f : R → R/I. There is a map of
topological spaces

F : Spec(R/I)→ SpecR.

This map is a closed embedding whose image is V (I). Most of this follows because there is a
bijection between ideals of R containing I and ideals of R/I, and this bijection preserves primality.

Exercise 4.7 Show that this map SpecR/I → SpecR is indeed a homeomorphism from SpecR/I →
V (I).

1.5 A basis for the Zariski topology

In the previous section, we were talking about the Zariski topology. If R is a commutative ring, we
recall that SpecR is defined to be the collection of prime ideals in R. This has a topology where
the closed sets are the sets of the form

V (I) = {p ∈ SpecR : p ⊃ I} .

There is another way to describe the Zariski topology in terms of open sets.

9
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Definition 1.23 If f ∈ R, we let

Uf = {p : f /∈ p}

so that Uf is the subset of SpecR consisting of primes not containing f . This is the complement
of V ((f)), so it is open.

Proposition 1.24 The sets Uf form a basis for the Zariski topology.

Proof. Suppose U ⊂ SpecR is open. We claim that U is a union of basic open sets Uf .
Now U = SpecR− V (I) for some ideal I. Then

U =
⋃
f∈I

Uf

because if an ideal is not in V (I), then it fails to contain some f ∈ I, i.e. is in Uf for that f .
Alternatively, we could take complements, whence the above statement becomes

V (I) =
⋂
f∈I

V ((f))

which is clear. N

The basic open sets have nice properties.

1. U1 = SpecR because prime ideals are not allowed to contain the unit element.

2. U0 = ∅ because every prime ideal contains 0.

3. Ufg = Uf ∩ Ug because fg lies in a prime ideal p if and only if one of f, g does.

Now let us describe what the Zariski topology has to do with localization. Let R be a ring and
f ∈ R. Consider S =

{
1, f, f2, . . .

}
; this is a multiplicatively closed subset. Last week, we defined

S−1R.

Definition 1.25 For S the powers of f , we write Rf or R[f−1] for the localization S−1R.

There is a map φ : R→ R[f−1] and a corresponding map

SpecR[f−1]→ SpecR

sending a prime p ⊂ R[f−1] to φ−1(p).

Proposition 1.26 This map induces a homeomorphism of SpecR[f−1] onto Uf ⊂ SpecR.

So if one takes a commutative ring and inverts an element, one just gets an open subset of Spec.
This is why it’s called localization: one is restricting to an open subset on the Spec level when one
inverts something.

Proof. The reader is encouraged to work this proof out for herself.

1. First, we show that SpecR[f−1] → SpecR lands in Uf . If p ⊂ R[f−1], then we must show
that the inverse image φ−1(p) can’t contain f . If otherwise, that would imply that φ(f) ∈ p;
however, φ(f) is invertible, and then p would be (1).

10
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2. Let’s show that the map surjects onto Uf . If p ⊂ R is a prime ideal not containing f , i.e.
p ∈ Uf . We want to construct a corresponding prime in the ring R[f−1] whose inverse image
is p.

Let p[f−1] be the collection of all fractions

{ x
fn
, x ∈ p} ⊂ R[f−1],

which is evidently an ideal. Note that whether the numerator is in p is independent of the
representing fraction x

fn used.3 In fact, p[f−1] is a prime ideal. Indeed, suppose

a

fm
b

fn
∈ p[f−1].

Then ab
fm+n belongs to this ideal, which means ab ∈ p; so one of a, b ∈ p and one of the two

fractions a
fm ,

b
fn belongs to p[f−1]. Also, 1/1 /∈ p[f−1].

It is clear that the inverse image of p[f−1] is p, because the image of x ∈ R is x/1, and this
belongs to p[f−1] precisely when x ∈ p.

3. The map SpecR[f−1]→ SpecR is injective. Suppose p, p′ are prime ideals in the localization
and the inverse images are the same. We must show that p = p′.

Suppose x
fn ∈ p. Then x/1 ∈ p, so x ∈ φ−1(p) = φ−1(p′). This means that x/1 ∈ p′, so

x
fn ∈ p′ too. So a fraction that belongs to p belongs to p′. By symmetry the two ideals must
be the same.

