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Chapter 5

Noetherian rings and modules

The finiteness condition of a noetherian ring is necessary for much of commutative algebra; many
of the results we prove after this will apply only (or mostly) to the noetherian case. In algebraic
geometry, the noetherian condition guarantees that the topological space associated to the ring
(the Spec) has all its sets quasi-compact; this condition can be phrased as saying that the space
itself is noetherian in a certain sense.

We shall start by proving the basic properties of noetherian rings. These are fairly standard
and straightforward; they could have been placed after Chapter 1, in fact. More subtle is the
structure theory for finitely generated modules over a noetherian ring. While there is nothing as
concrete as there is for PIDs (there, one has a very explicit descrition for the isomorphism classes),
one can still construct a so-called “primary decomposition.” This will be the primary focus after
the basic properties of noetherian rings and modules have been established. Finally, we finish with
an important subclass of noetherian rings, the artinian ones.

§1 Basics

1.1 The noetherian condition

Definition 1.1 Let R be a commutative ring and M an R-module. We say that M is noetherian
if every submodule of M is finitely generated.

There is a convenient reformulation of the finiteness hypothesis above in terms of the ascending
chain condition.

Proposition 1.2 M is a module over R. The following are equivalent:

1. M is noetherian.

2. Every chain of submodules M0 ⊂ M1 ⊂ · · · ⊂ M , eventually stabilizes at some MN . (As-
cending chain condition.)

3. Every nonempty collection of submodules of M has a maximal element.

Proof. Say M is noetherian and we have such a chain

M0 ⊂M1 ⊂ . . . .

Write

M ′ =
⋃
Mi ⊂M,
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which is finitely generated since M is noetherian. Let it be generated by x1, . . . , xn. Each of these
finitely many elements is in the union, so they are all contained in some MN . This means that

M ′ ⊂MN , so MN = M ′

and the chain stabilizes.
For the converse, assume the ACC. Let M ′ ⊂ M be any submodule. Define a chain of sub-

modules M0 ⊂ M1 ⊂ · · · ⊂ M ′ inductively as follows. First, just take M0 = {0}. Take Mn+1 to
be Mn + Rx for some x ∈ M ′ −Mn, if such an x exists; if not take Mn+1 = Mn. So M0 is zero,
M1 is generated by some nonzero element of M ′, M2 is M1 together with some element of M ′ not
in M1, and so on, until (if ever) the chain stabilizes.

However, by construction, we have an ascending chain, so it stabilizes at some finite place by
the ascending chain condition. Thus, at some point, it is impossible to choose something in M ′

that does not belong to MN . In particular, M ′ is generated by N elements, since MN is and
M ′ = MN . This proves the reverse implication. Thus the equivalence of 1 and 2 is clear. The
equivalence of 2 and 3 is left to the reader. N

Working with noetherian modules over non-noetherian rings can be a little funny, though, so
normally this definition is combined with:

Definition 1.3 The ring R is noetherian if R is noetherian as an R-module. Equivalently
phrased, R is noetherian if all of its ideals are finitely generated.

We start with the basic examples:

Example 1.4 1. Any field is noetherian. There are two ideals: (1) and (0).

2. Any PID is noetherian: any ideal is generated by one element. So Z is noetherian.

The first basic result we want to prove is that over a noetherian ring, the noetherian modules are
precisely the finitely generated ones. This will follow from Proposition 1.5 in the next subsection.
So the defining property of noetherian rings is that a submodule of a finitely generated module is
finitely generated. (Compare Proposition 1.8.)

Exercise 5.1 The ring C[X1, X2, . . . ] of polynomials in infinitely many variables is not noetherian.
Note that the ring itself is finitely generated (by the element 1), but there are ideals that are not
finitely generated.

Remark Let R be a ring such that every prime ideal is finitely generated. Then R is noetherian.
See Corollary 1.19, or prove it as an exercise.

1.2 Stability properties

The class of noetherian rings is fairly robust. If one starts with a noetherian ring, most of the
elementary operations one can do to it lead to noetherian rings.

Proposition 1.5 If

0→M ′ →M →M ′′ → 0

is an exact sequence of modules, then M is noetherian if and only if M ′,M ′′ are.

One direction states that noetherianness is preserved under subobjects and quotients. The
other direction states that noetherianness is preserved under extensions.
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Proof. IfM is noetherian, then every submodule ofM ′ is a submodule ofM , so is finitely generated.
So M ′ is noetherian too. Now we show that M ′′ is noetherian. Let N ⊂ M ′′ and let Ñ ⊂ M the
inverse image. Then Ñ is finitely generated, so N—as the homomorphic image of Ñ—is finitely
generated So M ′′ is noetherian.

Suppose M ′,M ′′ noetherian. We prove M noetherian. We verify the ascending chain condition.
Consider

M1 ⊂M2 ⊂ · · · ⊂M.

Let M ′′i denote the image of Mi in M ′′ and let M ′i be the intersection of Mi with M ′. Here we think
of M ′ as a submodule of M . These are ascending chains of submodules of M ′,M ′′, respectively,
so they stabilize by noetherianness. So for some N , we have that n ≥ N implies

M ′n = M ′n+1, M ′′n = M ′′n+1.

We claim that this implies, for such n,

Mn = Mn+1.

Indeed, say x ∈ Mn+1 ⊂ M . Then x maps into something in M ′′n+1 = M ′′n . So there is something
in Mn, call it y, such that x, y go to the same thing in M ′′. In particular,

x− y ∈Mn+1

goes to zero in M ′′, so x− y ∈M ′. Thus x− y ∈M ′n+1 = M ′n. In particular,

x = (x− y) + y ∈M ′n +Mn = Mn.

So x ∈Mn, and
Mn = Mn+1.

This proves the result. N

The class of noetherian modules is thus “robust.” We can get from that the following.

Proposition 1.6 If φ : A→ B is a surjection of commutative rings and A is noetherian, then B
is noetherian too.

Proof. Indeed, B is noetherian as an A-module; indeed, it is the quotient of a noetherian A-module
(namely, A). However, it is easy to see that the A-submodules of B are just the B-modules in B,
so B is noetherian as a B-module too. So B is noetherian. N

We know show that noetherianness of a ring is preserved by localization:

Proposition 1.7 Let R be a commutative ring, S ⊂ R a multiplicatively closed subset. If R is
noetherian, then S−1R is noetherian.

I.e., the class of noetherian rings is closed under localization.

Proof. Say φ : R → S−1R is the canonical map. Let I ⊂ S−1R be an ideal. Then φ−1(I) ⊂ R is
an ideal, so finitely generated. It follows that

φ−1(I)(S−1R) ⊂ S−1R

is finitely generated as an ideal in S−1R; the generators are the images of the generators of φ−1(I).
Now we claim that

φ−1(I)(S−1R) = I.

The inclusion ⊂ is trivial. For the latter inclusion, if x/s ∈ I, then x ∈ φ−1(I), so

x = (1/s)x ∈ (S−1R)φ−1(I).

