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Chapter 7

Integrality and valuation rings

The notion of integrality is familiar from number theory: it is similar to “algebraic” but with
the polynomials involved are required to be monic. In algebraic geometry, integral extensions of
rings correspond to correspondingly nice morphisms on the Spec’s—when the extension is finitely
generated, it turns out that the fibers are finite. That is, there are only finitely many ways to lift
a prime ideal to the extension: if A→ B is integral and finitely generated, then SpecB → SpecA
has finite fibers.

Integral domains that are integrally closed in their quotient field will play an important role
for us. Such “normal domains” are, for example, regular in codimension one, which means that
the theory of Weil divisors (see ??) applies to them. It is particularly nice because Weil divisors
are sufficient to determine whether a function is regular on a normal variety.

A canonical example of an integrally closed ring is a valuation ring; we shall see in this chapter
that any integrally closed ring is an intersection of such.

§1 Integrality

1.1 Fundamentals

As stated in the introduction to the chapter, integrality is a condition on rings parallel to that of
algebraicity for field extensions.

Definition 1.1 Let R be a ring, and R′ an R-algebra. An element x ∈ R′ is said to be integral
over R if x satisfies a monic polynomial equation in R[X], say

xn + r1x
n−1 + · · ·+ rn = 0, r1, . . . , rn ∈ R.

We can say that R′ is integral over R if every x ∈ R′ is integral over R.

Note that in the definition, we are not requiring R to be a subring of R′.

Example 1.2 1+
√
−3

2 is integral over Z; it is in fact a sixth root of unity, thus satisfying the

equation X6−1 = 0. However, 1+
√

5
2 is not integral over Z. To explain this, however, we will need

to work a bit more (see Proposition 1.5 below).

Example 1.3 Let L/K be a field extension. Then L/K is integral if and only if it is algebraic,
since K is a field and we can divide polynomial equations by the leading coefficient to make them
monic.

Example 1.4 Let R be a graded ring. Then the subring R(d) ⊂ R was defined in ??; recall that
this consists of elements of R all of whose nonzero homogeneous components live in degrees that
are multiples of d. Then the dth power of any homogeneous element in R is in R(d). As a result,
every homogeneous element of R is integral over R(d).
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We shall now interpret the condition of integrality in terms of finite generation of certain
modules. Suppose R is a ring, and R′ an R-algebra. Let x ∈ R′.

Proposition 1.5 x ∈ R′ is integral over R if and only if the subalgebra R[x] ⊂ R′ (generated by
R, x) is a finitely generated R-module.

This notation is an abuse of notation (usually R[x] refers to a polynomial ring), but it should
not cause confusion.

This result for instance lets us show that 1+
√
−5

2 is not integral over Z, because when you keep
taking powers, you get arbitrarily large denominators: the arbitrarily large denominators imply
that it cannot be integral.

Proof. If x ∈ R′ is integral, then x satisfies

xn + r1x
n−1 + · · ·+ rn = 0, ri ∈ R.

Then R[x] is generated as an R-module by 1, x, . . . , xn−1. This is because the submodule of R′

generated by 1, x, . . . , xn−1 is closed under multiplication by R and by multiplication by x (by the
above equation).

Now suppose x generates a subalgebra R[x] ⊂ R′ which is a finitely generated R-module. Then
the increasing sequence of R-modules generated by {1}, {1, x} ,

{
1, x, x2

}
, . . . must stabilize, since

the union is R[x].1 It follows that some xn can be expressed as a linear combination of smaller
powers of x. Thus x is integral over R. N

So, if R′ is an R-module, we can say that an element x ∈ R′ is integral over R if either of the
following equivalent conditions are satisfied:

1. There is a monic polynomial in R[X] which vanishes on x.

2. R[x] ⊂ R′ is a finitely generated R-module.

Example 1.6 Let F be a field, V a finite-dimensional F -vector space, T : V → V a linear
transformation. Then the ring generated by T and F inside EndF (V ) (which is a noncommutative
ring) is finite-dimensional over F . Thus, by similar reasoning, T must satisfy a polynomial equation
with coefficients in F (e.g. the characteristic polynomial).

Of course, if R′ is integral over R, R′ may not be a finitely generated R-module. For instance,
Q is not a finitely generated Q-module, although the extension is integral. As we shall see in the
next section, this is always the case if R′ is a finitely generated R-algebra.

We now will add a third equivalent condition to this idea of “integrality,” at least in the case
where the structure map is an injection.

Proposition 1.7 Let R be a ring, and suppose R is a subring of R′. x ∈ R′ is integral if and only
if there exists a finitely generated faithful R-module M ⊂ R′ such that R ⊂M and xM ⊂M .

A module M is faithful if xM = 0 implies x = 0. That is, the map from R into the Z-
endomorphisms of M is injective. If R is a subring of R′ (i.e. the structure map R → R′ is
injective), then R′ for instance is a faithful R-module.

1As an easy exercise, one may see that if a finitely generated module M is the union of an increasing sequence
of submodules M1 ⊂M2 ⊂M3 ⊂ . . . , then M = Mn for some n; we just need to take n large enough such that Mn

contains each of the finitely many generators of M .
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Proof. It’s obvious that the second condition above (equivalent to integrality) implies the condition
of this proposition. Indeed, one could just take M = R[x].

Now let us prove that if there exists such an M which is finitely generated, then x is integral.
Just because M is finitely generated, the submodule R[x] is not obviously finitely generated. In
particular, this implication requires a bit of proof.

We shall prove that the condition of this proposition implies integrality. Suppose y1, . . . , yk ∈M
generate M as R-module. Then multiplication by x gives an R-module map M →M . In particular,
we can write

xyi =
∑

aijyj

where each aij ∈ R. These {aij} may not be unique, but let us make some choices; we get a k-by-k
matrix A ∈Mk(R). The claim is that x satisfies the characteristic polynomial of A.

Consider the matrix
(x1−A) ∈Mn(R′).

Note that (x1 − A) annihilates each yi, by the choice of A. We can consider the adjoint B =
(x1−A)adj . Then

B(x1−A) = det(x1−A)1.

This product of matrices obviously annihilates each vector yi. It follows that

(det(x1−A)yi = 0, ∀i,

which implies that det(x1−A) kills M . This implies that det(x1−A) = 0 since M is faithful.
As a result, x satisfies the characteristic polynomial. N

Exercise 7.1 Let R be a noetherian local domain with maximal ideal m. As we will define shortly,
R is integrally closed if every element of the quotient field K = K(R) integral over R belongs to
R itself. Then if x ∈ K and xm ⊂ m, we have x ∈ R.

Exercise 7.2 Let us say that an A-module is n-generated if it is generated by at most n elements.
Let A and B be two rings such that A ⊂ B, so that B is an A-module.
Let n ∈ N. Let u ∈ B. Then, the following four assertions are equivalent:

1. There exists a monic polynomial P ∈ A [X] with degP = n and P (u) = 0.

2. There exist a B-module C and an n-generated A-submodule U of C such that uU ⊂ U and
such that every v ∈ B satisfying vU = 0 satisfies v = 0. (Here, C is an A-module, since C is
a B-module and A ⊂ B.)

3. There exists an n-generated A-submodule U of B such that 1 ∈ U and uU ⊂ U .

4. As an A-module, A[u] is spanned by 1, u, . . . , un−1.

We proved this to show that the set of integral elements is well behaved.

Proposition 1.8 Let R ⊂ R′. Let S = {x ∈ R′ : x is integral over R}. Then S is a subring of
R′. In particular, it is closed under addition and multiplication.

Proof. Suppose x, y ∈ S. We can consider the finitely generated modules R[x], R[y] ⊂ R′ generated
(as algebras) by x over R. By assumption, these are finitely generated R-modules. In particular,
the tensor product

R[x]⊗R R[y]

is a finitely generated R-module (by ??).
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We have a ring-homomorphism R[x]⊗RR[y]→ R′ which comes from the inclusions R[x], R[y]�
R′. Let M be the image of R[x] ⊗R R[y] in R′. Then M is an R-submodule of R′, indeed an R-
subalgebra containing x, y. Also, M is finitely generated. Since x + y, xy ∈ M and M is a
subalgebra, it follows that

(x+ y)M ⊂M, xyM ⊂M.

Thus x+ y, xy are integral over R. N

Let us consider the ring Z[
√
−5]; this is the canonical example of a ring where unique factoriza-

tion fails. This is because 6 = 2× 3 = (1 +
√
−5)(1−

√
−5). One might ask: what about Z[

√
−3]?

It turns out that Z[
√
−3] lacks unique factorization as well. Indeed, here we have

(1−
√
−3)(1 +

√
−3) = 4 = 2× 2.