4. We now know that the map ψ : SpecR[f−1] → Uf is a continuous bijection. It is left to
see that it is a homeomorphism. We will show that it is open. In particular, we have to
show that a basic open set on the left side is mapped to an open set on the right side. If
y/fn ∈ R[f−1], we have to show that Uy/fn ⊂ SpecR[f−1] has open image under ψ. We’ll
in fact show what open set it is.

We claim that

ψ(Uy/fn) = Ufy ⊂ SpecR.

To see this, p is contained in Uf/yn . This mean that p doesn’t contain y/fn. In particular, p
doesn’t contain the multiple yf/1. So ψ(p) doesn’t contain yf . This proves the inclusion ⊂.

5. To complete the proof of the claim, and the result, we must show that if p ⊂ SpecR[f−1]
and ψ(p) = φ−1(p) ∈ Ufy, then y/fn doesn’t belong to p. (This is kosher and dandy because
we have a bijection.) But the hypothesis implies that fy /∈ φ−1(p), so fy/1 /∈ p. Dividing by
fn+1 implies that

y/fn /∈ p

and p ∈ Uf/yn . N

If SpecR is a space, and f is thought of as a “function” defined on SpecR, the space Uf is
to be thought of as the set of points where f “doesn’t vanish” or “is invertible.” Thinking about
rings in terms of their spectra is a very useful idea. We will bring it up when appropriate.

3Suppose x
fn = y

fk for y ∈ p. Then there is N such that fN (fkx − fny) = 0 ∈ p; since y ∈ p and f /∈ p, it

follows that x ∈ p.

11
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Remark The constructionR→ R[f−1] as discussed above is an instance of localization. More gen-
erally, we defined S−1R for S ⊂ R multiplicatively closed. We can thus define maps SpecS−1R→
SpecR. To understand S−1R, it may help to note that

lim−→
f∈S

R[f−1]

which is a direct limit of rings where one inverts more and more elements.
As an example, consider S = R − p for a prime p, and for simplicity that R is countable. We

can write S = S0 ∪ S1 ∪ . . . , where each Sk is generated by a finite number of elements f0, . . . , fk.
Then Rp = lim−→S−1k R. So we have

S−1R = lim−→
k

R[f−10 , f−11 , . . . , f−1k ] = lim−→R[(f0 . . . fk)−1].

The functions we invert in this construction are precisely those which do not contain p, or where
“the functions don’t vanish.”

The geometric idea is that to construct SpecS−1R = SpecRp, we keep cutting out from SpecR
vanishing locuses of various functions that do not intersect p. In the end, you don’t restrict to an
open set, but to an intersection of them.

Exercise 4.8 Say that R is semi-local if it has finitely many maximal ideals. Let p1, . . . , pn ⊂ R
be primes. The complement of the union, S = Rr

⋃
pi, is closed under multiplication, so we can

localize. R[S−1] = RS is called the semi-localization of R at the pi.
The result of semi-localization is always semi-local. To see this, recall that the ideals in RS are

in bijection with ideals in R contained in
⋃

pi. Now use prime avoidance.

Definition 1.27 For a finitely generated R-module M , define µR(M) to be the smallest number
of elements that can generate M .

This is not the same as the cardinality of a minimal set of generators. For example, 2 and 3 are a
minimal set of generators for Z over itself, but µZ(Z) = 1.

Theorem 1.28 Let R be semi-local with maximal ideals m1, . . . ,mn. Let ki = R/mi. Then

muR(M) = max{dimkiM/miM}

Proof. TO BE ADDED: proof N

§2 Nilpotent elements

We will now prove a few general results about nilpotent results in a ring. Topologically, the
nilpotents do very little: quotienting by them will not change the Spec. Nonetheless, they carry
geometric importance, and one thinks of these nilpotents as “infinitesimal thickenings” (in a sense
to be elucidated below).

2.1 The radical of a ring

There is a useful corollary of the analysis in the previous section about the Spec of a ring.

Definition 2.1 x ∈ R is called nilpotent if a power of x is zero. The set of nilpotent elements
in R is called the radical of R and is denoted Rad(R) (which is an abuse of notation).

12
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The set of nilpotents is just the radical Rad((0)) of the zero ideal, so it is an ideal. It can vary
greatly. A domain clearly has no nonzero nilpotents. On the other hand, many rings do:

Example 2.2 For any n ≥ 2, the ring Z[X]/(Xn) has a nilpotent, namely X. The ideal of
nilpotent elements is (X).

