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Chapter 12

Regularity, differentials, and smoothness

In this chapter, we shall introduce two notions. First, we shall discuss regular local rings. On
varieties over an algebraically closed field, regularity corresponds to nonsingularity of the variety
at that point. (Over non-algebraically closed fields, the connection is more subtle.) This will be a
continuation of the local algebra done earlier in the chapter ?? on dimension theory.

We shall next introduce the module of Kähler differentials of a morphism of rings A → B,
which itself can measure smoothness (though this connection will not be fully elucidated until a
later chapter). The module of Kähler differentials is the algebraic analog of the cotangent bundle
to a manifold, and we will show that for an affine ring, it can be computed very explicitly. For a
smooth variety, we will see that this module is projective, and hence a good candidate of a vector
bundle.

Despite the title, we shall actually wait a few chapters before introducing the general theory of
smooth morphisms.

§1 Regular local rings

We shall start by introducing the concept of a regular local ring, which is one where the embedding
dimension and Krull dimension coincide.

1.1 Regular local rings

Let A be a local noetherian ring with maximal ideal m ⊂ A and residue field k = A/m. Endow A
with the m-adic topology, so that there is a natural graded k-algebra gr(A) =

⊕
mi/mi+1. This

is a finitely generated k-algebra; indeed, a system of generators for the ideal m (considered as
elements of mm2) generates gr(A) over k. As a result, we have a natural surjective map of graded
k-algebras.

Symkm/m
2 → gr(A). (12.1)

Here Sym denotes the symmetric algebra.

Definition 1.1 The local ring (A,m) is called regular if the above map is an isomorphism, or
equivalently if the embedding dimension of A is equal to the Krull dimension.

We want to show the “equivalently” in the definition is justified. One direction is easy: if
(12.1) is an isomorphism, then gr(A) is a polynomial ring with dimkm/m

2 generators. But the
dimension of A was defined in terms of the growth of dimkm

i/mi+1 = (grA)i. For a polynomial
ring on r generators, however, the ith graded piece has dimension a degree-r polynomial in i (easy
verification). As a result, we get the claim in one direction.

However, we still have to show that if the embedding dimension equals the Krull dimension,
then (12.1) is an isomorphism. This will follow from the next lemma.
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Lemma 1.2 If the inequality

dim(A) ≤ dimk(m/m2)

is an equality, then (12.1) is an isomorphism.

Proof. Suppose (12.1) is not an isomorphism. Then there is an element f ∈ Symkm/m
2 which is

not zero and which maps to zero in gr(A); we can assume f homogeneous, since the map of graded
rings is graded.

Now the claim is that if k[x1, . . . , xn] is a polynomial ring and f 6= 0 a homogeneous element,
then the Hilbert polynomial of k[x1, . . . , xn]/(f) is of degree less than n. This will easily imply
the lemma, since (12.1) is always a surjection, and because Symkm/m

2’s Hilbert polynomial is of
degree dimkm/m

2. Now if deg f = d, then the dimension of (k[x1, . . . , xn]/f)i (where i is a degree)
is dim(k[x1, . . . , xn])i = dim(k[x1, . . . , xn])i−d. It follows that if P is the Hilbert polynomial of the
polynomial ring, that of the quotient is P (·)− P (· − d), which has a strictly smaller degree. N

We now would like to establish a few properties of regular local rings.
Let A be a local ring and Â its completion. Then dim(A) = dim(Â), because A/mn = Â/m̂n,

so the Hilbert functions are the same. Similarly, gr(A) = gr(Â). However, by Â is also a local ring.
So applying the above lemma, we see:

Proposition 1.3 A noetherian local ring A is regular if and only if its completion Â is regular.

Regular local rings are well-behaved. We are eventually going to show that any regular local
ring is in fact a unique factorization domain. Right now, we start with a much simpler claim:

Proposition 1.4 A regular local ring is a domain.

This is a formal consequence of the fact that gr(A) is a domain and the filtration on A is Hausdorff.

Proof. Let a, b 6= 0. Note that
⋂
mn = 0 by the Krull intersection theorem (??), so there are k1

and k2 such that a ∈ mk1 − mk1+1 and b ∈ mk2 − mk2+1. Let a, b be the images of a, b in gr(A)
(in degrees k1, k2); neither is zero. But then āb̄ 6= 0 ∈ gr(A), because gr(A) = Sym(m/m2) is a
domain. So ab 6= 0, as desired. N

Exercise 12.1 Prove more generally that if A is a filtered ring with a descending filtration of
ideals I1 ⊃ I2 ⊃ . . . such that

⋂
Ik = 0, and such that the associated graded algebra gr(A) is a

domain, then A is itself a domain.

Later we will prove the aforementioned fact that a regular local ring is a factorial ring. One
consequence of that will be the following algebro-geometric fact. Let X = SpecC[X1, . . . , Xn]/I
for some ideal I; so X is basically a subset of Cn plus some nonclosed points. Then if X is smooth,
we find that C[X1, . . . , Xn]/I is locally factorial. Indeed, smoothness implies regularity, hence local
factoriality. The whole apparatus of Weil and Cartier divisors now kicks in.

Exercise 12.2 Nevertheless, it is possible to prove directly that a regular local ring (A,m) is
integrally closed. To do this, we shall use the fact that the associated graded gr(A) is integrally
closed (as a polynomial ring). Here is the argument:

a) Let C be a noetherian domain with quotient field K. Then C is integrally closed if and only
if for every x ∈ K such that there exists d ∈ A with dxn ∈ A for all n, we have x ∈ A. (In
general, this fails for C non-noetherian; then this condition is called being completely integrally
closed.)
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b) Let C be a noetherian domain. Suppose on C there is an exhaustive filtration {Cv} (i.e. such
that

⋂
Cv = 0) and such that gr(C) is a completely integrally closed domain. Suppose further

that every principal ideal is closed in the topology on C (i.e., for each principal ideal I, we have
I =

⋂
I + Cv.) Then C is integrally closed too. Indeed:

(a) Suppose b/a, a, b ∈ C is such that (b/a)n is contained in a finitely generated submodule of
K, say d−1A for some d ∈ A. We need to show that b ∈ Ca+Cv for all v. Write b = xa+r
for r ∈ Cw −Cw+1. We will show that “w” can be improved to w+ 1 (by changing x). To
do this, it suffices to write r ∈ Ca+ Cw+1.

(b) By hypothesis, dbn ∈ Can for all n. Consequently drn ∈ Can for all n.

(c) Let r be the image of r in gr(C) (in some possibly positive homogeneous degree; choose
the unique one such that the image of r is defined and not zero). Choosing d, a similarly,
we get drn lies in the ideal of an for all n. This implies r is a multiple of a. Deduce that
r ∈ Ca+ Cw+1.

c) The hypotheses of the previous part apply to a regular local ring, which is thus integrally closed.