These elements can be factored no more, and 1 −
√
−3 and 2 do not differ by units. So in this

ring, we have a failure of unique factorization. Nonetheless, the failure of unique factorization
in Z[

√
−3] is less noteworthy, because Z[

√
−3] is not integrally closed. Indeed, it turns out that

Z[
√
−3] is contained in the larger ring Z

[
1+
√
−3

2

]
, which does have unique factorization, and this

larger ring is finite over Z[
√
−3].2 Since being integrally closed is a prerequisite for having unique

factorization (see ?? below), the failure in Z[
√
−3] is not particularly surprising.

Note that, by contrast, Z[ 1+
√
−5

2 ] does not contain Z[
√
−5] as a finite index subgroup—it cannot

be slightly enlarged in the same sense. When one enlarges Z[
√
−5], one has to add a lot of stuff.

We will see more formally that Z[
√
−5] is integrally closed in its quotient field, while Z[

√
−3] is

not. Since unique factorization domains are automatically integrally closed, the failure of Z[
√
−5]

to be a UFD is much more significant than that of Z[
√
−3].

1.2 Le sorite for integral extensions

In commutative algebra and algebraic geometry, there are a lot of standard properties that a
morphism of rings φ : R → S can have: it could be of finite type (that is, S is finitely generated
over φ(R)), it could be finite (that is, S is a finite R-module), or it could be integral (which we
have defined in Definition 1.1). There are many more examples that we will encounter as we dive
deeper into commutative algebra. In algebraic geometry, there are corresponding properties of
morphisms of schemes, and there are many more interesting ones here.

In these cases, there is usually—for any reasonable property—a standard and familiar list of
properties that one proves about them. We will refer to such lists as “sorites,” and prove our first
one now.

Proposition 1.9 (Le sorite for integral morphisms) 1. For any ring R and any ideal I ⊂
R, the map R→ R/I is integral.

2. If φ : R→ S and ψ : S → T are integral morphisms, then so is ψ ◦ φ : R→ T .

3. If φ : R → S is an integral morphism and R′ is an R-algebra, then the base-change R′ →
R′ ⊗R S is integral.

2In fact, Z[
√
−3] is an index two subgroup of Z

[
1+
√
−3

2

]
, as the ring Z[ 1+

√
−3

2
] can be described as the set of

elements a + b
√
−3 where a, b are either both integers or both integers plus 1

2
, as is easily seen: this set is closed

under addition and multiplication.
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Proof. The first property is obvious. For the second, the condition of integrality in a morphism of
rings depends on the inclusion of the image in the codomain. So we can suppose that R ⊂ S ⊂ T .
Suppose t ∈ T . By assumption, there is a monic polynomial equation

tn + s1t
n−1 + · · ·+ sn = 0

that t satisfies, where each si ∈ S.

In particular, we find that t is integral over R[s1, . . . , sn]. As a result, the module R[s1, . . . , sn, t]
is finitely generated over the ring R′ = R[s1, . . . , sn]. By the following Proposition 1.10, R′ is a
finitely generated R-module. In particular, R[s1, . . . , sn, t] is a finitely generated R-module (not
just a finitely generated R′-module).

Thus the R-module R[s1, . . . , sn, t] is a faithful R′ module, finitely generated over R, which is
preserved under multiplication by t. N

We now prove a result that can equivalently be phrased as “finite type plus integral implies
finite” for a map of rings.

Proposition 1.10 Let R′ be a finitely generated, integral R-algebra. Then R′ is a finitely gener-
ated R-module: that is, the map R→ R′ is finite.

Proof. Induction on the number of generators of R′ as R-algebra. For one generator, this follows
from Proposition 1.5. In general, we will have R′ = R[α1, . . . , αn] for some αi ∈ R′. By the
inductive hypothesis, R[α1, . . . , αn−1] is a finite R-module; by the case of one generator, R′ is a
finite R[α1, . . . , αn−1]-module. This establishes the result by the next exercise. N

Exercise 7.3 Let R → S, S → T be morphisms of rings. Suppose S is a finite R-module and T
a finite T -module. Then T is a finite R-module.

1.3 Integral closure

Let R,R′ be rings.

Definition 1.11 IfR ⊂ R′, then the set S = {x ∈ R′ : x is integral} is called the integral closure
of R in R′. We say that R is integrally closed in R′ if S = R′.

When R is a domain, and K is the quotient field, we shall simply say that R is integrally
closed if it is integrally closed in K. Alternatively, some people say that R is normal in this case.

Integral closure (in, say, the latter sense) is thus an operation that maps integral domains to
integral domains. It is easy to see that the operation is idempotent: the integral closure of the
integral closure is the integral closure.

Example 1.12 The integers Z ⊂ C have as integral closure (in C) the set of complex numbers
satisfying a monic polynomial with integral coefficients. This set is called the set of algebraic
integers.

For instance, i is an algebraic integer because it satisfies the equation X2 + 1 = 0. 1−
√
−3

2 is
an algebraic integer, as we talked about last time; it is a sixth root of unity. On the other hand,
1+
√
−5

2 is not an algebraic integer.

Example 1.13 Take Z ⊂ Q. The claim is that Z is integrally closed in its quotient field Q, or
simply—integrally closed.

7
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Proof. We will build on this proof later. Here is the point. Suppose a
b ∈ Q satisfying an equation

P (a/b) = 0, P (t) = tn + c1t
n−1 + · · ·+ c0, ∀ci ∈ Z.

Assume that a, b have no common factors; we must prove that b has no prime factors, so is ±1. If
b had a prime factor, say q, then we must obtain a contradiction.

We interrupt with a definition.

Definition 1.14 The valuation at q (or q-adic valuation) is the map vq : Q∗ → Z is the
function sending qk(a/b) to k if q - a, b. We extend this to all rational numbers via v(0) =∞.

In general, this just counts the number of factors of q in the expression.
Note the general property that

vq(x+ y) ≥ min(vq(x), vq(y)). (7.1)

If x, y are both divisible by some power of q, so is x+ y; this is the statement above. We also have
the useful property

vq(xy) = vq(x) + vq(y). (7.2)

Now return to the proof that Z is normal. We would like to show that vq(a/b) ≥ 0. This will
prove that b is not divisible by q. When we show this for all q, it will follow that a/b ∈ Z.

We are assuming that P (a/b) = 0. In particular,(a
b

)n
= −c1

(a
b

)n−1

− · · · − c0.

Apply vq to both sides:
nvq(a/b) ≥ min

i>0
vq(ci(a/b)

n−i).

Since the ci ∈ Z, their valuations are nonnegative. In particular, the right hand side is at least

min
i>0

(n− i)vq(a/b).

This cannot happen if vq(a/b) < 0, because n− i < n for each i > 0. N

This argument applies more generally. If K is a field, and R ⊂ K is a subring “defined by
valuations,” such as the vq, then R is integrally closed in its quotient field. More precisely, note
the reasoning of the previous example: the key idea was that Z ⊂ Q was characterized by the
rational numbers x such that vq(x) ≥ 0 for all primes q. We can abstract this idea as follows. If
there exists a family of functions V from K∗ → Z (such as {vq : Q∗ → Z}) satisfying (7.1) and
(7.2) above such that R is the set of elements such that v(x) ≥ 0, v ∈ V (along with 0), then R is
integrally closed in K. We will talk more about this, and about valuation rings, below.

Example 1.15 We saw earlier (Example 1.2) that Z[
√
−3] is not integrally closed, as 1+

√
−3

2 is
integral over this ring and in the quotient field, but not in the ring.

We shall give more examples in the next subsection.

1.4 Geometric examples

Let us now describe the geometry of a non-integrally closed ring. Recall that finitely generated
(reduced) C-algebras are supposed to correspond to affine algebraic varieties. A smooth variety
(i.e., one that is a complex manifold) will always correspond to an integrally closed ring (though
this relies on a deep result that a regular local ring is a factorization domain, and consequently
integrally closed): non-normality is a sign of singularities.
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Example 1.16 Here is a ring which is not integrally closed. Take C[x, y]/(x2−y3). Algebraically,
this is the subring of the polynomial ring C[t] generated by t2 and t3.

In the complex plane, C2, this corresponds to the subvariety C ⊂ C2 defined by x2 = y3. In
R2, this can be drawn: it has a singularity at (x, y) = 0.

Note that x2 = y3 if and only if there is a complex number z such that x = z3, y = z2. This
complex number z can be recovered via x/y when x, y 6= 0. In particular, there is a map C → C
which sends z → (z3, z2). At every point other than the origin, the inverse can be recovered using
rational functions. But this does not work at the origin.

We can think of C[x, y]/(x2−y3) as the subring R′ of C[z] generated by {zn, n 6= 1}. There is a
map from C[x, y]/(x2 − y3) sending x→ z3, y → z2. Since these two domains are isomorphic, and
R′ is not integrally closed, it follows that C[x, y]/(x2 − y3) is not integrally closed. The element
z can be thought of as an element of the fraction field of R′ or of C[x, y]/(x2 − y3). It is integral,
though.

The failure of the ring to be integrally closed has to do with the singularity at the origin.

We now give a generalization of the above example.