This proves the claim and implies that I is finitely generated. N
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Let R be a noetherian ring. We now characterize the noetherian R-modules.

Proposition 1.8 An R-module M is noetherian if and only if M is finitely generated.

Proof. The only if direction is obvious. A module is noetherian if and only if every submodule is
finitely generated.

For the if direction, if M is finitely generated, then there is a surjection of R-modules

Rn →M N

where R is noetherian. But Rn is noetherian by Proposition 1.5 because it is a direct sum of copies
of R. So M is a quotient of a noetherian module and is noetherian.

1.3 The basis theorem

Let us now prove something a little less formal. This is, in fact, the biggest of the “stability”
properties of a noetherian ring: we are going to see that finitely generated algebras over noetherian
rings are still noetherian.

Theorem 1.9 (Hilbert basis theorem) If R is a noetherian ring, then the polynomial ring
R[X] is noetherian.

Proof. Let I ⊂ R[X] be an ideal. We prove that it is finitely generated. For each m ∈ Z≥0, let
I(n) be the collection of elements a ∈ R consisting of the coefficients of xn of elements of I of
degree ≤ n. This is an ideal, as is easily seen.

In fact, we claim that
I(1) ⊂ I(2) ⊂ . . .

which follows because if a ∈ I(1), there is an element aX + . . . in I. Thus X(aX + . . . ) =
aX2 + · · · ∈ I, so a ∈ I(2). And so on.

Since R is noetherian, this chain stabilizes at some I(N). Also, because R is noetherian, each
I(n) is generated by finitely many elements an,1, . . . , an,mn

∈ I(n). All of these come from poly-
nomials Pn,i ∈ I such that Pn,i = an,iX

n + . . . .
The claim is that the Pn,i for n ≤ N and i ≤ mn generate I. This is a finite set of polynomials,

so if we prove the claim, we will have proved the basis theorem. Let J be the ideal generated by
{Pn,i, n ≤ N, i ≤ mn}. We know J ⊂ I. We must prove I ⊂ J .

We will show that any element P (X) ∈ I of degree n belongs to J by induction on n. The
degree is the largest nonzero coefficient. In particular, the zero polynomial does not have a degree,
but the zero polynomial is obviously in J .

There are two cases. In the first case, n ≥ N . Then we write

P (X) = aXn + . . . .

By definition, a ∈ I(n) = I(N) since the chain of ideals I(n) stabilized. Thus we can write a in
terms of the generators: a =

∑
aN,iλi for some λi ∈ R. Define the polynomial

Q =
∑

λiPN,ix
n−N ∈ J.

Then Q has degree n and the leading term is just a. In particular,

P −Q

is in I and has degree less than n. By the inductive hypothesis, this belongs to J , and since Q ∈ J ,
it follows that P ∈ J .
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Now consider the case of n < N . Again, we write P (X) = aXn + . . . . Then a ∈ I(n). We can
write

a =
∑

an,iλi, λi ∈ R.

But the an,i ∈ I(n). The polynomial

Q =
∑

λiPn,i

belongs to J since n < N . In the same way, P − Q ∈ I has a lower degree. Induction as before
implies that P ∈ J . N

Example 1.10 Let k be a field. Then k[x1, . . . , xn] is noetherian for any n, by the Hilbert basis
theorem and induction on n.

Corollary 1.11 If R is a noetherian ring and R′ a finitely generated R-algebra, then R′ is noethe-
rian too.

Proof. Each polynomial ring R[X1, . . . , Xn] is noetherian by Theorem 1.9 and an easy induction
on n. Consequently, any quotient of a polynomial ring (i.e. any finitely generated R-algebra, such
as R′) is noetherian. N

Example 1.12 Any finitely generated commutative ring R is noetherian. Indeed, then there is a
surjection

Z[x1, . . . , xn]� R

where the xi get mapped onto generators in R. The former is noetherian by the basis theorem,
and R is as a quotient noetherian.

Corollary 1.13 Any ring R can be obtained as a filtered direct limit of noetherian rings.

Proof. Indeed, R is the filtered direct limit of its finitely generated subrings. N

This observation is sometimes useful in commutative algebra and algebraic geometry, in order
to reduce questions about arbitrary commutative rings to noetherian rings. Noetherian rings have
strong finiteness hypotheses that let you get numerical invariants that may be useful. For instance,
we can do things like inducting on the dimension for noetherian local rings.

Example 1.14 Take R = C[x1, . . . , xn]. For any algebraic variety V defined by polynomial equa-
tions, we know that V is the vanishing locus of some ideal I ⊂ R. Using the Hilbert basis theorem,
we have shown that I is finitely generated. This implies that V can be described by finitely many
polynomial equations.

1.4 Noetherian induction

The finiteness condition on a noetherian ring allows for “induction” arguments to be made; we
shall see examples of this in the future.

Proposition 1.15 (Noetherian Induction Principle) Let R be a noetherian ring, let P be a
property, and let F be a family of ideals R. Suppose the inductive step: if all ideals in F strictly
larger than I ∈ F satisfy P, then I satisfies P. Then all ideals in F satisfy P.

Proof. Assume Fcrim = {J ∈ F|J does not satisfy P} 6= ∅. Since R is noetherian, Fcrim has a
maximal member I. By maximality, all ideals in F strictly containing I satisfy P, so I also does
by the inductive step. N
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§2 Associated primes

We shall now begin the structure theory for noetherian modules. The first step will be to associate
to each module a collection of primes, called the associated primes, which lie in a bigger collection
of primes (the support) where the localizations are nonzero.

2.1 The support

Let R be a noetherian ring. An R-module M is supposed to be thought of as something like a
vector bundle, somehow spread out over the topological space SpecR. If p ∈ SpecR, then let
κ(p) = fr. field R/p, which is the residue field of Rp. If M is any R-module, we can consider
M ⊗R κ(p) for each p; it is a vector space over κ(p). If M is finitely generated, then M ⊗R κ(p) is
a finite-dimensional vector space.

Definition 2.1 Let M be a finitely generated R-module. Then suppM , the support of M , is
defined to be the set of primes p ∈ SpecR such that M ⊗R κ(p) 6= 0.

One is supposed to think of a module M as something like a vector bundle over the topological
space SpecR. At each p ∈ SpecR, we associate the vector space M ⊗R κ(p); this is the “fiber.”
Of course, the intuition of M ’s being a vector bundle is somewhat limited, since the fibers do not
generally have the same dimension. Nonetheless, we can talk about the support, i.e. the set of
spaces where the “fiber” is not zero.

Note that p ∈ suppM if and only if Mp 6= 0. This is because

(M ⊗R Rp)/(pRp(M ⊗R Rp)) = Mp ⊗Rp
κ(p)

and we can use Nakayama’s lemma over the local ring Rp. (We are using the fact that M is finitely
generated.)

A vector bundle whose support is empty is zero. Thus the following easy proposition is intuitive:

Proposition 2.2 M = 0 if and only if suppM = ∅.