It is easy to see that a nilpotent must lie in any prime ideal. The converse is also true by the
previous analysis. As a corollary of it, we find in fact:

Corollary 2.3 Let R be a commutative ring. Then the set of nilpotent elements of R is precisely⋂
p∈SpecR p.

Proof. Apply Lemma 1.12 to the zero ideal. N

We now consider a few examples of nilpotent elements.

Example 2.4 (Nilpotents in polynomial rings) Let us now compute the nilpotent elements
in the polynomial R[x]. The claim is that a polynomial

∑n
m=0 amx

m ∈ R[x] is nilpotent if and
only if all the coefficients am ∈ R are nilpotent. That is, Rad(R[x]) = (Rad(R))R[x].

If a0, . . . , an are nilpotent, then because the nilpotent elements form an ideal, f = a0+· · ·+anxn
is nilpotent. Conversely, if f is nilpotent, then fm = 0 and thus (anx

n)m = 0. Thus anx
n is

nilpotent, and because the nilpotent elements form an ideal, f − anxn is nilpotent. By induction,
aix

i is nilpotent for all i, so that all ai are nilpotent.

Before the next example, we need to define a new notion. We now define a power series ring
intuitively in the same way they are used in calculus. In fact, we will use power series rings much
the same way we used them in calculus; they will serve as keeping track of fine local data that the
Zariski topology might “miss” due to its coarseness.

Definition 2.5 Let R be a ring. The power series ring R[[x]] is just the set of all expressions of
the form

∑∞
i=0 cix

i. The arithmetic for the power series ring will be done term by term formally
(since we have no topology, we can’t consider questions of convergence, though a natural topology
can be defined making R[[x]] the completion of another ring, as we shall see later).

Example 2.6 (Nilpotence in power series rings) Let R be a ring such that Rad(R) is a
finitely generated ideal. (This is satisfied, e.g., if R is noetherian, cf. Chapter 5.) Let us con-
sider the question of how Rad(R) and Rad(R[[x]]) are related. The claim is that

Rad(R[[x]]) = (Rad(R))R[[x]].

If f ∈ R[[x]] is nilpotent, say with fn = 0, then certainly an0 = 0, so that a0 is nilpotent.
Because the nilpotent elements form an ideal, we have that f − a0 is also nilpotent, and hence by
induction every coefficient of f must be nilpotent in R. For the converse, let I = Rad(R). There
exists an N > 0 such that the ideal power IN = 0 by finite generation. Thus if f ∈ IR[[x]], then
fN ∈ INR[[x]] = 0.

Exercise 4.9 Prove that x ∈ R is nilpotent if and only if the localization Rx is the zero ring.

Exercise 4.10 Construct an example where Rad(R)R[[x]] 6= Rad(R[[x]]). (Hint: consider R =
C[X1, X2, X3, . . . ]/(X1, X

2
2 , X

3
3 , . . . ).)

13
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2.2 Lifting idempotents

If R is a ring, and I ⊂ R a nilpotent ideal, then we want to think of R/I as somehow close to R.
For instance, the inclusion SpecR/I ↪→ SpecR is a homeomorphism, and one pictures that SpecR
has some “fuzz” added (with the extra nilpotents in I) that is killed in SpecR/I.

One manifestation of the “closeness” of R and R/I is the following result, which states that the
idempotent elements4 of the two are in natural bijection. For convenience, we state it in additional
generality (that is, for noncommutative rings).

Lemma 2.7 (Lifting idempotents) Suppose I ⊂ R is a nilpotent two-sided ideal, for R any5

ring. Let e ∈ R/I be an idempotent. Then there is an idempotent e ∈ R which reduces to e.

Note that if J is a two-sided ideal in a noncommutative ring, then so are the powers of J .

Proof. Let us first assume that I2 = 0. We can find e1 ∈ R which reduces to e, but e1 is not
necessarily idempotent. By replacing R with Z[e1] and I with Z[e1] ∩ I, we may assume that R is
in fact commutative. However,

e21 ∈ e1 + I.

Suppose we want to modify e1 by i such that e = e1 + i is idempotent and i ∈ I; then e will do as
in the lemma. We would then necessarily have

e1 + i = (e1 + i)2 = e21 + 2e1i as I2 = 0.

In particular, we must satisfy
i(1− 2e1) = e21 − e1 ∈ I.