Example 1.17 This example is outside the scope of the present course. Say that X ⊂ Cn is given
as the zero locus of some holomorphic functions {fi : Cn → C}. We just gave an example when
n = 2. Assume that 0 ∈ X, i.e. each fi vanishes at the origin.

Let R be the ring of germs of holomorphic functions 0, in other words holomorphic functions
from small open neighborhoods of zero. Each of these fi becomes an element of R. The ring
R/({fi}) is called the ring of germs of holomorphic functions on X at zero.

Assume that R is a domain. This assumption, geometrically, means that near the point zero
in X, X can’t be broken into two smaller closed analytic pieces. The fraction field of R is to be
thought of as the ring of germs of meromorphic functions on X at zero.

We state the following without proof:

Theorem 1.18 Let g/g′ be an element of the fraction field, i.e. g, g′ ∈ R. Then g/g′ is integral
over R if and only if g/g′ is bounded near zero.

In the previous example of X defined by x2 = y3, the function x/y (defined near the origin on
the curve) is bounded near the origin, so it is integral over the ring of germs of regular functions.
The reason it is not defined near the origin is not that it blows up. In fact, it extends continuously,
but not holomorphically, to the rest of the variety X.

§2 Lying over and going up

We now interpret integrality in terms of the geometry of Spec. In general, for R → S a ring-
homomorphism, the induced map SpecS → SpecR need not be topologically nice; for instance,
even if S is a finitely generated R-algebra, the image of SpecS in SpecR need not be either open
or closed.3

We shall see that under conditions of integrality, more can be said.

2.1 Lying over

In general, given a morphism of algebraic varieties f : X → Y , the image of a closed subset Z ⊂ X
is far from closed. For instance, a regular function f : X → C that is a closed map would have to

3It is, however, true that if R is noetherian (see Chapter 5) and S finitely generated over R, then the image of
SpecS is constructible, that is, a finite union of locally closed subsets. TO BE ADDED: this result should be
added sometime.
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be either surjective or constant (if X is connected, say). Nonetheless, under integrality hypotheses,
we can say more.

Proposition 2.1 (Lying over) If φ : R→ R′ is an integral morphism, then the induced map

SpecR′ → SpecR

is a closed map; it is surjective if φ is injective.

Another way to state the last claim, without mentioning SpecR′, is the following. Assume φ is
injective and integral. Then if p ⊂ R is prime, then there exists q ⊂ R′ such that p is the inverse
image φ−1(q).

Proof. First suppose φ injective, in which case we must prove the map SpecR′ → SpecR surjective.
Let us reduce to the case of a local ring. For a prime p ∈ SpecR, we must show that p arises as
the inverse image of an element of SpecR′. So we replace R with Rp. We get a map

φp : Rp → (R− p)−1R′

which is injective if φ is, since localization is an exact functor. Here we have localized both R,R′

at the multiplicative subset R− p.
Note that φp is an integral extension too. This follows because integrality is preserved by

base-change. We will now prove the result for φp; in particular, we will show that there is a prime
ideal of (R− p)−1R′ that pulls back to pRp. These will imply that if we pull this prime ideal back
to R′, it will pull back to p in R. In detail, we can consider the diagram

Spec(R− p)−1R′

��

// SpecRp

��
SpecR′ // SpecR

which shows that if pRp appears in the image of the top map, then p arises as the image of
something in SpecR′. So it is sufficient for the proposition (that is, the case of φ injective) to
handle the case of R local, and p the maximal ideal.

In other words, we need to show that:

If R is a local ring, φ : R ↪→ R′ an injective integral morphism, then the maximal ideal
of R is the inverse image of something in SpecR′.

Assume R is local with maximal ideal p. We want to find a prime ideal q ⊂ R′ such that
p = φ−1(q). Since p is already maximal, it will suffice to show that p ⊂ φ−1(q). In particular, we
need to show that there is a prime ideal q such that pR′ ⊂ q. The pull-back of this will be p.

If pR′ 6= R′, then q exists, since every proper ideal of a ring is contained in a maximal ideal.
We will in fact show

pR′ 6= R′, (7.3)

or that p does not generate the unit ideal in R′. If we prove (7.3), we will thus be able to find our
q, and we will be done.

Suppose the contrary, i.e. pR′ = R′. We will derive a contradiction using Nakayama’s lemma
(??). Right now, we cannot apply Nakayama’s lemma directly because R′ is not a finite R-module.
The idea is that we will “descend” the “evidence” that (7.3) fails to a small subalgebra of R′, and
then obtain a contradiction. To do this, note that 1 ∈ pR′, and we can write

1 =
∑

xiφ(yi)

10
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where xi ∈ R′, yi ∈ p. This is the “evidence” that (7.3) fails, and it involves only a finite amount
of data.

Let R′′ be the subalgebra of R′ generated by φ(R) and the xi. Then R′′ ⊂ R′ and is finitely
generated as an R-algebra, because it is generated by the xi. However, R′′ is integral over R and
thus finitely generated as an R-module, by Proposition 1.10. This is where integrality comes in.

So R′′ is a finitely generated R-module. Also, the expression 1 =
∑
xiφ(yi) shows that pR′′ =

R′′. However, this contradicts Nakayama’s lemma. That brings the contradiction, showing that p
cannot generate (1) in R′, and proving the surjectivity part of lying over theorem.

Finally, we need to show that if φ : R→ R′ is any integral morphism, then SpecR′ → SpecR
is a closed map. Let X = V (I) be a closed subset of SpecR′. Then the image of X in SpecR is
the image of the map

SpecR′/I → SpecR

obtained from the morphism R → R′ → R′/I, which is integral; thus we are reduced to showing
that any integral morphism φ has closed image on the Spec. Thus we are reduced to X = SpecR′,
if we throw out R′ and replace it by R′/I.

In other words, we must prove the following statement. Let φ : R → R′ be an integral
morphism; then the image of SpecR′ in SpecR is closed. But, quotienting by kerφ and taking the
map R/ kerφ→ R′, we may reduce to the case of φ injective; however, then this follows from the
surjectivity result already proved. N

In general, there will be many lifts of a given prime ideal. Consider for instance the inclusion
Z ⊂ Z[i]. Then the prime ideal (5) ∈ SpecZ can be lifted either to (2 + i) ∈ SpecZ[i] or
(2 − i) ∈ SpecZ[i]. These are distinct prime ideals: 2+i

2−i /∈ Z[i]. But note that any element of Z
divisible by 2+i is automatically divisible by its conjugate 2−i, and consequently by their product
5 (because Z[i] is a UFD, being a euclidean domain).

Nonetheless, the different lifts are incomparable.

Proposition 2.2 Let φ : R → R′ be an integral morphism. Then given p ∈ SpecR, there are no
inclusions among the elements q ∈ SpecR′ lifting p.

In other words, if q, q′ ∈ SpecR′ lift p, then q 6⊂ q′.

Proof. We will give a “slick” proof by various reductions. Note that the operations of localization
and quotienting only shrink the Spec’s: they do not “merge” heretofore distinct prime ideals into
one. Thus, by quotienting R by p, we may assume R is a domain and that p = 0. Suppose we had
two primes q ( q′ of R′ lifting (0) ∈ SpecR. Quotienting R′ by q, we may assume that q = 0. We
could even assume R ⊂ R′, by quotienting by the kernel of φ. The next lemma thus completes the
proof, because it shows that q′ = 0, contradiction. N

Lemma 2.3 Let R ⊂ R′ be an inclusion of integral domains, which is an integral morphism. If
q ∈ SpecR′ is a nonzero prime ideal, then q ∩R is nonzero.

Proof. Let x ∈ q′ be nonzero. There is an equation

xn + r1x
n−1 + · · ·+ rn = 0, ri ∈ R, N

that x satisfies, by assumption. Here we can assume rn 6= 0; then rn ∈ q′ ∩ R by inspection,
though. So this intersection is nonzero.

Corollary 2.4 Let R ⊂ R′ be an inclusion of integral domains, such that R′ is integral over R.
Then if one of R,R′ is a field, so is the other.

11
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Proof. Indeed, SpecR′ → SpecR is surjective by Proposition 2.1: so if SpecR′ has one element
(i.e., R′ is a field), the same holds for SpecR (i.e., R is a field). Conversely, suppose R a field. Then
any two prime ideals in SpecR′ pull back to the same element of SpecR. So, by Proposition 2.2,
there can be no inclusions among the prime ideals of SpecR′. But R′ is a domain, so it must then
be a field. N

Exercise 7.4 Let k be a field. Show that k[Q≥0] is integral over the polynomial ring k[T ].
Although this is a huge extension, the prime ideal (T ) lifts in only one way to Spec k[Q≥0].

Exercise 7.5 Suppose A ⊂ B is an inclusion of rings over a field of characteristic p. Suppose
Bp ⊂ A, so that B/A is integral in a very strong sense. Show that the map SpecB → SpecA is a
homeomorphism.