Proof. Indeed, M = 0 if and only if Mp = 0 for all primes p ∈ SpecR. This is equivalent to
suppM = ∅. N

Exercise 5.2 Let 0→M ′ →M →M ′′ → 0 be exact. Then

suppM = suppM ′ ∪ suppM ′′.

We will see soon that that suppM is closed in SpecR. One imagines that M lives on this
closed subset suppM , in some sense.

2.2 Associated primes

Throughout this section, R is a noetherian ring. The associated primes of a module M will refer to
primes that arise as the annihilators of elements in M . As we shall see, the support of a module is
determined by the associated primes. Namely, the associated primes contain the “generic points”
(that is, the minimal primes) of the support. In some cases, however, they may contain more.

TO BE ADDED: We are currently using the notation Ann(x) for the annihilator of x ∈M .
This has not been defined before. Should we add this in a previous chapter?

Definition 2.3 Let M be a finitely generated R-module. The prime ideal p is said to be asso-
ciated to M if there exists an element x ∈ M such that p is the annihilator of x. The set of
associated primes is Ass(M).

8
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Note that the annihilator of an element x ∈M is not necessarily prime, but it is possible that
the annihilator might be prime, in which case it is associated.

Exercise 5.3 Show that p ∈ Ass(M) if and only if there is an injection R/p ↪→M .

Exercise 5.4 Let p ∈ SpecR. Then Ass(R/p) = {p}.

Example 2.4 Take R = k[x, y, z], where k is an integral domain, and let I = (x2 − yz, x(z − 1)).
Any prime associated to I must contain I, so let’s consider p = (x2 − yz, z − 1) = (x2 − y, z − 1),
which is I : x. It is prime because R/p = k[x], which is a domain. To see that (I : x) ⊂ p, assume
tx ∈ I ⊂ p; since x 6∈ p, t ∈ p, as desired.

There are two more associated primes, but we will not find them here.

We shall start by proving that Ass(M) 6= ∅ for nonzero modules.

Proposition 2.5 If M 6= 0, then M has an associated prime.

Proof. Consider the collection of ideals in R that arise as the annihilator of a nonzero element in
M . Let I ⊂ R be a maximal element among this collection. The existence of I is guaranteed
thanks to the noetherianness of R. Then I = Ann(x) for some x ∈ M , so 1 /∈ I because the
annihilator of a nonzero element is not the full ring.

I claim that I is prime, and hence I ∈ Ass(M). Indeed, suppose ab ∈ I where a, b ∈ R. This
means that

(ab)x = 0. N

Consider the annihilator Ann(bx) of bx. This contains the annihilator of x, so I; it also contains
a.

There are two cases. If bx = 0, then b ∈ I and we are done. Suppose to the contrary bx 6= 0.
In this case, Ann(bx) contains (a) + I, which contains I. By maximality, it must happen that
Ann(bx) = I and a ∈ I.

In either case, we find that one of a, b belongs to I, so that I is prime.

Example 2.6 (A module with no associated prime) Without the noetherian hypothesis, Propo-
sition 2.5 is false. Consider R = C[x1, x2, . . . ], the polynomial ring over C in infinitely many
variables, and the ideal I = (x1, x

2
2, x

3
3, . . . ) ⊂ R. The claim is that

Ass(R/I) = ∅.

To see this, suppose a prime p was the annihilator of some f ∈ R/I. Then f lifts to f ∈ R; it
follows that p is precisely the set of g ∈ R such that fg ∈ I. Now f contains only finitely many of
the variables xi, say x1, . . . , xn. It is then clear that xn+1

n+1f ∈ I (so xn+1
n+1 ∈ p), but xn+1f /∈ I (so

xn+1 /∈ p). It follows that p is not a prime, a contradiction.

We shall now show that the associated primes are finite in number.

Proposition 2.7 If M is finitely generated, then Ass(M) is finite.

The idea is going to be to use the fact that M is finitely generated to build M out of finitely
many pieces, and use that to bound the number of associated primes to each piece. For this, we
need:

Lemma 2.8 Suppose we have an exact sequence of finitely generated R-modules

0→M ′ →M →M ′′ → 0.

Then
Ass(M ′) ⊂ Ass(M) ⊂ Ass(M ′) ∪Ass(M ′′)

9
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Proof. The first claim is obvious. If p is the annihilator of in x ∈ M ′, it is an annihilator of
something in M (namely the image of x), because M ′ →M is injective. So Ass(M ′) ⊂ Ass(M).

The harder direction is the other inclusion. Suppose p ∈ Ass(M). Then there is x ∈ M
such that p = Ann(x). Consider the submodule Rx ⊂ M . If Rx ∩M ′ 6= 0, then we can choose
y ∈ Rx ∩M ′ − {0}. I claim that Ann(y) = p and so p ∈ Ass(M ′). To see this, y = ax for some
a ∈ R. The annihilator of y is the set of elements b ∈ R such that

abx = 0

or, equivalently, the set of b ∈ R such that ab ∈ p = Ann(x). But y = ax 6= 0, so a /∈ p. As a
result, the condition b ∈ Ann(y) is the same as b ∈ p. In other words,

Ann(y) = p

which proves the claim.

Suppose now that Rx∩M ′ = 0. Let φ : M �M ′′ be the surjection. I claim that p = Ann(φ(x))
and consequently that p ∈ Ass(M ′′). The proof is as follows. Clearly p annihilates φ(x) as it
annihilates x. Suppose a ∈ Ann(φ(x)). This means that φ(ax) = 0, so ax ∈ kerφ = M ′; but
kerφ ∩Rx = 0. So ax = 0 and consequently a ∈ p. It follows Ann(φ(x)) = p. N

The next step in the proof of Proposition 2.7 is that any finitely generated module admits a
filtration each of whose quotients are of a particularly nice form. This result is quite useful and
will be referred to in the future.

Proposition 2.9 (Dévissage) For any finitely generated R-module M , there exists a finite fil-
tration

0 = M0 ⊂M1 ⊂ · · · ⊂Mk = M

such that the successive quotients Mi+1/Mi are isomorphic to various R/pi with the pi ⊂ R prime.

Proof. Let M ′ ⊂ M be maximal among submodules for which such a filtration (ending with M ′)
exists. We would like to show that M ′ = M . Now M ′ is well-defined since 0 has such a filtration
and M is noetherian.

There is a filtration

0 = M0 ⊂M1 ⊂ · · · ⊂Ml = M ′ ⊂M

where the successive quotients, except possibly the last M/M ′, are of the form R/pi for pi ∈ SpecR.
If M ′ = M , we are done. Otherwise, consider the quotient M/M ′ 6= 0. There is an associated
prime of M/M ′. So there is a prime p which is the annihilator of x ∈ M/M ′. This means that
there is an injection

R/p ↪→M/M ′.