We claim that 1 − 2e1 ∈ R is invertible, so that we can solve for i ∈ I. However, R is
commutative. It thus suffices to check that 1 − 2e1 lies in no maximal ideal of R. But the image
of e1 in R/m for any maximal ideal m ⊂ R is either zero or one. So 1− 2e1 has image either 1 or
−1 in R/m. Thus it is invertible.

This establishes the result when I has zero square. In general, suppose In = 0. We have the
sequence of noncommutative rings:

R� R/In−1 � R/In−2 · · ·� R/I.

The kernel at each step is an ideal whose square is zero. Thus, we can use the lifting idempotents
partial result proved above each step of the way and left e ∈ R/I to some e ∈ R. N

While the above proof has the virtue of applying to noncommutative rings, there is a more con-
ceptual argument for commutative rings. The idea is that idempotents in A measure disconnections
of SpecA.6 Since the topological space underlying SpecA is unchanged when one quotients by
nilpotents, idempotents are unaffected. We prove:

Proposition 2.8 If X = Spec A, then there is a one-to-one correspondence between Idem(A) and
the open and closed subsets of X.

Proof. Suppose I is the radical of (e) for an an idempotent e ∈ R. We show that V (I) is open and
closed. Since V is unaffected by passing to the radical, we will assume without loss of generality
that

I = (e).

4Recall that an element e ∈ R is idempotent if e2 = e.
5Not necessarily commutative.
6More generally, in any ringed space (a space with a sheaf of rings), the idempotents in the ring of global sections

correspond to the disconnections of the topological space.

14
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I claim that SpecR − V (I) is just V (1− e) = V ((1− e)). This is a closed set, so proving this
claim will imply that V (I) is open. Indeed, V (e) = V ((e)) cannot intersect V (1− e) because if

p ∈ V (e) ∩ V (1− e),

then e, 1− e ∈ p, so 1 ∈ p. This is a contradiction since p is necessarily prime.
Conversely, suppose that p ∈ SpecR belongs to neither V (e) nor V (1 − e). Then e /∈ p and

1− e /∈ p. So the product
e(1− e) = e− e2 = 0

cannot lie in p. But necessarily 0 ∈ p, contradiction. So V (e) ∪ V (1 − e) = SpecR. This implies
the claim.

Next, we show that if V (I) is open, then I is the radical of (e) for an idempotent e. For this
it is sufficient to prove:

Lemma 2.9 Let I ⊂ R be such that V (I) ⊂ SpecR is open. Then I is principal, generated by (e)
for some idempotent e ∈ R.

Proof. Suppose that SpecR − V (I) = V (J) for some ideal J ⊂ R. Then the intersection V (I) ∩
V (J) = V (I+J) is all of R, so I+J cannot be a proper ideal (or it would be contained in a prime
ideal). In particular, I + J = R. So we can write

1 = x+ y, x ∈ I, y ∈ J.

Now V (I) ∪ V (J) = V (IJ) = SpecR. This implies that every element of IJ is nilpotent by
the next lemma. N

Lemma 2.10 Suppose V (X) = SpecR for X ⊂ R an ideal. Then every element of X is nilpotent.

Proof. Indeed, suppose x ∈ X were non-nilpotent. Then the ring Rx is not the zero ring, so it
has a prime ideal. The map SpecRx → SpecR is, as discussed in class, a homeomorphism of
SpecRx onto D(x). So D(x) ⊂ SpecR (the collection of primes not containing x) is nonempty. In
particular, there is p ∈ SpecR with x /∈ p, so p /∈ V (X). So V (X) 6= SpecR, contradiction. N

Return to the proof of the main result. We have shown that IJ is nilpotent. In particular, in
the expression x+y = 1 we had earlier, we have that xy is nilpotent. Say (xy)k = 0. Then expand

1 = (x+ y)2k =

2k∑
i=0

(
2k

i

)
xiy2k−i =

′∑
+

′′∑
where

∑′
is the sum from i = 0 to i = k and

∑′′
is the sum from k + 1 to 2k. Then

∑′∑′′
= 0

because in every term occurring in the expansion, a multiple of xkyk occurs. Also,
∑′ ∈ I and∑′′ ∈ J because x ∈ I, y ∈ J .

All in all, we find that it is possible to write

1 = x′ + y′, x′ ∈ I, y′ ∈ J, x′y′ = 0.