The essential part of this argument is explained in [Bou98], ch. 5, §1.4. The application to regular
local rings is mentioned in [GD], vol. IV, §16.

We now give a couple of easy examples. More interesting examples will come in the future. Let
R be a noetherian local ring with maximal ideal m and residue field k.

Example 1.5 If dim(R) = 0, i.e. R is artinian, then R is regular iff the maximal ideal is zero,
i.e. if R is a field. Indeed, the requirement for regularity is that dimkm/m

2 = 0, or m = 0 (by
Nakayama). This implies that R is a field.

Recall that dimkm/m
2 is the size of the minimal set of generators of the ideal m, by Nakayama’s

lemma. As a result, a local ring is regular if and only if the maximal ideal has a set of generators
of the appropriate size. This is a refinement of the above remarks.

Example 1.6 If dim(R) = 1, then R is regular iff the maximal ideal m is principal (by the
preceding observation). The claim is that this happens if and only if R is a DVR. Certainly a
DVR is regular, so only the other direction is interesting. But it is easy to see that a local domain
whose maximal ideal is principal is a DVR (i.e. define the valuation of x in terms of the minimal
i such that x /∈ mi).

We find:

Proposition 1.7 A one-dimensional regular local ring is the same thing as a DVR.

Finally, we extend the notion to general noetherian rings:

Definition 1.8 A general noetherian ring is called regular if every localization at a maximal
ideal is a regular local ring.

In fact, it turns out that if a noetherian ring is regular, then so are all its localizations. This fact
relies on a fact, to be proved in the distant future, that the localization of a regular local ring at
a prime ideal is regular.
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1.2 Quotients of regular local rings

We now study quotients of regular local rings. In general, if (A,m) is a regular local ring and
f1, . . . , fk ∈ m, the quotient A/(f1, . . . , fk) is far from being regular. For instance, if k is a
field and A is k[x](x) (geometrically, this is the local ring of the affine line at the origin), then
A/x2 = k[ε]/ε2 is not a regular local ring; it is not even a domain. In fact, the local ring of any
variety at a point is a quotient of a regular local ring, and this is because any variety locally sits
inside affine space.1

Proposition 1.9 If (A,mA) is a regular local ring, and f ∈ m is such that f ∈ mA − m2
A. Then

A′ = A/fA is also regular of dimension dim(A)− 1.

Proof. First let us show the dimension part of the statement. We know from ?? that the dimension
has to drop precisely by one (since f is a nonzerodivisor on A by Proposition 1.4).

Now we want to show that A′ = A/fA is regular. Let mA′ = m/fA be the maximal ideal of
A′. Then we should show that dimA′/mA′

(mA′/m
2
A′) = dim(A′), and it suffices to see that

dimA′/mA′
(mA′/m

2
A′) ≤ dimA/mA(mA/m

2
A)− 1. (12.2)

In other words, we have to show that the embedding dimension drops by one.
Note that the residue fields k = A/mA, A

′/mA′ are naturally isomorphic. To see (12.2), we use
the natural surjection of k-vector spaces

mA/m
2
A → mA′/m

2
A′ .

Since there is a nontrivial kernel (the class of f is in the kernel), we obtain the inequality (12.2).N

Corollary 1.10 Consider elements f1, . . . fm in m such that f̄1, . . . f̄m ∈ m/m2 are linearly inde-
pendent. Then A/(f1, . . . fm) is regular with dim(A/(f1, . . . fm)) = dim(A)−m

Proof. This follows from Proposition 1.9 by induction. One just needs to check that in A1 =
A/(f1), m1 = m/(f1), we have that f2, . . . fm are still linearly independent in m1/m

2
1. This is easy

to check. N

Remark In fact, note in the above result that each fi is a nonzerodivisor on A/(f1, . . . , fi−1),
because a regular local ring is a domain. We will later say that the {fi} form a regular sequence.

We can now obtain a full characterization of when a quotient of a regular local ring is still
regular; it essentially states that the above situation is the only possible case. Geometrically, the
intuition is that we are analyzing when a subvariety of a smooth variety is smooth; the answer is
when the subvariety is cut out by functions with linearly independent images in the maximal ideal
mod its square.

This corresponds to the following fact: if M is a smooth manifold and f1, . . . , fm smooth
functions such that the gradients {dfi} are everywhere independent, then the common zero locus
of the {fi} is a smooth submanifold of M , and conversely every smooth submanifold of M locally
looks like that.

Theorem 1.11 Let A0 be a regular local ring of dimension n, and let I ⊂ A0 be a proper ideal.
Let A = A0/I. Then the following are equivalent

1. A is regular.

1Incidentally, the condition that a noetherian local ring (A,m) is a quotient of a regular local ring (B, n) imposes
conditions on A: for instance, it has to be catenary. As a result, one can obtain examples of local rings which
cannot be expressed as quotients in this way.
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2. There are elements f1, . . . fm ∈ I such that f̄1, . . . f̄m are linearly independent in mA0
/m2

A0

where m = n− dim(A) such that (f1, . . . fm) = I.

Proof. (2) ⇒ (1) This is exactly the statement of Corollary 1.10.
(1) ⇒ (2) Let k be the residue field of A (or A0, since I is contained in the maximal ideal). We
see that there is an exact sequence

I ⊗A0
k → mA0

/m2
A0
→ mA/m

2
A → 0.

We can obtain this from the exact sequence I → A0 → A→ 0 by tensoring with k.
By assumption A0 and A are regular local, so

dimA0/mA0
(mA0/m

2
A0

) = dim(A0) = n

and

dimA0/mA0
(mA/m

2
A) = dim(A)

so the image of I ⊗A0 k in mA0/m
2
A0

has dimension m = n − dim(A). Let f̄1, . . . f̄m be a set of
linearly independent generators of the image of I ⊗A0 k in mA0/m

2
A0

, and let f1, . . . fm be liftings
to I. The claim is that the {fi} generate I.

Let I ′ ⊂ A0 be the ideal generated by f1, . . . fm and consider A′ = A0/I
′. Then by Corol-

lary 1.10, we know that A′ is a regular local ring with dimension n−m = dim(A). Also I ′ ⊂ I so
we have an exact sequence

0→ I/I ′ → A′ → A→ 0

But Proposition 1.4, this means that A′ is a domain, and we have just seen that it has the same
dimension as A. Now if I/I ′ 6= 0, then A would be a proper quotient of A′, and hence of a smaller
dimension (because quotienting by a nonzerodivisor drops the dimension). This contradiction
shows that I = I ′, which means that I is generated by the sequence {fi} as claimed. N

So the reason that k[x](x)/(x
2) was not regular is that x2 vanishes to too high an order: it lies

in the square of the maximal ideal.
We can motivate the results above further with:

Definition 1.12 In a regular local ring (R,m), a regular system of parameters is a minimal
system of generators for m, i.e. elements of m that project to a basis of m/m2.