2.2 Going up

Let R ⊂ R′ be an inclusion of rings with R′ integral over R. We saw in the lying over theorem
(Proposition 2.1) that any prime p ∈ SpecR has a prime q ∈ SpecR′ “lying over” p, i.e. such that
R ∩ q = p. We now want to show that we can lift finite inclusions of primes to R′.

Proposition 2.5 (Going up) Let R ⊂ R′ be an integral inclusion of rings. Suppose p1 ⊂ p2 ⊂
· · · ⊂ pn ⊂ R is a finite ascending chain of prime ideals in R. Then there is an ascending chain
q1 ⊂ q2 ⊂ · · · ⊂ qn in SpecR′ lifting this chain.

Moreover, q1 can be chosen arbitrarily so as to lift p1.

Proof. By induction and lying over (Proposition 2.1), it suffices to show:

Let p1 ⊂ p2 be an inclusion of primes in SpecR. Let q1 ∈ SpecR′ lift p1. Then there
is q2 ∈ SpecR′, which satisfies the dual conditions of lifting p2 and containing q1.

To show that this is true, we apply Proposition 2.1 to the inclusion R/p1 ↪→ R′/q1. There is an
element of SpecR′/q1 lifting p2/p1; the corresponding element of SpecR′ will do for q2. N

§3 Valuation rings

A valuation ring is a special type of local ring. Its distinguishing characteristic is that divisibility
is a “total preorder.” That is, two elements of the quotient field are never incompatible under
divisibility. We shall see in this section that integrality can be detected using valuation rings only.

Geometrically, the valuation ring is something like a local piece of a smooth curve. In fact, in
algebraic geometry, a more compelling reason to study valuation rings is provided by the valuative
criteria for separatedness and properness (cf. [GD] or [Har77]). One key observation about valua-
tion rings that leads the last results is that any local domain can be “dominated” by a valuation
ring with the same quotient field (i.e. mapped into a valuation ring via local homomorphism), but
valuation rings are the maximal elements in this relation of domination.

3.1 Definition

Definition 3.1 A valuation ring is a domain R such that for every pair of elements a, b ∈ R,
either a | b or b | a.

Example 3.2 Z is not a valuation ring. It is neither true that 2 divides 3 nor that 3 divides 2.

12
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Example 3.3 Z(p), which is the set of all fractions of the form a/b ∈ Q where p - b, is a valuation
ring. To check whether a/b divides a′/b′ or vice versa, one just has to check which is divisible by
the larger power of p.

Proposition 3.4 Let R be a domain with quotient field K. Then R is a valuation ring if and only
if for every x ∈ K, either x or x−1 lies in R.

Proof. Indeed, if x = a/b, a, b ∈ R, then either a | b or b | a, so either x or x−1 ∈ R. This condition
is equivalent to R’s being a valuation ring. N

3.2 Valuations

The reason for the name “valuation ring” is provided by the next definition. As we shall see, any
valuation ring comes from a “valuation.”

By definition, an ordered abelian group is an abelian group A together with a set of positive
elements A+ ⊂ A. This set is required to be closed under addition and satisfy the property that if
x ∈ A, then precisely one of the following is true: x ∈ A+, −x ∈ A+, and x = 0. This allows one
to define an ordering < on A by writing x < y if y − x ∈ A+. Given A, we often formally adjoin
an element ∞ which is bigger than every element in A.

Definition 3.5 Let K be a field. A valuation on K is a map v : K → A∪{∞} for some ordered
abelian group A satisfying:

1. v(0) =∞ and v(K∗) ⊂ A.

2. For x, y ∈ K∗, v(xy) = v(x) + v(y). That is, v|K∗ is a homomorphism.

3. For x, y ∈ K, v(x+ y) ≥ min(v(x), v(y)).

Suppose that K is a field and v : K → A ∪ {∞} is a valuation (i.e. v(0) = ∞). Define R =
{x ∈ K : v(x) ≥ 0}.

Proposition 3.6 R as just defined is a valuation ring.

Proof. First, we prove that R is a ring. R is closed under addition and multiplication by the two
conditions

v(xy) = v(x) + v(y)

and
v(x+ y) ≥ min v(x), v(y),

so if x, y ∈ R, then x+ y, xy have nonnegative valuations.
Note that 0 ∈ R because v(0) = ∞. Also v(1) = 0 since v : K∗ → A is a homomorphism. So

1 ∈ R too. Finally, −1 ∈ R because v(−1) = 0 since A is totally ordered. It follows that R is also
a group.

Let us now show that R is a valuation ring. If x ∈ K∗, either v(x) ≥ 0 or v(x−1) ≥ 0 since A
is totally ordered.4 So either x, x−1 ∈ R. N

In particular, the set of elements with nonnegative valuation is a valuation ring. The converse
also holds. Whenever you have a valuation ring, it comes about in this manner.

Proposition 3.7 Let R be a valuation ring with quotient field K. There is an ordered abelian
group A and a valuation v : K∗ → A such that R is the set of elements with nonnegative valuation.

4Otherwise 0 = v(x) + v(x−1) < 0, contradiction.
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Proof. First, we construct A. In fact, it is the quotient of K∗ by the subgroup of units R∗ of R.
We define an ordering by saying that x ≤ y if y/x ∈ R—this doesn’t depend on the representatives
in K∗ chosen. Note that either x ≤ y or y ≤ x must hold, since R is a valuation ring. The
combination of x ≤ y and y ≤ x implies that x, y are equivalent classes. The nonnegative elements
in this group are those whose representatives in K∗ belong to R.

It is easy to see that K∗/R∗ in this way is a totally ordered abelian group with the image of 1
as the unit. The reduction map K∗ → K∗/R∗ defines a valuation whose corresponding ring is just
R. We have omitted some details; for instance, it should be checked that the valuation of x+ y is
at least the minimum of v(x), v(y). N

To summarize:

Every valuation ring R determines a valuation v from the fraction field of R into A∪{∞}
for A a totally ordered abelian group such that R is just the set of elements of K with
nonnegative valuation. As long as we require that v : K∗ → A is surjective, then A is
uniquely determined as well.

Definition 3.8 A valuation ring R is discrete if we can choose A to be Z.

Example 3.9 Z(p) is a discrete valuation ring.

The notion of a valuation ring is a useful one.

3.3 General remarks

Let R be a commutative ring. Then SpecR is the set of primes of R, equipped with a certain
topology. The space SpecR is almost never Hausdorff. It is almost always a bad idea to apply the
familiar ideas from elementary topology (e.g. the fundamental group) to SpecR. Nonetheless, it
has some other nice features that substitute for its non-Hausdorffness.

For instance, if R = C[x, y], then SpecR corresponds to C2 with some additional nonclosed
points. The injection of C2 with its usual topology into SpecR is continuous. While in SpecR you
don’t want to think of continuous paths, you can in C2.

Suppose you had two points x, y ∈ C2 and their images in SpecR. Algebraically, you can
still think about algebraic curves passing through x, y. This is a subset of x, y defined by a single
polynomial equation. This curve will have what’s called a “generic point,” since the ideal generated
by this curve will be a prime ideal. The closure of this generic point will be precisely this algebraic
curve—including x, y.

Remark If p, p′ ∈ SpecR, then
p′ ∈ {p}

iff
p′ ⊃ p.

Why is this? Well, the closure of {p} is just V (p), since this is the smallest closed subset of SpecR
containing p.

The point of this discussion is that instead of paths, one can transmit information from point
to point in SpecR by having one point be in a closure of another. However, we will show that this
relation is contained by the theory of valuation rings.

Theorem 3.10 Let R be a domain containing a prime ideal p. Let K be the fraction field of R.
Then there is a valuation v on K defining a valuation ring R′ ⊂ K such that

1. R ⊂ R′.

14
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2. p = {x ∈ R : v(x) > 0}.

Let us motivate this by the remark:

Remark A valuation ring is automatically a local ring. A local ring is a ring where either x, 1−x
is invertible for all x in the ring. Let us show that this is true for a valuation ring.

If x belongs to a valuation ring R with valuation v, it is invertible if v(x) = 0. So if x, 1 − x
were both noninvertible, then both would have positive valuation. However, that would imply that
v(1) ≥ min v(x), v(1− x) is positive, contradiction.

If R′ is any valuation ring (say defined by a valuation v), then R′ is local with maximal
ideal consisting of elements with positive valuation.

The theorem above says that there’s a good supply of valuation rings. In particular, if R is
any domain, p ⊂ R a prime ideal, then we can choose a valuation ring R′ ⊃ R such that p is the
intersection of the maximal ideal of R′ intersected with R. So the map SpecR′ → SpecR contains
p.

Proof. Without loss of generality, replace R by Rp, which is a local ring with maximal ideal pRp.
The maximal ideal intersects R only in p.

So, we can assume without loss of generality that

1. R is local.

2. p is maximal.