(We take x′ =
∑′

, y′ =
∑′′

.) Then x′(1 − x′) = 0 so x′ ∈ I is idempotent. Similarly y′ = 1 − x′
is. We have that

V (I) ⊂ V (x′), V (J) ⊂ V (y′)

and V (x′), V (y′) are complementary by the earlier arguments, so necessarily

V (I) = V (x′), V (J) = V (y′).

Since an ideal generated by an idempotent is automatically radical, it follows that:

I = (x′), , J = (y′). N

15



CRing Project, Chapter 4

There are some useful applications of this in representation theory, because one can look for
idempotents in endomorphism rings; these indicate whether a module can be decomposed as a
direct sum into smaller parts. Except, of course, that endomorphism rings aren’t necessarily
commutative and this proof breaks down.

Thus we get:

Proposition 2.11 Let A be a ring and I a nilpotent ideal. Then Idem(A) → Idem(A/I) is
bijective.

Proof. Indeed, the topological spaces of Spec A and Spec A/I are the same. The result then
follows from ??. N

2.3 Units

Finally, we make a few remarks on units modulo nilideals. It is a useful and frequently used
trick that adding a nilpotent does not affect the collection of units. This trick is essentially an
algebraic version of the familiar “geometric series;” convergence questions do not appear thanks
to nilpotence.

Example 2.12 Suppose u is a unit in a ring R and v ∈ R is nilpotent; we show that a + v is a
unit.

Suppose ua = 1 and vm = 0 for some m > 1. Then (u+ v) ·a(1−av+ (av)2−· · ·± (av)m−1) =
(1− (−av))(1 + (−av) + (−av)2 + · · ·+ (−av)m−1) = 1− (−av)m = 1− 0 = 1, so u+ v is a unit.

So let R be a ring, I ⊂ R a nilpotent ideal of square zero. Let R∗ denote the group of units
in R, as usual, and let (R/I)∗ denote the group of units in R/I. We have an exact sequence of
abelian groups:

0→ I → R∗ → (R/I)∗ → 0

where the second map is reduction and the first map sends i→ 1 + i. The hypothesis that I2 = 0
shows that the first map is a homomorphism. We should check that the last map is surjective.
But if any a ∈ R maps to a unit in R/I, it clearly can lie in no prime ideal of R, so is a unit itself.

§3 Vista: sheaves on SpecR

3.1 Presheaves

Let X be a topological space.

Definition 3.1 A presheaf of sets F on X assigns to every open subset U ⊂ X a set F(U),
and to every inclusion U ⊂ V a restriction map resVU : F(V ) → F(U). The restriction map is
required to satisfy:

1. ResUU = idF(U) for all open sets U .

2. ResWU = ResVU ◦ResWV if U ⊂ V ⊂W .

If the sets F(U) are all groups (resp. rings), and the restriction maps are morphisms of groups
(resp. rings), then we say that F is a sheaf of groups (resp. rings). Often the restriction of an
element a ∈ U to a subset W is denoted a|W .

A morphism of presheaves F → G is a collection of maps F(U)→ G(U) for each open set U ,
that commute with the restriction maps in the obvious way. Thus the collection of presheaves on
a topological space forms a category.

16
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One should think of the restriction maps as kind of like restricting the domain of a function.
The standard example of presheaves is given in this way, in fact.

Example 3.2 Let X be a topological space, and F the presheaf assigning to each U ⊂ X the
set of continuous functions U → R. The restriction maps come from restricting the domain of a
function.

Now, in classical algebraic geometry, there are likely to be more continuous functions in the
Zariski topology than one really wants. One wants to focus on functions that are given by poly-
nomial equations.

Example 3.3 Let X be the topological space Cn with the topology where the closed sets are
those defined by the zero loci of polynomials (that is, the topology induced on Cn from the Zariski
topology of SpecC[x1, . . . , xn] via the canonical imbedding Cn ↪→ SpecC[x1, . . . , xn]). Then there
is a presheaf assigning to each open set U the collection of rational functions defined everywhere
on U , with the restriction maps being the obvious ones.

Remark The notion of presheaf thus defined relied very little on the topology of X. In fact,
we could phrase it in purely categorical terms. Let C be the category consisting of open subsets
U ⊂ X and inclusions of open subsets U ⊂ U ′. This is a rather simple category (the hom-sets are
either empty or consist of one element). Then a presheaf is just a contravariant functor from C to
Sets (or Grp, etc.). A morphism of presheaves is a natural transformation of functors.