Now, take Ml+1 as the inverse image in M of R/p ⊂ M/M ′. Then, we can consider the finite
filtration

0 = M0 ⊂M1 ⊂ · · · ⊂Ml+1,

all of whose successive quotients are of the form R/pi; this is because Ml+1/Ml = Ml+1/M
′ is of

this form by construction. We have thus extended this filtration one step further, a contradiction
since M ′ was assumed to be maximal. N

Now we are in a position to meet the goal, and prove that Ass(M) is always a finite set.

10
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Proof (Proof of Proposition 2.7). Suppose M is finitely generated Take our filtration

0 = M0 ⊂M1 ⊂ · · · ⊂Mk = M.

By induction, we show that Ass(Mi) is finite for each i. It is obviously true for i = 0. Assume now
that Ass(Mi) is finite; we prove the same for Ass(Mi+1). We have an exact sequence

0→Mi →Mi+1 → R/pi → 0

which implies that, by Lemma 2.8,

Ass(Mi+1) ⊂ Ass(Mi) ∪Ass(R/pi) = Ass(Mi) ∪ {pi} ,

so Ass(Mi+1) is also finite. By induction, it is now clear that Ass(Mi) is finite for every i.
This proves the proposition; it also shows that the number of associated primes is at most the

length of the filtration. N

Finally, we characterize the zerodivisors on M in terms of the associated primes. The last
characterization of the result will be useful in the future. It implies, for instance, that if R is local
and m the maximal ideal, then if every element of m is a zerodivisor on a finitely generated module
M , then m ∈ Ass(M).

Proposition 2.10 If M is a finitely generated module over a noetherian ring R, then the zerodi-
visors on M are the union

⋃
p∈Ass(M) p.

More strongly, if I ⊂ R is any ideal consisting of zerodivisors on M , then I is contained in an
associated prime.

Proof. Any associated prime is an annihilator of some element of M , so it consists of zerodivisors.
Conversely, if a ∈ R annihilates x ∈ M , then a belongs to every associated prime of the nonzero
module Ra ⊂M . (There is at least one by Proposition 2.7.)

For the last statement, we use prime avoidance (??): if I consists of zerodivisors, then I is
contained in the union

⋃
p∈Ass(M) p by the first part of the proof. This is a finite union by ??, so

prime avoidance implies I is contained one of these primes. N

Exercise 5.5 For every module M over any (not necessarily noetherian) ring R, the set of M -
zerodivisorsZ(M) is a union of prime ideals. In general, there is an easy characterization of sets
Z which are a union of primes: it is exactly when R r Z is a saturated multiplicative set. This is
Kaplansky’s Theorem 2.

Definition 2.11 A multiplicative set S 6= ∅ is a saturated multiplicative set if for all a, b ∈ R,
a, b ∈ S if and only if ab ∈ S. (“multiplicative set” just means the “if” part)

To see that Z(M) is a union of primes, just verify that its complement is a saturated multiplicative
set.

2.3 Localization and Ass(M)

It turns out to be extremely convenient that the construction M → Ass(M) behaves about as nicely
with respect to localization as we could possibly want. This lets us, in fact, reduce arguments to
the case of a local ring, which is a significant simplification.

So, as usual, let R be noetherian, and M a finitely generated R-module. Let further S ⊂ R
be a multiplicative subset. Then S−1M is a finitely generated module over the noetherian ring
S−1M . So it makes sense to consider both Ass(M) ⊂ SpecR and Ass(S−1M) ⊂ SpecS−1R. But
we also know that SpecS−1R ⊂ SpecR is just the set of primes of R that do not intersect S.
Thus, we can directly compare Ass(M) and Ass(S−1M), and one might conjecture (correctly, as
it happens) that Ass(S−1M) = Ass(M) ∩ SpecS−1R.

11
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Proposition 2.12 Let R noetherian, M finitely generated and S ⊂ R multiplicatively closed.
Then

Ass(S−1M) =
{
S−1p : p ∈ Ass(M), p ∩ S = ∅

}
.

Proof. We first prove the easy direction, namely that Ass(S−1M) contains primes in SpecS−1R∩
Ass(M).

Suppose p ∈ Ass(M) and p ∩ S = ∅. Then p = Ann(x) for some x ∈ M . Then the annihilator
of x/1 ∈ S−1M is just S−1p, as one can directly check. Thus S−1p ∈ Ass(S−1M). So we get the
easy inclusion.

Let us now do the harder inclusion. Call the localization map R → S−1R as φ. Let q ∈
Ass(S−1M). By definition, this means that q = Ann(x/s) for some x ∈M , s ∈ S. We want to see
that φ−1(q) ∈ Ass(M) ⊂ SpecR. By definition φ−1(q) is the set of elements a ∈ R such that

ax

s
= 0 ∈ S−1M.

In other words, by definition of the localization, this is

φ−1(q) =
⋃
t∈S
{a ∈ R : atx = 0 ∈M} =

⋃
Ann(tx) ⊂ R.

We know, however, that among elements of the form Ann(tx), there is a maximal element I =
Ann(t0x) for some t0 ∈ S, since R is noetherian. The claim is that I = φ−1(q), so φ−1(q) ∈ Ass(M).

Indeed, any other annihilator I ′ = Ann(tx) (for t ∈ S) must be contained in Ann(t0tx).
However, I ⊂ Ann(t0x) and I is maximal, so I = Ann(t0tx) and I ′ ⊂ I. In other words, I contains
all the other annihilators Ann(tx) for t ∈ S. In particular, the big union above, i.e. φ−1(q), is just
I = Ann(t0x). In particular, φ−1(q) = Ann(t0x) is in Ass(M). This means that every associated
prime of S−1M comes from an associated prime of M , which completes the proof. N

Exercise 5.6 Show that, if M is a finitely generated module over a noetherian ring, that the map

M →
⊕

p∈Ass(M)

Mp

is injective. Is this true if M is not finitely generated?

2.4 Associated primes determine the support

The next claim is that the support and the associated primes are related.

Proposition 2.13 The support is the closure of the associated primes:

suppM =
⋃

q∈Ass(M)

{q}

By definition of the Zariski topology, this means that a prime p ∈ SpecR belongs to suppM if
and only if it contains an associated prime.

Proof. First, we show that supp(M) contains the set of primes p ∈ SpecR containing an associated
prime; this will imply that supp(M) ⊃

⋃
q∈Ass(M) {q}. So let q be an associated prime and p ⊃ q.

We need to show that
p ∈ suppM, i.e. Mp 6= 0.

But, since q ∈ Ass(M), there is an injective map

R/q ↪→M,

12
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so localization gives an injective map

(R/q)p ↪→Mp.

Here, however, the first object (R/q)p is nonzero since nothing nonzero in R/q can be annihilated
by something outside p. So Mp 6= 0, and p ∈ suppM .

Let us now prove the converse inclusion. Suppose that p ∈ suppM . We have to show that
p contains an associated prime. By assumption, Mp 6= 0, and Mp is a finitely generated module
over the noetherian ring Rp. So Mp has an associated prime. It follows by Proposition 2.12 that
Ass(M)∩SpecRp is nonempty. Since the primes of Rp correspond to the primes contained in p, it
follows that there is a prime contained in p that lies in Ass(M). This is precisely what we wanted
to prove. N

Corollary 2.14 For M finitely generated, suppM is closed. Further, every minimal element of
suppM lies in Ass(M).