Let P be the collection of all subrings R′ ⊂ K such that R′ ⊃ R but pR′ 6= R′. Then P is a
poset under inclusion. The poset is nonempty, since R ∈ P . Every totally ordered chain in P has
an upper bound. If you have a totally ordered subring of elements in P , then you can take the
union. We invoke:

Lemma 3.11 Let Rα be a chain in P and R′ =
⋃
Rα. Then R′ ∈ P .

Proof. Indeed, it is easy to see that this is a subalgebra of K containing R. The thing to observe
is that

pR′ =
⋃
α

pRα;

since by assumption, 1 /∈ pRα (because each Rα ∈ P ), 1 /∈ pR′. In particular, R′ /∈ P . N

By the lemma, Zorn’s lemma to the poset P . In particular, P has a maximal element R′. By
construction, R′ is some subalgebra of K and pR′ 6= R′. Also, R′ is maximal with respect to these
properties.

We show first that R′ is local, with maximal ideal m satisfying

m ∩R = p. N

The second part is evident from locality of R′, since m must contain the proper ideal pR′, and
p ⊂ R is a maximal ideal.

Suppose that x ∈ R′; we show that either x, 1 − x belongs to R′∗ (i.e. is invertible). Take
the ring R′[x−1]. If x is noninvertible, this properly contains R′. By maximality, it follows that
pR′[x−1] = R′[x−1].

And we’re out of time. We’ll pick this up on Monday.
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Let us set a goal.
First, recall the notion introduced last time. A valuation ring is a domain R where for all x

in the fraction field of R, either x or x−1 lies in R. We saw that if R is a valuation ring, then R
is local. That is, there is a unique maximal ideal m ⊂ R, automatically prime. Moreover, the zero
ideal (0) is prime, as R is a domain. So if you look at the spectrum SpecR of a valuation ring R,
there is a unique closed point m, and a unique generic point (0). There might be some other prime
ideals in SpecR; this depends on where the additional valuation lives.

Example 3.12 Suppose the valuation defining the valuation ring R takes values in R. Then the
only primes are m and zero.

Let R now be any ring, with SpecR containing prime ideals p ⊂ q. In particular, q lies in the
closure of p. As we will see, this implies that there is a map

φ : R→ R′

such that p = φ−1(0) and q = φ−1(m), where m is the maximal ideal of R′. This statement
says that the relation of closure in SpecR is always controlled by valuation rings. In yet another
phrasing, in the map

SpecR′ → SpecR

the closed point goes to q and the generic point to p. This is our eventual goal.
To carry out this goal, we need some more elementary facts. Let us discuss things that don’t

have any obvious relation to it.

3.4 Back to the goal

Now we return to the goal of the lecture. Again, R was any ring, and we had primes p ⊂ q ⊂ R.
We wanted a valuation ring R′ and a map φ : R → R′ such that zero pulled back to p and the
maximal ideal pulled back to q.

What does it mean for p to be the inverse image of (0) ⊂ R′? This means that p = kerφ. So
we get an injection

R/p� R′.

We will let R′ be a subring of the quotient field K of the domain R/p. Of course, this subring will
contain R/p.

In this case, we will get a map R → R′ such that the pull-back of zero is p. What we want,
further, to be true is that R′ is a valuation ring and the pull-back of the maximal ideal is q.

This is starting to look at the problem we discussed last time. Namely, let’s throw out R, and
replace it with R/p. Moreover, we can replace R with Rq and assume that R is local with maximal
ideal q. What we need to show is that a valuation ring R′ contained in the fraction field of R,
containing R, such that the intersection of the maximal ideal of R′ with R is equal to q ⊂ R. If
we do this, then we will have accomplished our goal.

Lemma 3.13 Let R be a local domain. Then there is a valuation subring R′ of the quotient field
of R that dominates R, i.e .the map R→ R′ is a local homomorphism.

Let’s find R′ now.
Choose R′ maximal such that qR′ 6= R′. Such a ring exists, by Zorn’s lemma. We gave this

argument at the end last time.

Lemma 3.14 R′ as described is local.
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Proof. Look at qR′ ⊂ R′; it is a proper subset, too, by assumption. In particular, qR′ is contained
in some maximal ideal m ⊂ R′. Replace R′ by R′′ = R′m. Note that

R′ ⊂ R′′

and
qR′′ 6= R′′

because mR′′ 6= R′′. But R′ is maximal, so R′ = R′′, and R′′ is a local ring. So R′ is a local ring.N

Let m be the maximal ideal of R′. Then m ⊃ qR, so m ∩ R = q. All that is left to prove now
is that R′ is a valuation ring.

Lemma 3.15 R′ is integrally closed.

Proof. Let R′′ be its integral closure. Then mR′′ 6= R′′ by lying over, since m (the maximal ideal
of R′) lifts up to R′′. So R′′ satisfies

qR′′ 6= R′′

and by maximality, we have R′′ = R′. N

To summarize, we know that R′ is a local, integrally closed subring of the quotient field of R,
such that the maximal ideal of R′ pulls back to q in R. All we now need is:

Lemma 3.16 R′ is a valuation ring.

Proof. Let x lie in the fraction field. We must show that either x or x−1 ∈ R′. Say x /∈ R′. This
means by maximality of R′ that R′′ = R′[x] satisfies

qR′′ = R′′.

In particular, we can write

1 =
∑

qix
i, qi ∈ qR′ ⊂ R′.

This implies that

(1− q0) +
∑
i>0

−qixi = 0.

But 1− q0 is invertible in R′, since R′ is local. We can divide by the highest power of x:

x−N +
∑
i>0

−qi
1− q0

x−N+i = 0.

In particular, 1/x is integral over R′; this implies that 1/x ∈ R′ since R′ is integrally closed and
q0 is a nonunit. So R′ is a valuation ring. N

We can state the result formally.

Theorem 3.17 Let R be a ring, p ⊂ q prime ideals. Then there is a homomorphism φ : R → R′

into a valuation ring R′ with maximal ideal m such that

φ−1(0) = p

and
φ−1(m) = q.

There is a related fact which we now state.
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Theorem 3.18 Let R be any domain. Then the integral closure of R in the quotient field K is
the intersection ⋂

Rα

of all valuation rings Rα ⊂ K containing R.

So an element of the quotient field is integral over R if and only if its valuation is nonnegative at
every valuation which is nonnegative on R.

Proof. The ⊂ argument is easy, because one can check that a valuation ring is integrally closed.
(Exercise.) The interesting direction is to assume that v(x) ≥ 0 for all v nonnegative on R.

Let us suppose x is nonintegral. Suppose R′ = R[1/x] and I be the ideal (x−1) ⊂ R′. There
are two cases:

1. I = R′. Then in the ring R′, x−1 is invertible. In particular, x−1P (x−1) = 1. Multiplying
by a high power of x shows that x is integral over R. Contradiction.

2. Suppose I ( R′. Then I is contained in a maximal ideal q ⊂ R′. There is a valuation
subring R′′ ⊂ K , containing R′, such that the corresponding valuation is positive on q. In
particular, this valuation is positive on x−1, so it is negative on x, contradiction. N

So the integral closure has this nice characterization via valuation rings. In some sense, the
proof that Z is integrally closed has the property that every integrally closed ring is integrally
closed for that reason: it’s the common nonnegative locus for some valuations.

§4 The Hilbert Nullstellensatz

The Nullstellensatz is the basic algebraic fact, which we have invoked in the past to justify various
examples, that connects the idea of the Spec of a ring to classical algebraic geometry.

4.1 Statement and initial proof of the Nullstellensatz

There are several ways in which the Nullstellensatz can be stated. Let us start with the following
very concrete version.

Theorem 4.1 All maximal ideals in the polynomial ring R = C[x1, . . . , xn] come from points
in Cn. In other words, if m ⊂ R is maximal, then there exist a1, . . . , an ∈ C such that m =
(x1 − a1, . . . , xn − an).

The maximal spectrum of R = C[x1, . . . , xn] is thus identified with Cn.
We shall now reduce Theorem 4.1 to an easier claim. Let m ⊂ R be a maximal ideal. Then

there is a map
C→ R→ R/m

where R/m is thus a finitely generated C-algebra, as R is. The ring R/m is also a field by
maximality.

We would like to show that R/m is a finitely generated C-vector space. This would imply that
R/m is integral over C, and there are no proper algebraic extensions of C. Thus, if we prove this,
it will follow that the map C → R/m is an isomorphism. If ai ∈ C (1 ≤ i ≤ n) is the image of xi
in R/m = C, it will follow that (x1 − a1, . . . , xn − an) ⊂ m, so (x1 − a1, . . . , xn − an) = m.

Consequently, the Nullstellensatz in this form would follow from the next claim:

Proposition 4.2 Let k be a field, L/k an extension of fields. Suppose L is a finitely generated
k-algebra. Then L is a finite k-vector space.
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This is what we will prove.
We start with an easy proof in the special case:

Lemma 4.3 Assume k is uncountable (e.g. C, the original case of interest). Then the above
proposition is true.