In fact, given any category C, we can define the category of presheaves on it to be the category
of functors Fun(Cop,Set). This category is complete and cocomplete (we can calculate limits and
colimits “pointwise”), and the Yoneda embedding realizes C as a full subcategory of it. So if X ∈ C,
we get a presheaf Y 7→ HomC(Y,X). In general, however, such representable presheaves are rather
special; for instance, what do they look like for the category of open sets in a topological space?

3.2 Sheaves

Definition 3.4 Let F be a presheaf of sets on a topological space X. We call F a sheaf if F
further satisfies the following two “sheaf conditions.”

1. (Separatedness) If U is an open set of X covered by a family of open subsets {Ui} and there
are two elements a, b ∈ F(U) such that a|Ui

= b|Ui
for all Ui, then a = b.

2. (Gluability) If U is an open set of X covered by Ui and there are elements ai ∈ F(Ui) such
that ai|Ui∩Uj = aj |Ui∩Uj for all i and j, then there exists an element a ∈ F(U) that restricts
to the ai. Notice that by the first axiom, this element is unique.

A morphism of sheaves is just a morphism of presheaves, so the sheaves on a topological space X
form a full subcategory of presheaves on X.

The above two conditions can be phrased more compactly as follows. Whenever {Ui}i∈I is an
open cover of U ⊂ X, we require that the following sequence be an equalizer of sets:

F(U)→
∏
i∈I
F(Ui)⇒

∏
i,j∈I

F(Ui ∩ Uj)

where the two arrows correspond to the two allowable restriction maps. Similarly, we say that a
presheaf of abelian groups (resp. rings) is a sheaf if it is a sheaf of sets.

17
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Example 3.5 The example of functions gives an example of a sheaf, because functions are deter-
mined by their restrictions to an open cover! Namely, if X is a topological space, and we consider
the presheaf

U 7→ {continuous functions U → R} ,

then this is clearly a presheaf, because we can piece together continuous functions in a unique
manner.

Example 3.6 Here is a refinement of the above example. Let X be a smooth manifold. For each
U , let F(U) denote the group of smooth functions U → R. This is easily checked to be a sheaf.

We could, of course, replace “smooth” by “Cr” or by “holomorphic” in the case of a complex
manifold.

Remark As remarked above, the notion of presheaf can be defined on any category, and does
not really require a topological space. The definition of a sheaf requires a bit more topologically,
because the idea that a family {Ui} covers an open set U was used inescapably in the definition.
The idea of covering required the internal structure of the open sets and was not a purely categorical
idea. However, Grothendieck developed a way to axiomatize this, and introduced the idea of a
Grothendieck topology on a category (which is basically a notion of when a family of maps covers
something). On a category with a Grothendieck topology (also known as a site), one can define
the notion of a sheaf in a similar manner as above. See [Vis08].

There is a process that allows one to take any presheaf and associate a sheaf to it. In some
sense, this associated sheaf should also be the best “approximation” of our presheaf with a sheaf.
This motivates the following universal property:

Definition 3.7 Let F be a presheaf. Then F ′ is said to be the sheafification of F if for any sheaf
G and a morphism F → G, there is a unique factorization of this morphism as F → F ′ → G.

Theorem 3.8 We can construct the sheafification of a presheaf F as follows: F ′(U) = {s : U →∐
x∈U Fx|for all x ∈ U, s(x) ∈ Fx and there is a neighborhood V ⊂ U and t ∈ F(V ) such that for all y ∈

V, s(y) is the image of t in the local ring Fy}.

TO BE ADDED: proof
In the theory of schemes, when one wishes to replace polynomial rings over C (or an algebraically

closed field) with arbitrary commutative rings, one must drop the idea that a sheaf is necessarily
given by functions. A scheme is defined as a space with a certain type of sheaf of rings on it. We
shall not define a scheme formally, but show how on the building blocks of schemes—objects of
the form SpecA—a sheaf of rings can be defined.

3.3 Sheaves on SpecA

TO BE ADDED: we need to describe how giving sections over basic open sets gives a presheaf
in general.

Proposition 3.9 Let A be a ring and let X = Spec(A). Then the assignment of the ring Af to
the basic open set Xf defines a presheaf of rings on X.