Proof. Indeed, the above result says that

suppM =
⋃

q∈Ass(M)

{q}.

Since Ass(M) is finite, it follows that suppM is closed. The above equality also shows that any
minimal element of suppM must be an associated prime. N

Example 2.15 Corollary 2.14 is false for modules that are not finitely generated. Consider for
instance the abelian group

⊕
p Z/p. The support of this as a Z-module is precisely the set of all

closed points (i.e., maximal ideals) of SpecZ, and is consequently is not closed.

Corollary 2.16 The ring R has finitely many minimal prime ideals.

Proof. Clearly, suppR = SpecR. Thus every prime ideal of R contains an associated prime of R
by Proposition 2.13. N

So SpecR is the finite union of the irreducible closed pieces q if R is noetherian. TO BE
ADDED: I am not sure if “irreducibility” has already been defined. Check this.

We have just seen that suppM is a closed subset of SpecR and is a union of finitely many
irreducible subsets. More precisely,

suppM =
⋃

q∈Ass(M)

{q}

though there might be some redundancy in this expression. Some associated prime might be
contained in others.

Definition 2.17 A prime p ∈ Ass(M) is an isolated associated prime of M if it is minimal (with
respect to the ordering on Ass(M)); it is embedded otherwise.

So the embedded primes are not needed to describe the support of M .
TO BE ADDED: Examples of embedded primes

Remark It follows that in a noetherian ring, every minimal prime consists of zerodivisors. Al-
though we shall not use this in the future, the same is true in non-noetherian rings as well. Here
is an argument.

Let R be a ring and p ⊂ R a minimal prime. Then Rp has precisely one prime ideal. We now
use:

13
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Lemma 2.18 If a ring R has precisely one prime ideal p, then any x ∈ p is nilpotent.

Proof. Indeed, it suffices to see that Rx = 0 (?? 4.9 in Chapter 4) if x ∈ p. But SpecRx consists
of the primes of R not containing x. However, there are no such primes. Thus SpecRx = ∅, so
Rx = 0. N

It follows that every element in p is a zerodivisor in Rp. As a result, if x ∈ p, there is s
t ∈ Rp

such that xs/t = 0 but s
t 6= 0. In particular, there is t′ /∈ p with

xst′ = 0, st′ 6= 0,

so that x is a zerodivisor.

2.5 Primary modules

A primary modules are ones that has only one associated prime. It is equivalent to say that any
homothety is either injective or nilpotent. As we will see in the next section, any module has a
“primary decomposition:” in fact, it embeds as a submodule of a sum of primary modules.

Definition 2.19 Let p ⊂ R be prime, M a finitely generated R-module. Then M is p-primary
if

Ass(M) = {p} .

A module is primary if it is p-primary for some prime p, i.e., has precisely one associated
prime.

Proposition 2.20 Let M be a finitely generated R-module. Then M is p-primary if and only if,
for every m ∈M − {0}, the annihilator Ann(m) has radical p.

Proof. We first need a small observation.

Lemma 2.21 If M is p-primary, then any nonzero submodule M ′ ⊂M is p-primary.

Proof. Indeed, we know that Ass(M ′) ⊂ Ass(M) by Lemma 2.8. Since M ′ 6= 0, we also know that
M ′ has an associated prime (Proposition 2.5). Thus Ass(M ′) = {p}, so M ′ is p-primary. N

Let us now return to the proof of the main result, Proposition 2.20. Assume first that M is
p-primary. Let x ∈ M , x 6= 0. Let I = Ann(x); we are to show that Rad(I) = p. By definition,
there is an injection

R/I ↪→M

sending 1 → x. As a result, R/I is p-primary by the above lemma. We want to know that
p = Rad(I). We saw that the support suppR/I = {q : q ⊃ I} is the union of the closures of the
associated primes. In this case,

supp(R/I) = {q : q ⊃ p} .

But we know that Rad(I) =
⋂

q⊃I q, which by the above is just p. This proves that Rad(I) = p.
We have shown that if R/I is primary, then I has radical p.

The converse is easy. Suppose the condition holds and q ∈ Ass(M), so q = Ann(x) for x 6= 0.
But then Rad(q) = p, so

q = p

and Ass(M) = {p}. N

We have another characterization.

14
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Proposition 2.22 Let M 6= 0 be a finitely generated R-module. Then M is primary if and only
if for each a ∈ R, then the homothety M

a→M is either injective or nilpotent.

Proof. Suppose first that M is p-primary. Then multiplication by anything in p is nilpotent because
the annihilator of everything nonzero has radical p by Proposition 2.20. But if a /∈ p, then Ann(x)
for x ∈M − {0} has radical p and cannot contain a.

Let us now do the other direction. Assume that every element of a acts either injectively or
nilpotently on M . Let I ⊂ R be the collection of elements a ∈ R such that anM = 0 for n large.
Then I is an ideal, since it is closed under addition by the binomial formula: if a, b ∈ I and an, bn

act by zero, then (a+ b)2n acts by zero as well.
I claim that I is actually prime. If a, b /∈ I, then a, b act by multiplication injectively on M .

So a : M → M, b : M → M are injective. However, a composition of injections is injective, so ab
acts injectively and ab /∈ I. So I is prime.

We need now to check that if x ∈ M is nonzero, then Ann(x) has radical I. Indeed, if a ∈ R
annihilates x, then the homothety M

a→M cannot be injective, so it must be nilpotent (i.e. in I).
Conversely, if a ∈ I, then a power of a is nilpotent, so a power of a must kill x. It follows that
Ann(x) = I. Now, by Proposition 2.20, we see that M is I-primary. N

We now have this notion of a primary module. The idea is that all the torsion is somehow
concentrated in some prime.

Example 2.23 If R is a noetherian ring and p ∈ SpecR, then R/p is p-primary. More gener-
ally, if I ⊂ R is an ideal, then R/I is ideal if and only if Rad(I) is prime. This follows from
Proposition 2.22.

Exercise 5.7 If 0 → M ′ → M → M ′′ → 0 is an exact sequence with M ′,M,M ′′ nonzero and
finitely generated, then M is p-primary if and only if M ′,M ′′ are.

Exercise 5.8 Let M be a finitely generated R-module. Let p ∈ SpecR. Show that the sum of
two p-primary submodules is p-primary. Deduce that there is a p-primary submodule of M which
contains every p-primary submodule.

Exercise 5.9 (Bourbaki) Let M be a finitely generated R-module. Let T ⊂ Ass(M) be a subset
of the associated primes. Prove that there is a submodule N ⊂M such that

Ass(N) = T, Ass(M/N) = Ass(M)− T.

§3 Primary decomposition

This is the structure theorem for modules over a noetherian ring, in some sense. Throuoghout, we
fix a noetherian ring R.