Proof. Since L is a finitely generated k-algebra, it suffices to show that L/k is algebraic. If not,
there exists x ∈ L which isn’t algebraic over k. So x satisfies no nontrivial polynomials. I claim
now that the uncountably many elements 1

x−λ , λ ∈ K are linearly independent over K. This will
be a contradiction as L is a finitely generated k-algebra, hence at most countably dimensional over
k. (Note that the polynomial ring is countably dimensional over k, and L is a quotient.)

So let’s prove this. Suppose not. Then there is a nontrivial linear dependence∑ ci
x− λi

= 0, ci, λi ∈ K.

Here the λj are all distinct to make this nontrivial. Clearing denominators, we find∑
i

ci
∏
j 6=i

(x− λj) = 0.

Without loss of generality, c1 6= 0. This equality was in the field L. But x is transcendental over
k. So we can think of this as a polynomial ring relation. Since we can think of this as a relation in
the polynomial ring, we see that doing so, all but the i = 1 term in the sum is divisible by x− λ1

as a polynomial. It follows that, as polynomials in the indeterminate x,

x− λ1 | c1
∏
j 6=1

(x− λj).

This is a contradiction since all the λi are distinct. N

This is kind of a strange proof, as it exploits the fact that C is uncountable. This shouldn’t be
relevant.

4.2 The normalization lemma

Let’s now give a more algebraic proof. We shall exploit the following highly useful fact in commu-
tative algebra:

Theorem 4.4 (Noether normalization lemma) Let k be a field, and R = k[x1, . . . , xn]/p be
a finitely generated domain over k (where p is a prime ideal in the polynomial ring).

Then there exists a polynomial subalgebra k[y1, . . . , ym] ⊂ R such that R is integral over
k[y1, . . . , ym].

Later we will see that m is the dimension of R.
There is a geometric picture here. Then SpecR is some irreducible algebraic variety in kn (plus

some additional points), with a smaller dimension than n if p 6= 0. Then there exists a finite map
to km. In particular, we can map surjectively SpecR → km which is integral. The fibers are in
fact finite, because integrality implies finite fibers. (We have not actually proved this yet.)

How do we actually find such a finite projection? In fact, in characteristic zero, we just take a
vector space projection Cn → Cm. For a “generic” projection onto a subspace of the appropriate
dimension, the projection will will do as our finite map. In characteristic p, this may not work.
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Proof. First, note that m is uniquely determined as the transcendence degree of the quotient field
of R over k.

Among the variables x1, . . . , xn ∈ R (which we think of as in R by an abuse of notation), choose
a maximal subset which is algebraically independent. This subset has no nontrivial polynomial
relations. In particular, the ring generated by that subset is just the polynomial ring on that
subset. We can permute these variables and assume that

{x1, . . . , xm}

is the maximal subset. In particular, R contains the polynomial ring k[x1, . . . , xm] and is generated
by the rest of the variables. The rest of the variables are not adjoined freely though.

The strategy is as follows. We will implement finitely many changes of variable so that R
becomes integral over k[x1, . . . , xm].

The essential case is where m = n− 1. Let us handle this. So we have

R0 = k[x1, . . . , xm] ⊂ R = R0[xn]/p.

Since xn is not algebraically independent, there is a nonzero polynomial f(x1, . . . , xm, xn) ∈ p.
We want f to be monic in xn. This will buy us integrality. A priori, this might not be true. We

will modify the coordinate system to arrange that, though. Choose N � 0. Define for 1 ≤ i ≤ m,

x′i = xi + xN
i

n .

Then the equation becomes:

0 = f(x1, . . . , xm, xn) = f(
{
x′i − xN

i

n

}
, xn).

Now f(x1, . . . , xn, xn+1) looks like some sum∑
λa1...bx

a1
1 . . . xamm xbn, λa1...b ∈ k.

But N is really really big. Let us expand this expression in the x′i and pay attention to the largest
power of xn we see. We find that

f(
{
x′i − xNi

n

}
, xn)

has the largest power of xn precisely where, in the expression for f , am is maximized first, then
am−1, and so on. The largest exponent would have the form

xamN
m+am−1N

m−1+···+b
n .

We can’t, however, get any exponents of xn in the expression f(
{
x′i − xNi

n

}
, xn) other than these.

If N is super large, then all these exponents will be different from each other. In particular, each
power of xn appears precisely once in the expansion of f . We see in particular that xn is integral
over x′1, . . . , x

′
n. Thus each xi is as well.

So we find

R is integral over k[x′1, . . . , x
′
m].

We have thus proved the normalization lemma in the codimension one case. What about the
general case? We repeat this. Say we have

k[x1, . . . , xm] ⊂ R.
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Let R′ be the subring of R generated by x1, . . . , xm, xm+1. The argument we just gave implies that
we can choose x′1, . . . , x

′
m such that R′ is integral over k[x′1, . . . , x

′
m], and the x′i are algebraically

independent. We know in fact that R′ = k[x′1, . . . , x
′
m, xm+1].

Let us try repeating the argument while thinking about xm+2. Let R′′ = k[x′1, . . . , x
′
m, xm+2]

modulo whatever relations that xm+2 has to satisfy. So this is a subring of R. The same argument
shows that we can change variables such that x′′1 , . . . , x

′′
m are algebraically independent and R′′ is

integral over k[x′′1 , . . . , x
′′
m]. We have furthermore that k[x′′1 , . . . , x

′′
m, xm+2] = R′′.

Having done this, let us give the argument where m = n− 2. You will then see how to do the
general case. Then I claim that:

R is integral over k[x′′1 , . . . , x
′′
m].

For this, we need to check that xm+1, xm+2 are integral (because these together with the x′′i
generate R′′[xm+2][xm+2] = R. But xm+2 is integral over this by construction. The integral
closure of k[x′′1 , . . . , x

′′
m] in R thus contains

k[x′′1 , . . . , x
′′
m, xm+2] = R′′. N

However, R′′ contains the elements x′1, . . . , x
′
m. But by construction, xm+1 is integral over the

x′1, . . . , x
′
m. The integral closure of k[x′′1 , . . . , x

′′
m] must contain xm+2. This completes the proof

in the case m = n − 2. The general case is similar; we just make several changes of variables,
successively.

4.3 Back to the Nullstellensatz

Consider a finitely generated k-algebra R which is a field. We need to show that R is a finite
k-module. This will prove the proposition. Well, note that R is integral over a polynomial ring
k[x1, . . . , xm] for some m. If m > 0, then this polynomial ring has more than one prime. For
instance, (0) and (x1, . . . , xm). But these must lift to primes in R. Indeed, we have seen that
whenever you have an integral extension, the induced map on spectra is surjective. So

SpecR→ Spec k[x1, . . . , xm]

is surjective. If R is a field, this means Spec k[x1, . . . , xm] has one point and m = 0. So R is
integral over k, thus algebraic. This implies that R is finite as it is finitely generated. This proves
one version of the Nullstellensatz.

Another version of the Nullstellensatz, which is more precise, says:

Theorem 4.5 Let I ⊂ C[x1, . . . , xn]. Let V ⊂ Cn be the subset of Cn defined by the ideal I (i.e.
the zero locus of I).

Then Rad(I) is precisely the collection of f such that f |V = 0. In particular,

Rad(I) =
⋂

m⊃I,m maximal

m.

In particular, there is a bijection between radical ideals and algebraic subsets of Cn.
The last form of the theorem, which follows from the expression of maximal ideals in the

polynomial ring, is very similar to the result

Rad(I) =
⋂

p⊃I,p prime

p,

true in any commutative ring. However, this general result is not necessarily true.
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Example 4.6 The intersection of all primes in a DVR is zero, but the intersection of all maximals
is nonzero.

Proof (Proof of Theorem 4.5). It now suffices to show that for every p ⊂ C[x1, . . . , xn] prime, we
have

p =
⋂

m⊃I maximal

m

since every radical ideal is an intersection of primes.
Let R = C[x1, . . . , xn]/p. This is a domain finitely generated over C. We want to show that

the intersection of maximal ideals in R is zero. This is equivalent to the above displayed equality.
So fix f ∈ R − {0}. Let R′ be the localization R′ = Rf . Then R′ is also an integral domain,

finitely generated over C. R′ has a maximal ideal m (which a priori could be zero). If we look at
the map R′ → R′/m, we get a map into a field finitely generated over C, which is thus C. The
composite map

R→ R′ → R′/m

is just given by an n-tuple of complex numbers, i.e. to a point in Cn which is even in V as it is a
map out of R. This corresponds to a maximal ideal in R. This maximal ideal does not contain f
by construction. N

Exercise 7.6 Prove the following result, known as “Zariski’s lemma” (which easily implies the
Nullstellensatz): if k is a field, k′ a field extension of k which is a finitely generated k-algebra, then
k′ is finite algebraic over k. Use the following argument of McCabe (in [McC76]):

1. k′ contains a subring S of the form S = k[x1, . . . , xt] where the x1, . . . , xt are algebraically
independent over k, and k′ is algebraic over the quotient field of S (which is a polynomial
ring).