So a quotient of a regular local ring is regular if and only if the ideal is generated by a portion of
a system of parameters.

1.3 Regularity and smoothness

We now want to connect the intuition (described in the past) that, in the algebro-geometric context,
regularity of a local ring corresponds to smoothness of the associated variety (at that point).

Namely, let R be be the (reduced) coordinate ring C[x1, . . . , xn]/I of an algebraic variety. Let
m be a maximal ideal corresponding to the origin, so generated by (x1, . . . , xn). Suppose I ⊂ m,
which is to say the origin belongs to the corresponding variety. Then MaxSpecR ⊂ SpecR is the
corresponding subvariety of Cn, which is what we apply the intuition to. Note that 0 is in this
subvariety.

Then we claim:

Proposition 1.13 Rm is regular iff MaxSpecR is a smooth submanifold near 0.
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Proof. We will show that regularity implies smoothness. The other direction is omitted for now.
Note that S = C[x1, . . . , xn]m is clearly a regular local ring of dimension n (Cn is smooth,

intuitively), and Rm is the quotient S/I. By Theorem 1.11, we have a good criterion for when Rm

is regular. Namely, it is regular if and only if I is generated by elements (without loss of generality,
polynomials) f1, . . . , fk whose images in the quotient mS/m

2
S (where we write mS to emphasize

that this is the maximal ideal of S).
But we know that this “cotangent space” corresponds to cotangent vectors in Cn, and in

particular, we can say the following. There are elements ε1, . . . , εn ∈ mS/m
2
S that form a basis for

this space (namely, the images of x1, . . . , xn ∈ mS). If f is a polynomial vanishing at the origin,
then the image of f in mS/m

2
S takes only the linear terms—that is, it can be identified with∑ ∂f

∂xi
|0εi,

which is essentially the gradient of f .
It follows that Rm is regular if and only if I is generated (in Rm, so we should really say IRm)

by a family of polynomials vanishing at zero with linearly independent gradients, or if the variety
is cut out by the vanishing of such a family of polynomials. However, we know that this implies
that the variety is locally a smooth manifold (by the inverse function theorem). N

The other direction is a bit trickier, and will require a bit of “descent.” For now, we omit it.
But we have shown something in both directions: the ring Rm is regular if and only if I is generated
locally (i.e., in Rm by a family of polynomials with linearly independent gradients). Hartshorne
uses this as the definition of smoothness in [Har77], and thus obtains the result that a variety over
an algebraically closed field (not necessarily C!) is smooth if and only if its local rings are regular.

Remark (Warning) This argument proves that if R ' K[x1, . . . , xn]/I for K algebraically
closed, then Rm is regular local for some maximal ideal m if the corresponding algebraic vari-
ety is smooth at the corresponding point. We proved this in the special case K = C and m the
ideal of the origin.

If K is not algebraically closed, we can’t assume that any maximal ideal corresponds to a
point in the usual sense. Moreover, if K is not perfect, regularity does not imply smoothness.
We have not quite defined smoothness, but here’s a definition: smoothness means that the local
ring you get by base-changing K to the algebraic closure is regular. So what this means is that
regularity of affine rings over a field K is not preserved under base-change from K to K.

Example 1.14 Let K be non-perfect of characteristic p. Let a not have a pth root. Consider
K[x]/(xp − a). This is a regular local ring of dimension zero, i.e. is a field. If K is replaced by its
algebraic closure, then we get K[x]/(xp−a), which is K[x]/(x−a1/p)p. This is still zero-dimensional
but is not a field. Over the algebraic closure, the ring fails to be regular.

1.4 Regular local rings look alike

So, as we’ve seen, regularity corresponds to smoothness. Complex analytically, all smooth points
are the same though—they’re locally Cn. Manifolds have no local invariants. We’d like an algebraic
version of this. The vague claim is that all regular local rings of the same dimension “look alike.”
We have already seen one instance of this phenomenon: a regular local ring’s associated graded is
uniquely determined by its dimension (as a polynomial ring). This was in fact how we defined the
notion, in part. Now we would like to transfer this to statements about things closer to R.

Let (R,m) be a regular local ring. Assume now for simplicity that the residue field of
k = R/m maps back into R. In other words, R contains a copy of its residue field, or there
is a section of R → k. This is always true in the case we use for geometric intuition—complex
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algebraic geometry—as the residue field at any maximal ideal is just C (by the Nullstellensatz),
and one works with C-algebras.

Choose generators y1, . . . , yn ∈ m where n = dimkm/m
2 is the embedding dimension. We get

a map in the other direction

φ : k[Y1, . . . , Yn]→ R, Yi 7→ yi,

thanks to the section k → R. This map from the polynomial ring is not an isomorphism (the
polynomial ring is not local), but if we let m ⊂ R be the maximal ideal and n = (y1, . . . , yn), then
the map on associated gradeds is an isomorphism (by definition). That is, φ : nt/nt+1 → mt/mt+1

is an isomorphism for each t ∈ Z≥0.
Consequently, φ induces an isomorphism

k[Y1, . . . , Yn]/nt ' R/mt

for all t, because it is an isomorphism on the associated graded level. So this in turn is equivalent,
upon taking inverse limits, to the statement that φ induces an isomorphism

k[[Y1, . . . , Yn]]→ R̂

at the level of completions.
We can now conclude:

Theorem 1.15 Let R be a regular local ring of dimension n. Suppose R contains a copy of its
residue field k. Then, as k-algebras, R̂ ' k[[Y1, . . . , Ym]].

Finally:

Corollary 1.16 A complete noetherian regular local ring that contains a copy of its residue field
k is a power series ring over k.

It now makes sense to say:

All complete regular local rings of the same dimension look alike. (More
precisely, this is true when R is assumed to contain a copy of its residue field, but this
is not a strong assumption in practice. One can show that this will be satisfied if R
contains any field.2)

We won’t get into the precise statement of the general structure theorem, when the ring is not
assumed to contain its residue field, but a safe intuition to take away from this is the above bolded
statement. Note that “looking alike” requires the completeness, because completions are intuitively
like taking analytically local invariants (while localization corresponds to working Zariski locally,
which is much weaker).

§2 Kähler differentials

2.1 Derivations and Kähler differentials

Let R be a ring with the maximal ideal m. Then there is a R/m-vector space m/m2. This is what
we would like to think of as the “cotangent space” of SpecR at m. Intuitively, the cotangent space
is what you get by differentiating functions which vanish at the point, but differentiating functions
that vanish twice should give zero. This is the moral justification. (Recall that on a smooth

2This is not always satisfied—take the p-adic integers, for instance.
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manifold M , if Op is the local ring of smooth functions defined in a neighborhood of p ∈ M , and
mp ⊂ Op is the maximal ideal consisting of “germs” vanishing at p, then the cotangent space T ∗pM
is naturally mp/m

2
p.)