Proof.
Part (i). If Xg ⊂ Xf are basic open sets, then there exist n ≥ 1 and u ∈ A such that gn = uf .
Proof of part (i). Let S = {gn : n ≥ 0} and suppose S ∩ (f) = ∅. Then the extension (f)e into

S−1A is a proper ideal, so there exists a maximal ideal S−1p of S−1A, where p ∩ S = ∅. Since
(f)e ∈ S−1p, we see that f/1 ∈ S−1p, so f ∈ p. But S ∩ p = ∅ implies that g /∈ p. This is a
contradiction, since then p ∈ Xg \Xf .
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Part (ii). If Xg ⊂ Xf , then there exists a unique map ρ : Af → Ag, called the restriction map,
which makes the following diagram commute.

A

~~~~
~~

~~
~~

  @
@@

@@
@@

Af // Ag

Proof of part (ii). Let n ≥ 1 and u ∈ A be such that gn = uf by part (i). Note that in Ag,

(f/1)(u/gn) = (fu/gn) = 1/1 = 1

which means that f maps to a unit in Ag. Hence every fm maps to a unit in Ag, so the universal
property of Af yields the desired unique map ρ : Af → Ag.

Part (iii). If Xg = Xf , then the corresponding restriction ρ : Af → Ag is an isomorphism.
Proof of part (iii). The reverse inclusion yields a ρ′ : Ag → Af such that the diagram

A

  @
@@

@@
@@

~~~~
~~

~~
~~

Af

ρ
++ Ag

ρ′

kk

commutes. But since the localization map is epic, this implies that ρρ′ = ρ′ρ = 1.
Part (iv). If Xh ⊂ Xg ⊂ Xf , then the diagram

Af //

  A
AA

AA
AA

A Ah

Ag

>>}}}}}}}}

of restriction maps commutes.
Proof of part (iv). Consider the following tetrahedron.

A

}}||
||

||
||

!!B
BB

BB
BB

B

��

Af //

  A
AA

AA
AA

A Ah

Ag

>>}}}}}}}}

Except for the base, the commutativity of each face of the tetrahedron follows from the universal
property of part (ii). But its easy to see that commutativity of the those faces implies commuta-
tivity of the base, which is what we want to show.

Part (v). If Xg̃ = Xg ⊂ Xf = Xf̃ , then the diagram

Af //

��

Ag

��
Af̃ // Ag̃
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of restriction maps commutes. (Note that the vertical maps here are isomorphisms.)
Proof of part (v). By part (iv), the two triangles of

Af //

��   @
@@

@@
@@

@
Ag

��
Af̃ // Ag̃

commute. Therefore the square commutes.
Part (vi). Fix a prime ideal p in A. Consider the direct system consisting of rings Af for every

f /∈ p and restriction maps ρfg : Af → Ag whenever Xg ⊂ Xf . Then lim−→Af ∼= Ap.
proof of part (vi). First, note that since f /∈ p and p is prime, we know that fm /∈ p for all

m ≥ 0. Therefore the image of fm under the localization A → Ap is a unit, which means the
universal property of Af yields a unique map αf : Af → Ap such that the following diagram
commutes.

A

  @
@@

@@
@@

~~~~
~~

~~
~~

Af
αf // Ap

Then consider the following tetrahedron.

A

}}||
||

||
||

!!B
BB

BB
BB

B

��

Af //

  A
AA

AA
AA

A Ah

Ap

>>}}}}}}}}

All faces except the bottom commute by construction, so the bottom face commutes as well. This
implies that the αf commute with the restriction maps, as necessary. Now, to see that lim−→Af ∼= Ap,
we show that Ap satisfies the universal property of lim−→Af .

Suppose B is a ring and there exist maps βf : Af → B which commute with the restrictions.
Define β : A→ B as the composition A→ Af → B. The fact that β is independent of choice of f
follows from the commutativity of the following diagram.

A

  @
@@

@@
@@

@

~~}}
}}

}}
}

Af
ρfg //

βf

  A
AA

AA
AA

Ag
βg

~~~~
~~

~~
~~

B

Now, for every f /∈ p, we know that β(f) must be a unit since β(f) = βf (f/1) and f/1 is a unit in
Af . Therefore the universal property of Ap yields a unique map Ap → B, which clearly commutes
with all the arrows necessary to make lim−→Af ∼= Ap. N