2. If k′ is not algebraic over k, then S 6= k is not a field.

3. Show that there is y ∈ S such that k′ is integral over Sy. Deduce that Sy is a field.

4. Since Spec(Sy) = {0}, argue that y lies in every non-zero prime ideal of SpecS. Conclude
that 1 + y ∈ k, and S is a field—contradiction.

4.4 A little affine algebraic geometry

In what follows, let k be algebraically closed, and let A be a finitely generated k-algebra. Recall
that SpecmA denotes the set of maximal ideals in A. Consider the natural k-algebra structure on
Funct(SpecmA, k). We have a map

A→ Funct(SpecmA, k)

which comes from the Weak Nullstellensatz as follows. Maximal ideals m ⊂ A are in bijection with
maps ϕm : A→ k where ker(ϕm) = m, so we define a 7−→ [m 7−→ ϕm(a)]. If A is reduced, then this
map is injective because if a ∈ A maps to the zero function, then a ∈ ∩m→ a is nilpotent→ a = 0.

Definition 4.7 A function f ∈ Funct(SpecmA, k) is called algebraic if it is in the image of A
under the above map. (Alternate words for this are polynomial and regular.)

Let A and B be finitely generated k-algebras and φ : A → B a homomorphism. This yields a
map Φ : SpecmB → SpecmA given by taking pre-images.
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Definition 4.8 A map Φ : SpecmB → SpecmA is called algebraic if it comes from a homomor-
phism φ as above.

To demonstrate how these definitions relate to one another we have the following proposition.

Proposition 4.9 A map Φ : SpecmB → SpecmA is algebraic if and only if for any algebraic
function f ∈ Funct(SpecmA, k), the pullback f ◦ Φ ∈ Funct(SpecmB, k) is algebraic.

Proof. Suppose that Φ is algebraic. It suffices to check that the following diagram is commutative:

Funct(SpecmA, k)
−◦Φ // Funct(SpecmB, k)

A

OO

φ
// B

OO

where φ : A→ B is the map that gives rise to Φ.
[⇐] Suppose that for all algebraic functions f ∈ Funct(SpecmA, k), the pull-back f ◦ Φ is

algebraic. Then we have an induced map, obtained by chasing the diagram counter-clockwise:

Funct(SpecmA, k)
−◦Φ // Funct(SpecmB, k)

A

OO

φ
//__________ B

OO

From φ, we can construct the map Φ′ : SpecmB → SpecmA given by Φ′(m) = φ−1(m). I claim
that Φ = Φ′. If not, then for some m ∈ SpecmB we have Φ(m) 6= Φ′(m). By definition, for all
algebraic functions f ∈ Funct(SpecmA, k), f ◦ Φ = f ◦ Φ′ so to arrive at a contradiction we show
the following lemma:
Given any two distinct points in SpecmA = V (I) ⊂ kn, there exists some algebraic f that
separates them. This is trivial when we realize that any polynomial function is algebraic, and such
polynomials separate points. N

§5 Serre’s criterion and its variants

We are going to now prove a useful criterion for a noetherian ring to be a product of normal
domains, due to Serre: it states that a (noetherian) ring is normal if and only if most of the
localizations at prime ideals are discrete valuation rings (this corresponds to the ring being regular
in codimension one, though we have not defined regularity yet) and a more technical condition
that we will later interpret in terms of depth. One advantage of this criterion is that it does not
require the ring to be a product of domains a priori.

5.1 Reducedness

There is a “baby” version of Serre’s criterion for testing whether a ring is reduced, which we star
with.

Recall:

Definition 5.1 A ring R is reduced if it has no nonzero nilpotents.

Proposition 5.2 If R is noetherian, then R is reduced if and only if it satisfies the following
conditions:
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1. Every associated prime of R is minimal (no embedded primes).

2. If p is minimal, then Rp is a field.

Proof. First, assume R reduced. What can we say? Say p is a minimal prime; then Rp has precisely
one prime ideal (namely, m = pRp). It is in fact a local artinian ring, though we don’t need that
fact. The radical of Rp is just m. But R was reduced, so Rp was reduced; it’s an easy argument
that localization preserves reducedness. So m = 0. The fact that 0 is a maximal ideal in Rp says
that it is a field.

On the other hand, we still have to do part 1. R is reduced, so Rad(R) =
⋂

p∈SpecR p = 0. In
particular, ⋂

p minimal

p = 0.

The map

R→
∏

p minimal

R/p

is injective. The associated primes of the product, however, are just the minimal primes. So
Ass(R) can contain only minimal primes.

That’s one direction of the proposition. Let us prove the converse now. Assume R satisfies
the two conditions listed. In other words, Ass(R) consists of minimal primes, and each Rp for
p ∈ Ass(R) is a field. We would like to show that R is reduced. Primary decomposition tells us
that there is an injection

R ↪→
∏

pi minimal

Mi, Mi pi − primary.

In this case, each Mi is primary with respect to a minimal prime. We have a map

R ↪→
∏

Mi →
∏

(Mi)pi ,

which is injective, because when you localize a primary module at its associated prime, you don’t
kill anything by definition of primariness. Since we can draw a diagram

R //

��

∏
Mi

��∏
Rpi

// ∏(Mi)pi

and the map R →
∏

(Mi)pi is injective, the downward arrow on the right injective. Thus R can
be embedded in a product of the fields

∏
Rpi , so is reduced. N

This proof actually shows:

Proposition 5.3 (Scholism) A noetherian ring R is reduced iff it injects into a product of fields.
We can take the fields to be the localizations at the minimal primes.

Example 5.4 Let R = k[X] be the coordinate ring of a variety X in Cn. Assume X is reduced.
Then MaxSpecR is a union of irreducible components Xi, which are the closures of the minimal
primes of R. The fields you get by localizing at minimal primes depend only on the irreducible
components, and in fact are the rings of meromorphic functions on Xi. Indeed, we have a map

k[X]→
∏

k[Xi]→
∏

k(Xi).

If we don’t assume that R is radical, this is not true.
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There is a stronger condition than being reduced we could impose. We could say:

Proposition 5.5 If R is a noetherian ring, then R is a domain iff

1. R is reduced.

2. R has a unique minimal prime.

Proof. One direction is obvious. A domain is reduced and (0) is the minimal prime.

The other direction is proved as follows. Assume 1 and 2. Let p be the unique minimal prime of
R. Then Rad(R) = 0 = p as every prime ideal contains p. As (0) is a prime ideal, R is a domain.N

We close by making some remarks about this embedding of R into a product of fields.

Definition 5.6 Let R be any ring, not necessarily a domain. Let K(R) be the localized ring
S−1R where S is the multiplicatively closed set of nonzerodivisors in R. K(R) is called the total
ring of fractions of R.

When R is a field, this is the quotient field.

First, to get a feeling for this, we show:

Proposition 5.7 Let R be noetherian. The set of nonzerodivisors S can be described by S =
R−

⋃
p∈Ass(R) p.

Proof. If x ∈ p ∈ Ass(R), then x must kill something in R as it is in an associated prime. So x is
a zerodivisor.

Conversely, suppose x is a zerodivisor, say xy = 0 for some y ∈ R − {0}. In particular,
x ∈ Ann(y). We have an injection R/Ann(y) ↪→ R sending 1 to y. But R/Ann(y) is nonzero, so it
has an associated prime p of R/Ann(y), which contains Ann(y) and thus x. But Ass(R/Ann(y)) ⊂
Ass(R). So x is contained in a prime in Ass(R). N

Assume now that R is reduced. Then K(R) = S−1R where S is the complement of the union
of the minimal primes. At least, we can claim:

Proposition 5.8 Let R be reduced and noetherian. Then K(R) =
∏

pi minimalRpi
.

So K(R) is the product of fields into which R embeds.

We now continue the discussion begun last time. Let R be noetherian andM a finitely generated
R-module. We would like to understand very rough features of M . We can embed M into a larger
R-module. Here are two possible approaches.

1. S−1M , where S is a large multiplicatively closed subset of M . Let us take S to be the set of
all a ∈ R such that M

a→M is injective, i.e. a is not a zerodivisor on M . Then the map

M → S−1M

is an injection. Note that S is the complement of the union of Ass(R).

2. Another approach would be to use a primary decomposition

M ↪→
∏

Mi,
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where each Mi is pi-primary for some prime pi (and these primes range over Ass(M)). In this
case, it is clear that anything not in each pi acts injectively. So we can draw a commutative
diagram

M

��

// ∏Mi

��∏
Mpi

// ∏(Mi)pi

.

The map going right and down is injective. It follows that M injects into the product of its
localizations at associated primes.

The claim is that these constructions agree if M has no embedded primes. I.e., if there are no
nontrivial containments among the associated primes of M , then S−1M (for S = R−

⋃
p∈Ass(M) p)

is just
∏
Mp. To see this, note that any element of S must act invertibly on

∏
Mp. We thus see

that there is always a map

S−1M →
∏

p∈Ass(M)

Mp.