A goal might be to generalize this. What if you wanted to think about all points at once? We’d
like to describe the “cotangent bundle” to SpecR in an analogous way. Let’s try and describe what
would be a section to this cotangent bundle. A section of Ω∗SpecR should be the same thing as a
“1-form” on SpecR. We don’t know what a 1-form is yet, but at least we can give some examples.
If f ∈ R, then f is a “function” on SpecR, and its “differential” should be a 1-form. So there
should be a “df” which should be a 1-form. This is analogous to the fact that if g is a real-valued
function on the smooth manifold M , then there is a 1-form dg.

We should expect the rules d(fg) = df + dg and d(fg) = f(dg) + g(df) as the usual rules
of differentiation. For this to make sense, 1-forms should be an R-module. Before defining the
appropriate object, we start with:

Definition 2.1 Let R be a commutative ring, M an R-module. A derivation from R to M is a
map D : R→M such that the two identities below hold:

D(fg) = Df +Dg (12.3)

D(fg) = f(Dg) + g(Df). (12.4)

These equations make sense as M is an R-module.
Whatever a 1-form on SpecR might be, there should be a derivation

d : R→ {1–forms} .

An idea would be to define the 1-forms or the “cotangent bundle” ΩR by a universal property. It
should be universal among R-modules with a derivation.

To make this precise:

Proposition 2.2 There is an R-module ΩR and a derivation duniv : R → ΩR satisfying the
following universal property. For all R-modules M , there is a canonical isomorphism

HomR(ΩR,M) ' Der(R,M)

given by composing the universal duniv with a map ΩR →M .

That is, any derivation d : R → M factors through this universal derivation in a unique way.
Given the derivation d : R → M , we can make the following diagram commutative in a unique
way such that ΩR →M is a morphism of R-modules:

R
d //

��

M

ΩR

duniv

=={{{{{{{{

Definition 2.3 ΩR is called the module of Kähler differentials of R.

Let us now verify this proposition.

Proof. This is like the verification of the tensor product. Namely, build a free gadget and quotient
out to enforce the desired relations.

Let ΩR be the quotient of the free R-module generated by elements da for a ∈ R by enforcing
the relations

10
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1. d(a+ b) = da+ db.

2. d(ab) = adb+ bda.

By construction, the map a → da is a derivation R → ΩR. It is easy to see that it is universal.
Given a derivation d′ : R→M , we get a map ΩR →M sending da→ d′(a), a ∈ R. N

The philosophy of Grothendieck says that we should do this, as with everything, in a relative
context. Indeed, we are going to need a slight variant, for the case of a morphism of rings.

2.2 Relative differentials

On a smooth manifold M , the derivation d from smooth functions to 1-forms satisfies an additional
property: it maps the constant functions to zero. This is the motivation for the next definition:

Definition 2.4 Let f : R→ R′ be a ring-homomorphism. Let M be an R′-module. A derivation
d : R′ → M is R-linear if d(f(a)) = 0, a ∈ R. This is equivalent to saying that d is an R-
homomorphism by the Leibnitz rule.

Now we want to construct an analog of the “cotangent bundle” taking into account linearity.

Proposition 2.5 Let R′ be an R-algebra. Then there is a universal R-linear derivation R′
duniv→

ΩR′/R.

Proof. Use the same construction as in the absolute case. We get a map R′ → ΩR′ as before. This
is not generally R-linear, so one has to quotient out by the images of d(f(r)), r ∈ R. In other
words, ΩR′/R is the quotient of the free R′-module on symbols {dr′, r′ ∈ R′} with the relations:

1. d(r′1r
′
2) = r′1d(r′2) + d(r′1)r′2.

2. d(r′1 + r′2) = dr′1 + dr′2.

3. dr = 0 for r ∈ R (where we identify r with its image f(r) in R′, by abuse of notation). N

Definition 2.6 ΩR′/R is called the module of relative Kähler differentials, or simply Kähler
differentials.

Here ΩR′/R also corepresents a simple functor on the category of R′-modules: given an R′-
module M , we have

HomR′(ΩR′/R,M) = DerR(R′,M),

where DerR denotes R-derivations. This is a subfunctor of the functor DerR(R′, ·), and so by
Yoneda’s lemma there is a natural map ΩR′ → ΩR′/R. We shall expand on this in the future.

2.3 The case of a polynomial ring

Let us do a simple example to make this more concrete.

Example 2.7 Let R′ = C[x1, . . . , xn], R = C. In this case, the claim is that there is an isomor-
phism

ΩR′/R ' R′n.

More precisely, ΩR′/R is free on dx1, . . . , dxn. So the cotangent bundle is “free.” In general, the
module ΩR′/R will not be free, or even projective, so the intuition that it is a vector bundle will
be rather loose. (The projectivity will be connected to smoothness of R′/R.)

11
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Proof. The construction f →
(
∂f
∂xi

)
gives a map R′ → R′n. By elementary calculus, this is a

derivation, even an R-linear derivation. We get a map

φ : ΩR′/R → R′n

by the universal property of the Kähler differentials. The claim is that this map is an isomorphism.

The map is characterized by sending df to
(
∂f
∂xi

)
. Note that dx1, . . . , dxn map to a basis of R′n

because differentiating xi gives 1 at i and zero at j 6= i. So we see that φ is surjective.
There is a map ψ : R′n → ΩR′/R sending (ai) to

∑
aidxi. It is easy to check that φ ◦ ψ = 1

from the definition of φ. What we still need to show is that ψ ◦φ = 1. Namely, for any f , we want
to show that ψ ◦ φ(df) = df for f ∈ R′. This is precisely the claim that df =

∑ ∂f
∂xi

dxi. Both
sides are additive in f , indeed are derivations, and coincide on monomials of degree one, so they
are equal. N

By the same reasoning, one can show more generally:

Proposition 2.8 If R is any ring, then there is a canonical isomorphism

ΩR[x1,...,xn]/R '
n⊕
i=1

R[x1, . . . , xn]dxi,

i.e. it is R[x1, . . . , xn]-free on the dxi.

This is essentially the claim that, given an R[x1, . . . , xn]-module M and elements m1, . . . ,mn ∈
M , there is a unique R-derivation from the polynomial ring into M sending xi 7→ mi.

2.4 Exact sequences of Kähler differentials

We now want to prove a few basic properties of Kähler differentials, which can be seen either from
the explicit construction or in terms of the functors they represent, by formal nonsense. These
results will be useful in computation.

Recall that if φ : A→ B is a map of rings, we can define a B-module ΩB/A which is generated
by formal symbols dx|x∈B and subject to the relations d(x + y) = dx + dy, d(a) = 0, a ∈ A, and
d(xy) = xdy+ ydx. By construction, ΩB/A is the receptacle from the universal A-linear derivation
into a B-module.