Proposition 3.10 Let A be a ring and let X = Spec(A). The presheaf of rings OX defined on X
is a sheaf.
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Proof. The proof proceeds in two parts. Let (Ui)i∈I be a covering of X by basic open sets.
Part 1. If s ∈ A is such that si := ρX,Ui

(s) = 0 for all i ∈ I, then s = 0.
Proof of part 1. Suppose Ui = Xfi . Note that si is the fraction s/1 in the ring Afi , so si = 0

implies that there exists some integer mi such that sfmi
i = 0. Define gi = fmi

i , and note that we
still have an open cover by sets Xgi since Xfi = Xgi (a prime ideal contains an element if and only
if it contains every power of that element). Also sgi = 0, so the fraction s/1 is still 0 in the ring
Agi . (Essentially, all we’re observing here is that we are free to change representation of the basic
open sets in our cover to make notation more convenient).

Since X is quasi-compact, choose a finite subcover X = Xg1 ∪ · · · ∪ Xgn . This means that
g1, . . . , gn must generate the unit ideal, so there exists some linear combination

∑
xigi = 1 with

xi ∈ A. But then

s = s · 1 = s
(∑

xigi

)
=
∑

xi(sgi) = 0.

Part 2. Let si ∈ OX(Ui) be such that for every i, j ∈ I,

ρUi,Ui∩Uj
(si) = ρUj ,Ui∩Uj

(sj).

(That is, the collection (si)i∈I agrees on overlaps). Then there exists a unique s ∈ A such that
ρX,Ui

(s) = si for every i ∈ I.
Proof of part 2. Let Ui = Xfi , so that si = ai/(f

mi
i ) for some integers mi. As in part 1,

we can clean up notation by defining gi = fmi
i , so that si = ai/gi. Choose a finite subcover

X = Xg1 ∪ · · · ∪Xgn . Then the condition that the cover agrees on overlaps means that

aigj
gigj

=
ajgi
gigj

for all i, j in the finite subcover. This is equivalent to the existence of some kij such that

(aigj − ajgi)(gigj)kij = 0.

Let k be the maximum of all the kij , so that (aigj − ajgi)(gigj)
k = 0 for all i, j in the finite

subcover. Define bi = aig
k
i and hi = gk+1

i . We make the following observations:

bihj − bjhi = 0, Xgi = Xhi
, and si = ai/gi = bi/hi

The first observation implies that the Xhi cover X, so the hi generate the unit ideal. Then there
exists some linear combination

∑
xihi = 1. Define s =

∑
xibi. I claim that this is the global

section that restricts to si on the open cover.
The first step is to show that it restricts to si on our chosen finite subcover. In other words, we

want to show that s/1 = si = bi/hi in Ahi , which is equivalent to the condition that there exist
some li such that (shibi)h

li
i = 0. But in fact, even li = 0 works:

shi − bi =
(∑

xjbj

)
hi − bi

(∑
xjhj

)
=
∑

xj (hibj − bihj) = 0.

This shows that s restricts to si on each set in our finite subcover. Now we need to show that
in fact, it restricts to si for all of the sets in our cover. Choose any j ∈ I. Then U1, . . . , Un, Uj
still cover X, so the above process yields an s′ such that s′ restricts to si for all i ∈ {1, . . . , n, j}.
But then s− s′ satisfies the assumptions of part 1 using the cover {U1, . . . , Un, Uj}, so this means
s = s′. Hence the restriction of s to Uj is also sj . N

21



CRing Project, Chapter 4

22



CRing Project contents

I Fundamentals 1

0 Categories 3

1 Foundations 37

2 Fields and Extensions 71

3 Three important functors 93

II Commutative algebra 131

4 The Spec of a ring 133

5 Noetherian rings and modules 157

6 Graded and filtered rings 183

7 Integrality and valuation rings 201

8 Unique factorization and the class group 233

9 Dedekind domains 249

10 Dimension theory 265

11 Completions 293

12 Regularity, differentials, and smoothness 313

III Topics 337

13 Various topics 339

14 Homological Algebra 353

15 Flatness revisited 369

16 Homological theory of local rings 395

23



CRing Project, Chapter 4

17 Étale, unramified, and smooth morphisms 425

18 Complete local rings 459

19 Homotopical algebra 461

20 GNU Free Documentation License 469

24



CRing Project bibliography

[AM69] M. F. Atiyah and I. G. Macdonald. Introduction to commutative algebra. Addison-Wesley
Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.
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