3.1 Irreducible and coprimary modules

Definition 3.1 Let M be a finitely generated R-module. A submodule N ⊂ M is p-coprimary
if M/N is p-primary.

Similarly, we can say that N ⊂M is coprimary if it is p-coprimary for some p ∈ SpecR.

We shall now show we can represent any submodule of M as an intersection of coprimary
submodules. In order to do this, we will define a submodule of M to be irreducible if it cannot be
written as a nontrivial intersection of submodules of M . It will follow by general nonsense that
any submodule is an intersection of irreducible submodueles. We will then see that any irreducible
submodule is coprimary.

15
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Definition 3.2 The submomduleN (M is irreducible if wheneverN = N1∩N2 forN1, N2 ⊂M
submodules, then either one of N1, N2 equals N . In other words, it is not the intersection of larger
submodules.

Proposition 3.3 An irreducible submodule N ⊂M is coprimary.

Proof. Say a ∈ R. We would like to show that the homothety

M/N
a→M/N

is either injective or nilpotent. Consider the following submodules of M/N :

K(n) = {x ∈M/N : anx = 0} .

Then clearly K(0) ⊂ K(1) ⊂ . . . ; this chain stabilizes as the quotient module is noetherian. In
particular, K(n) = K(2n) for large n.

It follows that if x ∈ M/N is divisible by an (n large) and nonzero, then anx is also nonzero.
Indeed, say x = any 6= 0; then y /∈ K(n), so anx = a2ny 6= 0 or we would have y ∈ K(2n) = K(n).
In M/N , the submodules

an(M/N) ∩ ker(an)

are equal to zero for large n. But our assumption was that N is irreducible. So one of these
submodules of M/N is zero. That is, either an(M/N) = 0 or ker an = 0. We get either injectivity
or nilpotence on M/N . This proves the result. N

3.2 Irreducible and primary decompositions

We shall now show that in a finitely generated module over a noetherian ring, we can write 0 as an
intersection of coprimary modules. This decomposition, which is called a primary decomposition,
will be deduced from purely general reasoning.

Definition 3.4 An irreducible decomposition of the moduleM is a representationN1∩N2 · · ·∩
Nk = 0, where the Ni ⊂M are irreducible submodules.

Proposition 3.5 If M is finitely generated, then M has an irreducible decomposition. There exist
finitely many irreducible submodules N1, . . . , Nk with

N1 ∩ · · · ∩Nk = 0.

In other words,

M →
⊕

M/Ni

is injective. So a finitely generated module over a noetherian ring can be imbedded in a direct sum
of primary modules, since by Proposition 3.3 the M/Ni are primary.

Proof. This is now purely formal.
Among the submodules of M , some may be expressible as intersections of finitely many irre-

ducibles, while some may not be. Our goal is to show that 0 is such an intersection. Let M ′ ⊂M
be a maximal submodule of M such that M ′ cannot be written as such an intersection. If no such
M ′ exists, then we are done, because then 0 can be written as an intersection of finitely many
irreducible submodules.

Now M ′ is not irreducible, or it would be the intersection of one irreducible submodule. It
follows M ′ can be written as M ′ = M ′1 ∩M ′2 for two strictly larger submodules of M . But by
maximality, M ′1,M

′
2 admit decompositions as intersections of irreducibles. So M ′ admits such a

decomposition as well, a contradiction. N
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Corollary 3.6 For any finitely generated M , there exist coprimary submodules N1, . . . , Nk ⊂ M
such that N1 ∩ · · · ∩Nk = 0.

Proof. Indeed, every irreducible submodule is coprimary. N

For any M , we have an irreducible decomposition

0 =
⋂
Ni

for the Ni a finite set of irreducible (and thus coprimary) submodules. This decomposition here is
highly non-unique and non-canonical. Let’s try to pare it down to something which is a lot more
canonical.

The first claim is that we can collect together modules which are coprimary for some prime.

Lemma 3.7 Let N1, N2 ⊂M be p-coprimary submodules. Then N1 ∩N2 is also p-coprimary.

Proof. We have to show that M/N1 ∩N2 is p-primary. Indeed, we have an injection

M/N1 ∩N2�M/N1 ⊕M/N2

which implies that Ass(M/N1 ∩N2) ⊂ Ass(M/N1) ∪Ass(M/N2) = {p}. So we are done. N

In particular, if we do not want irreducibility but only primariness in the decomposition

0 =
⋂
Ni,

we can assume that each Ni is pi coprimary for some prime pi with the pi distinct.

Definition 3.8 Such a decomposition of zero, where the different modules Ni are pi-coprimary
for different pi, is called a primary decomposition.

3.3 Uniqueness questions

In general, primary decomposition is not unique. Nonetheless, we shall see that a limited amount
of uniqueness does hold. For instance, the primes that occur are determined.

Let M be a finitely generated module over a noetherian ring R, and suppose N1∩· · ·∩Nk = 0 is
a primary decomposition. Let us assume that the decomposition is minimal : that is, if we dropped
one of the Ni, the intersection would no longer be zero. This implies that

Ni 6⊃
⋂
j 6=i

Nj

or we could omit one of the Ni. Then the decomposition is called a reduced primary decom-
position.

Again, what this tells us is that M �
⊕
M/Ni. What we have shown is that M can be

imbedded in a sum of pieces, each of which is p-primary for some prime, and the different primes
are distinct.

This is not unique. However,

Proposition 3.9 The primes pi that appear in a reduced primary decomposition of zero are
uniquely determined. They are the associated primes of M .

17
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Proof. All the associated primes of M have to be there, because we have the injection

M �
⊕

M/Ni

so the associated primes of M are among those of M/Ni (i.e. the pi).
The hard direction is to see that each pi is an associated prime. I.e. if M/Ni is pi-primary,

then pi ∈ Ass(M); we don’t need to use primary modules except for primes in the associated
primes. Here we need to use the fact that our decomposition has no redundancy. Without loss of
generality, it suffices to show that p1, for instance, belongs to Ass(M). We will use the fact that

N1 6⊃ N2 ∩ . . . .

So this tells us that N2 ∩N3 ∩ . . . is not equal to zero, or we would have a containment. We have
a map

N2 ∩ · · · ∩Nk →M/N1;

it is injective, since the kernel is N1 ∩ N2 ∩ · · · ∩ Nk = 0 as this is a decomposition. However,
M/N1 is p1-primary, so N2 ∩ · · · ∩ Nk is p1-primary. In particular, p1 is an associated prime of
N2 ∩ · · · ∩Nk, hence of M . N

The primes are determined. The factors are not. However, in some cases they are.

Proposition 3.10 Let pi be a minimal associated prime of M , i.e. not containing any smaller
associated prime. Then the submodule Ni corresponding to pi in the reduced primary decomposition
is uniquely determined: it is the kernel of

M →Mpi .