Let A→ B → C be a triple of maps of rings. There is an obvious map dx→ dx

ΩC/A → ΩC/B

where both sides have the same generators, except with a few additional relations on ΩC/B . We
have to quotient by db, b ∈ B. In particular, there is a map ΩB/A → ΩC/A, dx→ dx, whose images
generate the kernel. This induces a map

C ⊗B ΩB/A → ΩC/A.

The image is the C-module generated by db|b∈B , and this is the kernel of the previous map. We
have proved:

Proposition 2.9 (First exact sequence) Given a sequence A → B → C of rings, there is an
exact sequence

C ⊗B ΩB/A → ΩC/A → ΩC/B → 0.

12
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Proof (Second proof). There is, however, a more functorial means of seeing this sequence, which we
now describe. Namely, let us consider the category of C-modules, and the functors corepresented
by these three objects. We have, for a C-module M :

HomC(ΩC/B ,M) = DerB(C,M)

HomC(ΩC/A,M) = DerA(C,M)

HomC(C ⊗B ΩB/A,M) = HomB(ΩB/A,M) = DerA(B,M).

By Yoneda’s lemma, we know that a map of modules is the same thing as a natural transformation
between the corresponding corepresentable functors, in the reverse direction. It is easy to see that
there are natural transformations

DerB(C,M)→ DerA(C,M), DerA(C,M)→ DerA(B,M)

obtained by restriction in the second case, and by doing nothing in the first case (a B-derivation
is automatically an A-derivation). The induced maps on the modules of differentials are precisely
those described before; this is easy to check (and we could have defined the maps by these functors
if we wished). Now to say that the sequence is right exact is to say that for each M , there is an
exact sequence of abelian groups

0→ DerB(C,M)→ DerA(C,M)→ DerA(B,M).

But this is obvious from the definitions: an A-derivation is a B-derivation if and only if the
restriction to B is trivial. This establishes the claim. N

Next, we are interested in a second exact sequence. In the past (Example 2.7), we computed
the module of Kähler differentials of a polynomial algebra. While this was a special case, any
algebra is a quotient of a polynomial algebra. As a result, it will be useful to know how ΩB/A
behaves with respect to quotienting B.

Let A→ B be a homomorphism of rings and I ⊂ B an ideal. We would like to describe ΩB/I/A.
There is a map

ΩB/A → ΩB/I/A

sending dx to dx for x the reduction of x in B/I. This is surjective on generators, so it is
surjective. It is not injective, though. In ΩB/I/A, the generators dx, dx′ are identified if x ≡ x′

mod I. Moreover, ΩB/I/A is a B/I-module. This means that there will be additional relations for
that. To remedy this, we can tensor and consider the morphism

ΩB/A ⊗B B/I → ΩB/I/A → 0.

Let us now define a map
φ : I/I2 → ΩB/A ⊗B B/I,

which we claim will generate the kernel. Given x ∈ I, we define φ(x) = dx. If x ∈ I2, then
dx ∈ IΩB/A so φ is indeed a map of abelian groups I/I2 → ΩB/A⊗BB/I. Let us check that this is
a B/I-module homorphism. We would like to check that φ(xy) = yφ(x) for x ∈ I in ΩB/A/IΩB/A.
This follows from the Leibnitz rule, φ(xy) = yφ(x) + xdy ≡ xφ(x) mod IΩB/A. So φ is also
defined. Its image is the submodule of ΩB/A/IΩB/A generated by dx, x ∈ I. This is precisely what
one has to quotient out by to get ΩB/I/A. In particular:

Proposition 2.10 (Second exact sequence) Let B be an A-algebra and I ⊂ B an ideal. There
is an exact sequence

I/I2 → ΩB/A ⊗B B/I → ΩB/I/A → 0.

13



CRing Project, Chapter 12

These results will let us compute the module of Kähler differentials in cases we want.

Example 2.11 Let B = A[x1, . . . , xn]/I for I an ideal. We will compute ΩB/A.
First, ΩA[x1,...,xn]/A ⊗B ' Bn generated by symbols dxi. There is a surjection of

Bn → ΩB/A → 0

whose kernel is generated by dx, x ∈ I, by the second exact sequence above. If I = (f1, . . . , fm),
then the kernel is generated by {dfi}. It follows that ΩB/A is the cokernel of the map

Bm → Bn

that sends the ith generator of Bm to dfi thought of as an element in the free B-module Bn on
generators dx1, . . . , dxn. Here, thanks to the Leibnitz rule, dfi is given by formally differentiating
the polynomial, i.e.

dfi =
∑
j

∂fi
∂xj

dxj .

We have thus explicitly represented ΩB/A as the cokernel of the matrix
(
∂fi
∂xj

)
.

In particular, the above example shows:

Proposition 2.12 If B is a finitely generated A-algebra, then ΩB/A is a finitely generated B-
module.

Given how Ω behaves with respect to localization, we can extend this to the case where B is
essentially of finite type over A (recall that this means B is a localization of a finitely generated
A-algebra).

Let R = C[x1, . . . , xn]/I be the coordinate ring of an algebraic variety. Let m ⊂ R be the
maximal ideal. Then ΩR/C is what one should think of as containing information of the cotangent
bundle of SpecR. One might ask what the fiber over a point m ∈ SpecR is, though. That is, we
might ask what ΩR/C ⊗R R/m is. To see this, we note that there are maps

C→ R→ R/m ' C.

There is now an exact sequence by Proposition 2.9

m/m2 → ΩR/C ⊗R R/m→ ΩR/m/C → 0,

where the last thing is zero as R/m ' C by the Nullstellensatz. The upshot is that ΩR/C ⊗R R/m
is a quotient of m/m2.

In fact, the natural map m/m2 → ΩR/C⊗RC (given by d) is an isomorphism of C-vector spaces.
We have seen that it is surjective, so we need to see that it is injective. That is, if V is a C-vector
space, then we need to show that the map

HomC(ΩR/C ⊗R C, V )→ HomC(m/m2, V )

is surjective. This means that given any C-linear map λ : m/m2 → V , we can extend this to a
derivation R → V (where V becomes an R-module by R/m ' C, as usual). But this is easy:
given f ∈ R, we write f = f0 + c for c ∈ C and f0 ∈ m, and have the derivation send f to λ(f0).
(Checking that this is a well-defined derivation is straightforward.)

This goes through if C is replaced by any algebraically closed field. We have found:

14



CRing Project, Chapter 12

Proposition 2.13 Let (R,m) be the localization of a finitely generated algebra over an algebraically
closed field k at a maximal ideal m. Then there is a natural isomorphism:

ΩR/k ⊗R k ' m/m2.

This result connects the Kähler differentials to the cotangent bundle: the fiber of the cotangent
bundle at a point in a manifold is, similarly, the maximal ideal modulo its square (where the
“maximal ideal” is the maximal ideal in the ring of germs of functions at that point).