Proposition 5.9 This is an isomorphism if M has no embedded primes.

Proof. Let us go through a series of reductions. Let I = Ann(M) = {a : aM = 0}. Without loss
of generality, we can replace R by R/I. This plays nice with the associated primes.

The assumption is now that Ass(M) consists of the minimal primes of R.
Without loss of generality, we can next replace R by S−1R and M by S−1M , because that

doesn’t affect the conclusion; localization plays nice with associated primes.
Now, however, R is artinian: i.e., all primes of R are minimal (or maximal). Why is this? Let

R be any noetherian ring and S = R −
⋃

p minimal p. Then I claim that S−1R is artinian. We’ll
prove this in a moment.

So R is artinian, hence a product
∏
Ri where each Ri is local artinian. Without loss of

generality, we can replace R by Ri by taking products. The condition we are trying to prove is
now that

S−1M →Mm

for m ⊂ R the maximal ideal. But S is the complement of the union of the minimal primes, so it
is R − m as R has one minimal (and maximal) ideal. This is obviously an isomorphism: indeed,
both are M . N

TO BE ADDED: proof of artianness

Corollary 5.10 Let R be a noetherian ring with no embedded primes (i.e. Ass(R) consists of
minimal primes). Then K(R) =

∏
pi minimalRpi

.

If R is reduced, we get the statement made last time: there are no embedded primes, and K(R) is
a product of fields.

5.2 The image of M → S−1M

Let’s ask now the following question. Let R be a noetherian ring, M a finitely generated R-
module, and S the set of nonzerodivisors on M , i.e. R−

⋃
p∈Ass(M) p. We have seen that there is

an imbedding
φ : M ↪→ S−1M.

What is the image? Given x ∈ S−1M , when does it belong to the imbedding above.
To answer such a question, it suffices to check locally. In particular:
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Proposition 5.11 x belongs to the image of M in S−1M iff for every p ∈ SpecR, the image of
x in (S−1M)p lies inside Mp.

This isn’t all that interesting. However, it turns out that you can check this at a smaller set of
primes.

Proposition 5.12 In fact, it suffices to show that x is in the image of φp for every p ∈ Ass(M/sM)
where s ∈ S.

This is a little opaque; soon we’ll see what it actually means. The proof is very simple.

Proof. Remember that x ∈ S−1M . In particular, we can write x = y/s where y ∈M, s ∈ S. What
we’d like to prove that x ∈M , or equivalently that y ∈ sM .5 In particular, we want to know that y
maps to zero in M/sM . If not, there exists an associated prime p ∈ Ass(M/sM) such that y does
not get killed in (M/sM)p. We have assumed, however, for every associated prime p ∈ Ass(M),
x ∈ (S−1M)p lies in the image of Mp. This states that the image of y in this quotient (M/sM)p
is zero, or that y is divisible by s in this localization. N

The case we actually care about is the following:
Take R as a noetherian domain and M = R. Then S = R−{0} and S−1M is just the fraction

field K(R). The goal is to describe R as a subset of K(R). What we have proven is that R is the
intersection in the fraction field

R =
⋂

p∈Ass(R/s),s∈R−0

Rp.

So to check that something belongs to R, we just have to check that in a certain set of localizations.
Let us state this as a result:

Theorem 5.13 If R is a noetherian domain

R =
⋂

p∈Ass(R/s),s∈R−0

Rp

5.3 Serre’s criterion

We can now state a result.

Theorem 5.14 (Serre) Let R be a noetherian domain. Then R is integrally closed iff it satisfies

1. For any p ⊂ R of height one, Rp is a DVR.

2. For any s 6= 0, R/s has no embedded primes (i.e. all the associated primes of R/s are height
one).

Here is the non-preliminary version of the Krull theorem.

Theorem 5.15 (Algebraic Hartogs) Let R be a noetherian integrally closed ring. Then

R =
⋂

p height one

Rp,

where each Rp is a DVR.

5In general, this would be equivalent to ty ∈ tsM for some t ∈ S; but S consists of nonzerodivisors on M .
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Proof. Now evident from the earlier result Theorem 5.13 and Serre’s criterion. N

Earlier in the class, we proved that a domain was integrally closed if and only if it could be
described as an intersection of valuation rings. We have now shown that when R is noetherian, we
can take discrete valuation rings.

Remark In algebraic geometry, say R = C[x1, . . . , xn]/I. Its maximal spectrum is a subset of
Cn. If I is prime, and R a domain, this variety is irreducible. We are trying to describe R inside
its field of fractions.

The field of fractions are like the “meromorphic functions”; R is like the holomorphic functions.
Geometrically, this states to check that a meromorphic function is holomorphic, you can just check
this by computing the “poleness” along each codimension one subvariety. If the function doesn’t
blow up on each of the codimension one subvarieties, and R is normal, then you can extend it
globally.

This is an algebraic version of Hartog’s theorem: this states that a holomorphic function on
C2 − (0, 0) extends over the origin, because this has codimension > 1.

All the obstructions of extending a function to all of SpecR are in codimension one.

Now, we prove Serre’s criterion.

Proof. Let us first prove that R is integrally closed if 1 and 2 occur. We know that

R =
⋂

p∈Ass(R/x),x6=0

Rp;

by condition 1, each such p is of height one, and Rp is a DVR. So R is the intersection of DVRs
and thus integrally closed.

The hard part is going in the other direction. Assume R is integrally closed. We want to prove
the two conditions. In R, consider the following conditions on a prime ideal p:

1. p is an associated prime of R/x for some x 6= 0.

2. p is height one.

3. pp is principal in Rp.

First, 3 implies 2 implies 1. 3 implies that p contains an element x which generates p after localizing.
It follows that there can be no prime between (x) and p because that would be preserved under
localization. Similarly, 2 implies 1 is easy. If p is minimal over (x), then p ∈ AssR/(x) since the
minimal primes in the support are always associated.

We are trying to prove the inverse implications. In that case, the claims of the theorem will be
proved. We have to show that 1 implies 3. This is an argument we really saw last time, but let’s
see it again. Say p ∈ Ass(R/x). We can replace R by Rp so that we can assume that p is maximal.
We want to show that p is generated by one element.

What does the condition p ∈ Ass(R/x) buy us? It tells us that there is y ∈ R/x such that
Ann(y) = p. In particular, there is y ∈ R such that py ⊂ (x) and y /∈ (x). We have the element
y/x ∈ K(R) which sends p into R. That is,

(y/x)p ⊂ R.

There are two cases to consider, as in last time:

1. (y/x)p = R. Then p = R(x/y) so p is principal.

2. (y/x)p 6= R. In particular, (y/x)p ⊂ p. Then since p is finitely generated, we find that y/x
is integral over R, hence in R. This is a contradiction as y /∈ (x).

Only the first case is now possible. So p is in fact principal. N
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[Ger] Anton Geraschenko (mathoverflow.net/users/1). Is there an example of a formally
smooth morphism which is not smooth? MathOverflow. http://mathoverflow.net/

questions/200 (version: 2009-10-08).

[Gil70] Robert Gilmer. An existence theorem for non-Noetherian rings. The American Mathe-
matical Monthly, 77(6):621–623, 1970.

[Gre97] John Greene. Principal ideal domains are almost euclidean. The American Mathematical
Monthly, 104(2):154–156, 1997.

[Gro57] Alexander Grothendieck. Sur quelques points d’algèbre homologique. Tôhoku Math. J.
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Séminaire de géométrie algébrique du Bois Marie 1960–61. [Algebraic Geometry Seminar
of Bois Marie 1960-61], Directed by A. Grothendieck, With two papers by M. Ray-
naud, Updated and annotated reprint of the 1971 original [Lecture Notes in Math., 224,
Springer, Berlin; MR0354651 (50 #7129)].

[Tam94] Günter Tamme. Introduction to étale cohomology. Universitext. Springer-Verlag, Berlin,
1994. Translated from the German by Manfred Kolster.

[Vis08] Angelo Vistoli. Notes on Grothendieck topologies, fibered categories, and descent theory.
Published in FGA Explained, 2008. arXiv:math/0412512v4.

[Was97] Lawrence C. Washington. Introduction to cyclotomic fields, volume 83 of Graduate Texts
in Mathematics. Springer-Verlag, New York, second edition, 1997.

[Wei94] Charles A. Weibel. An introduction to homological algebra, volume 38 of Cambridge
Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1994.

33


	Integrality and valuation rings
	Integrality
	Fundamentals
	Le sorite for integral extensions
	Integral closure
	Geometric examples

	Lying over and going up
	Lying over
	Going up

	Valuation rings
	Definition
	Valuations
	General remarks
	Back to the goal

	The Hilbert Nullstellensatz
	Statement and initial proof of the Nullstellensatz
	The normalization lemma
	Back to the Nullstellensatz
	A little affine algebraic geometry

	Serre's criterion and its variants
	Reducedness
	The image of M S-1M
	Serre's criterion