Proof. We have that
⋂
Nj = {0} ⊂M . When we localize at pi, we find that

(
⋂
Nj)pi

=
⋂

(Nj)pi
= 0

as localization is an exact functor. If j 6= i, then M/Nj is pj primary, and has only pj as an
associated prime. It follows that (M/Nj)pi has no associated primes, since the only associated
prime could be pj , and that’s not contained in pj . In particular, (Nj)pi

= Mpi
.

Thus, when we localize the primary decomposition at pi, we get a trivial primary decomposition:
most of the factors are the full Mpi

. It follows that (Ni)pi
= 0. When we draw a commutative

diagram

Ni
//

��

(Ni)pi
= 0

��
M // Mpi

.

we find that Ni goes to zero in the localization.
Now if x ∈ ker(M → Mpi

, then sx = 0 for some s /∈ pi. When we take the map M → M/Ni,
sx maps to zero; but s acts injectively on M/Ni, so x maps to zero in M/Ni, i.e. is zero in Ni. N

This has been abstract, so:

Example 3.11 Let R = Z. Let M = Z⊕ Z/p. Then zero can be written as

Z ∩ Z/p

as submodules of M . But Z is p-coprimary, while Z/p is (0)-coprimary.

18
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This is not unique. We could have considered

{(n, n), n ∈ Z} ⊂M.

However, the zero-coprimary part has to be the p-torsion. This is because (0) is the minimal ideal.
The decomposition is always unique, in general, if we have no inclusions among the prime

ideals. For Z-modules, this means that primary decomposition is unique for torsion modules. Any
torsion group is a direct sum of the p-power torsion over all primes p.

Exercise 5.10 Suppose R is a noetherian ring and Rp is a domain for each prime ideal p ⊂ R.
Then R is a finite direct product

∏
Ri for each Ri a domain.

To see this, consider the minimal primes pi ∈ SpecR. There are finitely many of them, and
argue that since every localization is a domain, SpecR is disconnected into the pieces V (pi). It
follows that there is a decomposition R =

∏
Ri where SpecRi has pi as the unique minimal prime.

Each Ri satisfies the same condition as R, so we may reduce to the case of R having a unique
minimal prime ideal. In this case, however, R is reduced, so its unique minimal prime ideal must
be zero.

§4 Artinian rings and modules

The notion of an artinian ring appears to be dual to that of a noetherian ring, since the chain
condition is simply reversed in the definition. However, the artinian condition is much stronger
than the noetherian one. In fact, artinianness actually implies noetherianness, and much more.
Artinian modules over non-artinian rings are frequently of interest as well; for instance, if R is a
noetherian ring and m is a maximal ideal, then for any finitely generated R-module M , the module
M/mM is artinian.

4.1 Definitions

Definition 4.1 A commutative ring R is Artinian every descending chain of ideals I0 ⊃ I1 ⊃
I2 ⊃ . . . stabilizes.

Definition 4.2 The same definition makes sense for modules. We can define an R-module M to
be Artinian if every descending chain of submodules stabilizes.

In fact, as we shall see when we study dimension theory, we actually often do want to study
artinian modules over non-artinian rings, so this definition is useful.

Exercise 5.11 A module is artinian if and only if every nonempty collection of submodules has
a minimal element.

Exercise 5.12 A ring which is a finite-dimensional algebra over a field is artinian.

Proposition 4.3 If 0 → M ′ → M → M ′′ → 0 is an exact sequence, then M is Artinian if and
only if M ′,M ′′ are.

This is proved in the same way as for noetherianness.

Corollary 4.4 Let R be artinian. Then every finitely generated R-module is artinian.

Proof. Standard. N
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4.2 The main result

This definition is obviously dual to the notion of noetherianness, but it is much more restrictive.
The main result is:

Theorem 4.5 A commutative ring R is artinian if and only if:

1. R is noetherian.

2. Every prime ideal of R is maximal.1

So artinian rings are very simple—small in some sense. They all look kind of like fields.
We shall prove this result in a series of small pieces. We begin with a piece of the forward

implication in Theorem 4.5:

Lemma 4.6 Let R be artinian. Every prime p ⊂ R is maximal.

Proof. Indeed, if p ⊂ R is a prime ideal, R/p is artinian, as it is a quotient of an artinian ring.
We want to show that R/p is a field, which is the same thing as saying that p is maximal. (In
particular, we are essentially proving that an artinian domain is a field.)

Let x ∈ R/p be nonzero. We have a descending chain

R/p ⊃ (x) ⊃ (x2) . . .

which necessarily stabilizes. Then we have (xn) = (xn+1) for some n. In particular, we have
xn = yxn+1 for some y ∈ R/p. But x is a nonzerodivisor, and we find 1 = xy. So x is invertible.
Thus R/p is a field. N

Next, we claim there are only a few primes in an artinian ring:

Lemma 4.7 If R is artinian, there are only finitely many maximal ideals.

Proof. Assume otherwise. Then we have an infinite sequence

m1,m2, . . .

of distinct maximal ideals. Then we have the descending chain

R ⊃ m1 ⊃ m1 ∩m2 ⊃ . . . .

This necessarily stabilizes. So for some n, we have that m1 ∩ · · · ∩ mn ⊂ mn+1. However, this
means that mn+1 contains one of the m1, . . . ,mn since these are prime ideals (a familiar argument).
Maximality and distinctness of the mi give a contradiction. N

In particular, we see that SpecR for an artinian ring is just a finite set. In fact, since each
point is closed, as each prime is maximal, the set has the discrete topology. As a result, SpecR for
an artinian ring is Hausdorff. (There are very few other cases.)

This means that R factors as a product of rings. Whenever SpecR can be written as a disjoint
union of components, there is a factoring of R into a product

∏
Ri. So R =

∏
Ri where each Ri

has only one maximal ideal. Each Ri, as a homomorphic image of R, is artinian. We find, as a
result,

TO BE ADDED: mention that disconnections of SpecR are the same thing as idempotents.

Proposition 4.8 Any artinian ring is a finite product of local artinian rings.

1This is much different from the Dedekind ring condition—there, zero is not maximal. An artinian domain is
necessarily a field, in fact.
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Now, let us continue our analysis. We may as well assume that we are working with local
artinian rings R in the future. In particular, R has a unique prime m, which must be the radical
of R as the radical is the intersection of all primes.

We shall now see that the unique prime ideal m ⊂ R is nilpotent by:

Lemma 4.9 If R is artinian (not necessarily local), then Rad(R) is nilpotent.

It is, of course, always true that any element of the radical Rad(R) is nilpotent, but it is not
true for a general ring R that Rad(R) is nilpotent as an ideal.

Proof. Call J = Rad(R). Consider the decreasing filtration

R ⊃ J ⊃ J2 ⊃ J3 ⊃ . . . .

We want to show that this stabilizes at zero. A priori, we know that it stabilizes somewhere. For
some n, we have

Jn = Jn′
, n′ ≥ n.

Call the eventual stabilization of these ideals I. Consider ideals I ′ such that

II ′ 6= 0.