2.5 Kähler differentials and base change

We now want to show that the formation of Ω is compatible with base change. Namely, let B be
an A-algebra, visualized by a morphism A→ B. If A→ A′ is any morphism of rings, we can think
of the base-change A′ → A′ ⊗A B; we often write B′ = A′ ⊗A B.

Proposition 2.14 With the above notation, there is a canonical isomorphism of B′-modules:

ΩB/A ⊗A A′ ' ΩB′/A′ .

Note that, for a B-module, the functors ⊗AA′ and ⊗BB′ are the same. So we could have as well
written ΩB/A ⊗B B′ ' ΩB′/A′ .

Proof. We will use the functorial approach. Namely, for a B′-module M , we will show that there
is a canonical isomorphism

HomB′(ΩB/A ⊗A A′,M) ' HomB′(ΩB′/A′ ,M).

The right side represents A′-derivations B′ → M , or DerA′(B
′,M). The left side represents

HomB(ΩB/A,M), or DerA(B,M). Here the natural map of modules corresponds by Yoneda’s
lemma to the restriction

DerA′(B
′,M)→ DerA(B,M).

We need to see that this restriction map is an isomorphism. But given an A-derivation B → M ,
this is to say that extends in a unique way to an A′-linear derivation B′ → M . This is easy to
verify directly. N

We next describe how Ω behaves with respect to forming tensor products.

Proposition 2.15 Let B,B′ be A-algebras. Then there is a natural isomorphism

ΩB⊗AB′/A ' ΩB/A ⊗A B′ ⊕B ⊗A ΩB′/A.

Since Ω is a linearization process, it is somewhat natural that it should turn tensor products into
direct sums.

Proof. The “natural map” can be described in the leftward direction. For instance, there is a
natural map ΩB/A ⊗A B′ → ΩB⊗AB′/A. We just need to show that it is an isomorphism. For
this, we essentially have to show that to give an A-derivation of B ⊗A B′ is the same as giving a
derivation of B and one of B′. This is easy to check. N

15
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2.6 Differentials and localization

We now show that localization behaves extremely nicely with respect to the formation of Kähler
differentials. This is important in algebraic geometry for knowing that the “cotangent bundle” can
be defined locally.

Proposition 2.16 Let f : A→ B be a map of rings. Let S ⊂ B be multiplicatively closed. Then
the natural map

S−1ΩB/A → ΩS−1B/A

is an isomorphism.

So the formation of Kähler differentials commutes with localization.

Proof. We could prove this by the calculational definition, but perhaps it is better to prove it via
the universal property. If M is any S−1B-module, then we can look at

HomS−1B(ΩS−1B/A,M)

which is given by the group of A-linear derivations S−1B →M , by the universal property.
On the other hand,

HomS−1B(S−1ΩB/A,M)

is the same thing as the set of B-linear maps ΩB/A → M , i.e. the set of A-linear derivations
B →M .

We want to show that these two are the same thing. Given an A-derivation S−1B →M , we get
an A-derivation B → M by pulling back. We want to show that any A-linear derivation B → M
arises in this way. So we need to show that any A-linear derivation d : B → M extends uniquely
to an A-linear d : S−1B →M . Here are two proofs:

1. (Lowbrow proof.) For x/s ∈ S−1B, with x ∈ B, s ∈ S, we define d(x/s) = dx/s − xds/s2

as in calculus. The claim is that this works, and is the only thing that works. One should
check this—exercise.

2. (Highbrow proof.) We start with a digression. Let B be a commutative ring, M a B-module.
Consider B ⊕ M , which is a B-module. We can make it into a ring (via square zero
multiplication) by multiplying

(b, x)(b′, x′) = (bb′, bx′ + b′x).

This is compatible with the B-module structure on M ⊂ B⊕M . Note that M is an ideal in
this ring with square zero. Then the projection π : B ⊕M → B is a ring-homomorphism as
well. There is also a ring-homomorphism in the other direction b→ (b, 0), which is a section
of π. There may be other homomorphisms B → B ⊕M .

You might ask what all the right inverses to π are, i.e. ring-homomorphisms φ : B → B⊕M
such that π ◦ φ = 1B . This must be of the form φ : b → (b, db) where d : B → M is some
map. It is easy to check that φ is a homomorphism precisely when d is a derivation.

Suppose now A → B is a morphism of rings making B an A-algebra. Then B ⊕M is an
A-algebra via the inclusion a→ (a, 0). Then you might ask when φ : b→ (b, db), B → B⊕M
is an A-homomorphism. The answer is clear: when d is an A-derivation.

Recall that we were in the situation of f : A→ B a morphism of rings, S ⊂ B a multiplica-
tively closed subset, and M an S−1B-module. The claim was that any A-linear derivation
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d : B →M extends uniquely to d : S−1B →M . We can draw a diagram

B ⊕M

��

// S−1B ⊕M

��
A // B // S−1B

.

This is a cartesian diagram. So given a section of A-algebras B → B ⊕ M , we have to
construct a section of A-algebras S−1B → S−1B ⊕M . We can do this by the universal
property of localization, since S acts by invertible elements on S−1B⊕M . (To see this, note
that S acts by invertible elements on S−1B, and M is a nilpotent ideal.) N

Finally, we note that there is an even slicker argument. (We learned this from [Qui].) Namely,
it suffices to show that ΩS−1B/B = 0, by the exact sequences. But this is a S−1B-module, so we
have

ΩS−1B/B = ΩS−1B/B ⊗B S−1B,

because tensoring with S−1B localizes at S, but this does nothing to a S−1B-module! By the base
change formula (Proposition 2.14), we have

ΩS−1B/B ⊗B S−1B = ΩS−1B/S−1B = 0,

where we again use the fact that S−1B ⊗B S−1B ' S−1B.

2.7 Another construction of ΩB/A

Let B be an A-algebra. We have constructed ΩB/A by quotienting generators by relations. There
is also a simple and elegant “global” construction one sometimes finds useful in generalizing the
procedure to schemes.

Consider the algebra B ⊗A B and the map B ⊗A B → B given by multiplication. Note that
B acts on B ⊗A B by multiplication on the first factor: this is how the latter is a B-module, and
then the multiplication map is a B-homomorphism. Let I ⊂ B ⊗A B be the kernel.

Proposition 2.17 There is an isomorphism of B-modules

ΩB/A ' I/I2

given by the derivation b 7→ 1⊗ b− b⊗ 1, from B to I/I2.

Proof. It is clear that the maps

b→ 1⊗ b, b→ b⊗ 1 : B → B ⊗A B

are A-linear, so their difference is too. The quotient d : B → I/I2 is thus A-linear too.
First, note that if c, c′ ∈ B, then 1⊗ c− c⊗ 1, 1⊗ c′ − c′ ⊗ 1 ∈ I. Their product is thus zero in

I/I2:
(1⊗ c− c⊗ 1)(1⊗ c′ − c′ ⊗ 1) = 1⊗ cc′ + cc′ ⊗ 1− c⊗ c′ − c′ ⊗ c ∈ I2.