There are now two cases:

1. No such I ′ exists. Then I = 0, and we are done: the powers of Jn stabilize at zero.

2. Otherwise, there is a minimal such I ′ (minimal for satisfying II ′ 6= 0) as R is artinian.
Necessarily I ′ is nonzero, and furthermore there is x ∈ I ′ with xI 6= 0.

It follows by minimality that
I ′ = (x),

so I ′ is principal. Then xI 6= 0; observe that xI is also (xI)I as I2 = I from the definition
of I. Since (xI)I 6= 0, it follows again by minimality that

xI = (x).

Hence, there is y ∈ I such that xy = x; but now, by construction I ⊂ J = Rad(R), implying
that y is nilpotent. It follows that

x = xy = xy2 = · · · = 0

as y is nilpotent. However, x 6= 0 as xI 6= 0. This is a contradiction, which implies that the
second case cannot occur.

We have now proved the lemma. N

Finally, we may prove:

Lemma 4.10 A local artinian ring R is noetherian.

Proof. We have the filtration R ⊃ m ⊃ m2 ⊃ . . . . This eventually stabilizes at zero by Lemma 4.9.
I claim that R is noetherian as an R-module. To prove this, it suffices to show that mk/mk+1 is
noetherian as an R-module. But of course, this is annihilated by m, so it is really a vector space
over the field R/m. But mk/mk+1 is a subquotient of an artinian module, so is artinian itself. We
have to show that it is noetherian. It suffices to show now that if k is a field, and V a k-vector
space, then TFAE:
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1. V is artinian.

2. V is noetherian.

3. V is finite-dimensional.

This is evident by linear algebra. N

Now, finally, we have shown that an artinian ring is noetherian. We have to discuss the converse.
Let us assume now that R is noetherian and has only maximal prime ideals. We show that R is
artinian. Let us consider SpecR; there are only finitely many minimal primes by the theory of
associated primes: every prime ideal is minimal in this case. Once again, we learn that SpecR is
finite and has the discrete topology. This means that R is a product of factors

∏
Ri where each

Ri is a local noetherian ring with a unique prime ideal. We might as well now prove:

Lemma 4.11 Let (R,m) be a local noetherian ring with one prime ideal. Then R is artinian.

Proof. We know that m = rad(R). So m consists of nilpotent elements, so by finite generatedness
it is nilpotent. Then we have a finite filtration

R ⊃ m ⊃ · · · ⊃ mk = 0.

Each of the quotients are finite-dimensional vector spaces, so artinian; this implies that R itself is
artinian. N

Remark Note that artinian implies noetherian! This statement is true for rings (even non-
commutative rings), but not for modules. Take the same example M = lim−→Z/pnZ over Z. However,
there is a module-theoretic statement which is related.

Corollary 4.12 For a finitely generated module M over any commutative ring R, the following
are equivalent.

1. M is an artinian module.

2. M has finite length (i.e. is noetherian and artinian).

3. R/AnnM is an artinian ring.

Proof. TO BE ADDED: proof N

Exercise 5.13 If R is an artinian ring, and S is a finite R-algebra (finite as an R-module), then
S is artinian.

Exercise 5.14 Let M be an artinian module over a commutative ring R, f : M →M an injective
homomorphism. Show that f is surjective, hence an isomorphism.

4.3 Vista: zero-dimensional non-noetherian rings

Definition 4.13 (von Neumann) An element a ∈ R is called von Neumann regular if there is
some x ∈ R such that a = axa.

Definition 4.14 (McCoy) A element a ∈ R is π-regular if some power of a is von Neumann
regular.

Definition 4.15 A element a ∈ R is strongly π-regular (in the commutative case) if the chain
aR ⊃ a2R ⊃ a3R ⊃ · · · stabilizes.
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A ring R is von Neumann regular (resp. (strongly) π-regular) if every element of R is.

Theorem 4.16 (5.2) For a commutative ring R, the following are equivalent.

1. dimR = 0.

2. R is rad-nil (i.e. the Jacobson radical J(R) is the nilradical ) and R/RadR is von Neumann
regular.

3. R is strongly π-regular.

4. R is π-regular.

And any one of these implies

5. Any non-zero-divisor is a unit.

Proof. 1⇒ 2⇒ 3⇒ 4⇒ 1 and 4⇒ 5. We will not do 1⇒ 2⇒ 3 here.
(3 ⇒ 4) Given a ∈ R, there is some n such that anR = an+1R = a2nR, which implies that

an = anxan for some x.
(4⇒ 1) Is p maximal? Let a 6∈ p. Since a is π-regular, we have an = a2nx, so an(1− anx) = 0,

so 1− anx ∈ p. It follows that a has an inverse mod p.
(4⇒ 5) Using 1− anx = 0, we get an inverse for a. N

Example 4.17 Any local rad-nil ring is zero dimensional, since 2 holds. In particular, for a ring
S and maximal ideal m, R = S/mn is zero dimensional because it is a rad-nil local ring.

Example 4.18 (Split-Null Extension) For a ring A and A-module M , let R = A ⊕M with
the multiplication (a,m)(a′,m′) = (aa′, am′ + a′m) (i.e. take the multiplication on M to be zero).
In R, M is an ideal of square zero. (A is called a retract of R because it sits in R and can be
recovered by quotienting by some complement.) If A is a field, then R is a rad-nil local ring, with
maximal ideal M .

23



CRing Project, Chapter 5

24



CRing Project contents

I Fundamentals 1

0 Categories 3

1 Foundations 37

2 Fields and Extensions 71

3 Three important functors 93

II Commutative algebra 131

4 The Spec of a ring 133

5 Noetherian rings and modules 157

6 Graded and filtered rings 183

7 Integrality and valuation rings 201

8 Unique factorization and the class group 233

9 Dedekind domains 249

10 Dimension theory 265

11 Completions 293

12 Regularity, differentials, and smoothness 313

III Topics 337

13 Various topics 339

14 Homological Algebra 353

15 Flatness revisited 369

16 Homological theory of local rings 395

25



CRing Project, Chapter 5

17 Étale, unramified, and smooth morphisms 425

18 Complete local rings 459

19 Homotopical algebra 461

20 GNU Free Documentation License 469

26



CRing Project bibliography

[AM69] M. F. Atiyah and I. G. Macdonald. Introduction to commutative algebra. Addison-Wesley
Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.

[BBD82] A. A. Bĕılinson, J. Bernstein, and P. Deligne. Faisceaux pervers. In Analysis and topology
on singular spaces, I (Luminy, 1981), volume 100 of Astérisque, pages 5–171. Soc. Math.
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matics. Springer-Verlag, Berlin, 1965.

[Ser79] Jean-Pierre Serre. Local fields, volume 67 of Graduate Texts in Mathematics. Springer-
Verlag, New York, 1979. Translated from the French by Marvin Jay Greenberg.

28

http://www.math.cornell.edu/~hatcher/AT/AT.pdf


CRing Project, Chapter 5

[Ser09] Jean-Pierre Serre. How to use finite fields for problems concerning infinite fields. 2009.
arXiv:0903.0517v2.

[SGA72] Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos. Lecture
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