Next we must check that d : B → I/I2 is a derivation. So fix b, b′ ∈ B; we have

d(bb′) = 1⊗ bb′ − bb′ ⊗ 1

and
bdb′ = b(1⊗ b′ − b′ ⊗ 1), b′db = b′(1⊗ b− b⊗ 1).

17
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The second relation shows that

bdb′ + b′db = b⊗ b′ − bb′ ⊗ 1 + b′ ⊗ b− bb′ ⊗ 1.

Modulo I2, we have as above b⊗ b′ + b′ ⊗ b ≡ 1⊗ bb′ + bb′ ⊗ 1, so

bdb′ + b′db ≡ 1⊗ bb′ − bb′ ⊗ 1 mod I2,

and this last is equal to d(bb′) by definition. So we have an A-linear derivation d : B → I/I2. It
remains to be checked that this is universal. In particular, we must check that the induced

φ : ΩB/A → I/I2

sending db → 1 ⊗ b − b ⊗ 1. is an isomorphism. We can define the inverse ψ : I/I2 → ΩB/A by
sending

∑
bi⊗ b′i ∈ I to

∑
bidb

′
i. This is clearly a B-module homomorphism, and it is well-defined

mod I2.
It is clear that ψ(φ(db)) = db from the definitions, since this is

ψ(1⊗ b− b⊗ 1) = 1(db)− bd1 = db,

as d1 = 0. So ψ ◦ φ = 1ΩB/A . It follows that φ is injective. We will check now that it is surjective.
Then we will be done.

Lemma 2.18 Any element in I is a B-linear combination of elements of the form 1⊗ b− b⊗ 1.

Every such element is the image of db under φ by definition of the derivation B → I/I2. So
this lemma will complete the proof.

Proof. Let Q =
∑
ci ⊗ di ∈ I. By assumption,

∑
cidi = 0 ∈ B. We have by this last identity

Q =
∑

((ci ⊗ di)− (cidi ⊗ 1)) =
∑

ci(1⊗ di − di ⊗ 1). N

So Q is in the submodule spanned by the {1⊗ b− b⊗ 1}b∈B . N

§3 Introduction to smoothness

3.1 Kähler differentials for fields

Let us start with the simplest examples—fields.

Example 3.1 Let k be a field, k′/k an extension.

Question What does Ωk′/k look like? When does it vanish?

Ωk′/k is a k′-vector space.

Proposition 3.2 Let k′/k be a separable algebraic extension of fields. Then Ωk′/k = 0.

Proof. We will need a formal property of Kähler differentials that is easy to check, namely that they
are compatible with filtered colimits. If B = lim−→Bα for A-algebras Bα, then there is a canonical
isomorphism

ΩB/A ' lim−→ΩBα/A.

One can check this on generators and relations, for instance.
Given this, we can reduce to the case of k′/k finite and separable.

18
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Remark Given a sequence of fields and morphisms k → k′ → k′′, then there is an exact sequence

Ωk′/k ⊗ k′′ → Ωk′′/k → Ωk′′/k′ → 0.

In particular, if Ωk′/k = Ωk′′/k′ = 0, then Ωk′′/k = 0. This is a kind of dévissage argument.

Anyway, recall that we have a finite separable extension k′/k where k′ = k(x1, . . . , xn).3 We
will show that

Ωk(x1,...,xi)/k(x1,...,xi−1) = 0 ∀i,

which will imply by the devissage argument that Ωk′/k = 0. In particular, we are reduced to
showing the proposition when k′ is generated over k by a single element x. Then we have that

k′ ' k[X]/(f(X))

for f(X) an irreducible polynomial. Set I = (f(X)). We have an exact sequence

I/I2 → Ωk[X]/k ⊗k[X] k
′ → Ωk′/k → 0

The middle term is a copy of k′ and the first term is isomorphic to k[X]/I ' k′. So there is an
exact sequence

k′ → k′ → Ωk′/k → 0.

The first term is, as we have computed, multiplication by f ′(x); however this is nonzero by sepa-
rability. Thus we find that Ωk′/k = 0. N

Remark The above result is not true for inseparable extensions in general.

Example 3.3 Let k be an imperfect field of characteristic p > 0. There is x ∈ k such that
x1/p /∈ k, by definition. Let k′ = k(x1/p). As a ring, this looks like k[t]/(tp − x). In writing
the exact sequence, we find that Ωk′/k = k′ as this is the cokernel of the map k′ → k′ given by

multiplication d
dt |x1/p(tp − x). That polynomial has identically vanishing derivative, though. We

find that a generator of Ωk′/k is dt where t is a pth root of x, and Ωk′/k ' k.

Now let us consider transcendental extensions. Let k′ = k(x1, . . . , xn) be a purely transcen-
dental extension, i.e. the field of rational functions of x1, . . . , xn.

Proposition 3.4 If k′ = k(x1, . . . , xn), then Ωk′/k is a free k′-module on the generators dxi.

This extends to an infinitely generated purely transcendental extension, because Kähler differentials
commute with filtered colimits.

Proof. We already know this for the polynomial ring k[x1, . . . , xn]. However, the rational function
field is just a localization of the polynomial ring at the zero ideal. So the result will follow from
Proposition 2.16. N

We have shown that separable algebraic extensions have no Kähler differentials, but that purely
transcendental extensions have a free module of rank equal to the transcendence degree.

We can deduce from this:

Corollary 3.5 Let L/K be a field extension of fields of char 0. Then

dimLΩL/K = trdeg(L/K).

3We can take n = 1 by the primitive element theorem, but shall not need this.
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Proof (Partial proof). Put the above two facts together. Choose a transcendence basis {xα} for
L/K. This means that L is algebraic over K({xα}) and the {xα} are algebraically independent.
Moreover L/K({xα}) is separable algebraic. Now let us use a few things about these cotangent
complexes. There is an exact sequence:

ΩK({xα}) ⊗K({xα}) L→ ΩL/K → ΩL/K({xα}) → 0

The last thing is zero, and we know what the first thing is; it’s free on the dxα. So we find that
ΩL/K is generated by the elements dxα. If we knew that the dxα were linearly independent, then
we would be done. But we don’t, yet. N

This is not true in characteristic p. If L = K(α1/p) for α ∈ K and α1/p /∈ K, then ΩL/K 6= 0.

3.2 Regularity, smoothness, and Kähler differentials

From this, let us revisit a statement made last time. Let K be an algebraically closed field, let
R = k[x1, . . . , xn]/I and let m ⊂ R be a maximal ideal. Recall that the Nullstellensatz implies
that R/m ' k. We were studying

ΩR/k.

This is an R-module, so ΩR/k ⊗R k makes sense. There is a surjection

m/m2 → ΩR/k ⊗R k → 0,

that sends x→ dx.

Proposition 3.6 This map is an isomorphism.

Proof. We construct a map going the other way. Call the map m/m2 → ΩR/k ⊗R k as φ. We want
to construct

ψ : ΩR/k ⊗R k → m/m2.

This is equivalent to giving an R-module map

ΩR/k → m/m2,

that is a derivation ∂ : R→ m/m2. This acts via ∂(λ+ x) = x for λ ∈ k, x ∈ m. Since k + m = R,
this is indeed well-defined. We must check that ∂ is a derivation. That is, we have to compute
∂((λ+ x)(λ′ + x′)). But this is

∂(λλ′ + (λx′ + λ′x) + xx′).

The definition of ∂ is to ignore the constant term and look at the nonconstant term mod m2. So
this becomes

λx′ + λ′x = (∂(λ+ x))(x′ + λ′) + (∂(λ′ + x′))(x+ λ)

because xx′ ∈ m2, and because m acts trivially on m/m2. Thus we get the map ψ in the inverse
direction, and one checks that φ, ψ are inverses. This is because φ sends x → dx and ψ sends
dx→ x. N

Corollary 3.7 Let R be as before. Then Rm is regular iff dimRm = dimkΩR/k ⊗R R/m.

In particular, the modules of Kähler differentials detect regularity for certain rings.
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Definition 3.8 Let R be a noetherian ring. We say that R is regular if Rm is regular for every
maximal ideal m. (This actually implies that Rp is regular for all primes p, though we are not
ready to see this. It will follow from the fact that the localization of a regular local ring at a prime
ideal is regular.)

Let R = k[x1, . . . , xn]/I be an affine ring over an algebraically closed field k. Then:

Proposition 3.9 TFAE:

1. R is regular.

2. “R is smooth over k” (to be defined)

3. ΩR/k is a projective module over R of rank dimR.

A finitely generated projective module is locally free. So the last statement is that (ΩR/k)p is free
of rank dimR for each prime p.

Remark A projective module does not necessarily have a well-defined rank as an integer. For
instance, if R = R1 × R2 and M = R1 × 0, then M is a summand of R, hence is projective. But
there are two candidates for what the rank should be. The problem is that SpecR is disconnected
into two pieces, and M is of rank one on one piece, and of rank zero on the other. But in this case,
it does not happen.

Remark The smoothness condition states that locally on SpecR, we have an isomorphism with
k[y1, . . . , yn]/(f1, . . . , fm) with the gradients ∇fi linearly independent. Equivalently, if Rm is the
localization of R at a maximal ideal m, then Rm is a regular local ring, as we have seen.

Proof. We have already seen that 1 and 2 are equivalent. The new thing is that they are equivalent
to 3. First, assume 1 (or 2). First, note that ΩR/k is a finitely generated R-module; that’s a general
observation:

Proposition 3.10 If f : A → B is a map of rings that makes B a finitely generated A-algebra,
then ΩB/A is a finitely generated B-module.

Proof. We’ve seen this is true for polynomial rings, and we can use the exact sequence. If B is a
quotient of a polynomial ring, then ΩB/A is a quotient of the Kähler differentials of the polynomial
ring. N

Return to the main proof. In particular, ΩR/k is projective if and only if (ΩR/k)m is projec-
tive for every maximal ideal m. According to the second assertion, we have that Rm looks like
(k[y1, . . . , yn]/(f1, . . . , fm))n for some maximal ideal n, with the gradients∇fi linearly independent.
Thus (ΩR/k)m = ΩRm/k looks like the cokernel of

Rmm → Rnm

where the map is multiplication by the Jacobian matrix
(
∂fi
∂yj

)
. By assumption this matrix has full

rank. We see that there is a left inverse of the reduced map km → kn. We can lift this to a map
Rnm → Rmm . Since this is a left inverse mod m, the composite is at least an isomorphism (looking
at determinants). Anyway, we see that ΩR/k is given by the cokernel of a map of free module that
splits, hence is projective. The rank is n−m = dimRm.

Finally, let us prove that 3 implies 1. Suppose ΩR/k is projective of rank dimR. So this means
that ΩRm/k is free of dimension dimRm. But this implies that (ΩR/k) ⊗R R/m is free of the
appropriate rank, and that is—as we have seen already—the embedding dimension m/m2. So if 3
holds, the embedding dimension equals the usual dimension, and we get regularity. N
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Corollary 3.11 Let R = C[x1, . . . , xn]/p for p a prime. Then there is a nonzero f ∈ R such that
R[f−1] is regular.

Geometrically, this says the following. SpecR is some algebraic variety, and SpecR[f−1] is a
Zariski open subset. What we are saying is that, in characteristic zero, any algebraic variety has
a nonempty open smooth locus. The singular locus is always smaller than the entire variety.

Proof. ΩR/C is a finitely generated R-module. Let K(R) be the fraction field of R. Now

ΩR/C ⊗R K(R) = ΩK(R)/C

is a finite K(R)-vector space. The dimension is trdeg(K(R)/C). That is also d = dimR, as we
have seen. Choose elements x1, . . . , xd ∈ ΩR/C which form a basis for ΩK(R)/C. There is a map

Rd → ΩR/C

which is an isomorphism after localization at (0). This implies that there is f ∈ R such that the
map is an isomorphism after localization at f .4 We find that ΩR[f−1]/C is free of rank d for some
f , which is what we wanted. N

This argument works over any algebraically closed field of characteristic zero, or really any field
of characteristic zero.

Remark (Warning) Over imperfect fields in characteristic p, two things can happen:

1. Varieties need not be generically smooth

2. ΩR/k can be projective with the wrong rank

(Nothing goes wrong for algebraically closed fields of characteristic p.)

Example 3.12 Here is a silly example. Say R = k[y]/(yp − x) where x ∈ K has no pth root. We
know that ΩR/k is free of rank one. However, the rank is wrong: the variety has dimension zero.

Last time, were trying to show that ΩL/K is free on a transcendence basis if L/K is an extension
in characteristic zero. So we had a tower of fields

K → K ′ → L,

where L/K ′ was separable algebraic. We claim in this case that

ΩL/K ' ΩK′/K ⊗K′ L.

This will prove the result. But we had not done this yesterday.

Proof. This doesn’t follow directly from the previous calculations. Without loss of generality, L is
finite over K ′, and in particular, L = K ′[x]/(f(x)) for f separable. The claim is that

ΩL/K ' (ΩK′/K ⊗K′ L⊕K ′dx)/f ′(x)dx+ . . .

When we kill the vector f ′(x)dx+ . . . , we kill the second component. N

4There is an inverse defined over the fraction field, so it is defined over some localization.
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[Ray70] Michel Raynaud. Anneaux locaux henséliens. Lecture Notes in Mathematics, Vol. 169.
Springer-Verlag, Berlin, 1970.

[RG71] Michel Raynaud and Laurent Gruson. Critères de platitude et de projectivité. Techniques
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