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Chapter 19

Homotopical algebra

In this chapter, we shall introduce the formalism of model categories. Model categories provide an
abstract setting for homotopy theory: in particular, we shall see that topological spaces form a
model category. In a model category, it is possible to talk about notions such as “homotopy,” and
thus to pass to the homotopy category.

But many algebraic categories form model categories as well. The category of chain complexes
over a ring forms one. It turns out that this observation essentially encodes classical homological
algebra. We shall see, in particular, how the notion of derived functor can be interpreted in a
model category, via this model structure on chain complexes.

Our ultimate goal in developing this theory, however, is to study the non-abelian case. We are
interested in developing the theory of the cotangent complex, which is loosely speaking the derived
functor of the Kéhler differentials {25, on the category of R-algebras. This is not a functor on
an additive category; however, we shall see that the non-abelian version of derived functors (in
the category of simplicial R-algebras) allows one to construct the cotangent complex in an elegant
way.

81 Model categories
1.1 Definition
We need to begin with the notion of a retract of a map.

Definition 1.1 Let C be a category. Then we can form a new category MapC of maps of C. The
objects of this category are the morphisms A — B of C, and a morphism between A — B and
C — D is given by a commutative square

A—C.
B——=D

A map in C is a retract of another map in C if it is a retract as an object of MapC. This means
that there is a diagram:
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For instance, one can prove:
Proposition 1.2 In any category, isomorphisms are closed under retracts.
We leave the proof as an exercise.

Definition 1.3 A model category is a category C equipped with three classes of maps called
cofibrations, fibrations, and weak equivalences. They have to satisfy five axioms M1 — M5.
Denote cofibrations as <, fibrations as —, and weak equivalences as — ~.

(M1) C is closed under all limits and colimits][T]

(M2) Each of the three classes of cofibrations, fibrations, and weak equivalences is closed under
retracts]

(M3) If two of three in a composition are weak equivalences, so is the third.

L

— X
/1
/

B——Y

(M4) (Lifts) Suppose we have a diagram

Here i : A — B is a cofibration and p : X — Y is a fibration. Then a lift exists if 4 or p is a
weak equivalence.

(M5) (Factorization) Every map can be factored in two ways:

IMany of our arguments will involve infinite colimits. The original formulation in [?] required only finite such,
but most people assume infinite.

2Quillen initially called model categories satisfying this axiom closed model categories. All the model categories
we consider will be closed, and we have, following [Hov07], omitted this axiom.
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In words, it can be factored as a composite of a cofibration followed by a fibration which is
a weak equivalence, or as a cofibration which is a weak equivalence followed by a fibration.

A map which is a weak equivalence and a fibration will be called an acyclic fibration. Denote
this by — ~. A map which is both a weak equivalence and a cofibration will be called an acyclic
cofibration, denoted < ~. (The word “acyclic” means for a chain complex that the homology is
trivial; we shall see that this etymology is accurate when we construct a model structure on the
category of chain complexes.)

Remark If C is a model category, then C°P is a model category, with the notions of fibrations and
cofibrations reversed. So if we prove something about fibrations, we automatically know something
about cofibrations.

We begin by listing a few elementary examples of model categories:

Example 1.4 1. Given a complete and cocomplete category C, then we can give a model
structure to C by taking the weak equivalences to be the isomorphisms and the cofibrations
and fibrations to be all maps.

2. If R is a Frobenius ring, or the classes of projective and injective R-modules coincide, then
the category of modules over R is a model category. The cofibrations are the injections, the
fibrations are the surjections, and the weak equivalences are the stable equivalences (a term
which we do not define). See [Hov07].

3. The category of topological spaces admits a model structure where the fibrations are the Serre
fibrations and the weak equivalences are the weak homotopy equivalences. The cofibrations
are, as we shall see, determined from this, though they can be described explicitly.

EXERCISE 19.1 Show that there exists a model structure on the category of sets where the injec-
tions are the cofibrations, the surjections are fibrations, and all maps are weak equivalences.

1.2 The retract argument

The axioms for a model category are somewhat complicated. We are now going to see that they are
actually redundant. That is, any two of the classes of cofibrations, fibrations, and weak equivalences
determine the third. We shall thus introduce a useful trick that we shall have occasion to use many
times further when developing the foundations.

Definition 1.5 Let C be any category. Suppose that P is a class of maps of C. Amap f: A — B
has the left lifting property with respect to P iff: for all p: C'— D in P and all diagrams

A——C
|
7 p
7/
B——=D
a lift represented by the dotted arrow exists, making the diagram commute. We abbreviate this

property to LLP. There is also a notion of a right lifting property, abbreviated RLP, where f
is on the right.

Proposition 1.6 Let P be a class of maps of C. Then the set of maps f : A — B that have the
LLP (resp. RLP) with respect to P is closed under retracts and composition.
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Proof. This will be a diagram chase. Suppose f : A — B and g : B — C have the LLP with
respect to maps in P. Suppose given a diagram

A——

]

C——

with X — Y in P. We have to show that there exists a lift C' — X. We can split this into a
commutative diagram:
_ X
1
7
7/

N\

C——Y

W<~

The lifting property provides a map ¢ : B — X as in the dotted line in the diagram. This gives a
diagram
B X
b
7

C——Y A

N

and in here we can find a lift because g has the LLP with respect to p. It is easy to check that
this lift is what we wanted.

The axioms of a model category imply that cofibrations have the LLP with respect to trivial
fibrations, and acyclic cofibrations have the LLP with respect to fibrations. There are dual state-
ments for fibrations. It turns out that these properties characterize cofibrations and fibrations
(and acyclic ones).

Theorem 1.7 Suppose C is a model category. Then:

(1) A map f is a cofibration iff it has the left lifting property with respect to the class of acyclic
fibrations.

(2) A map is a fibration iff it has the right lifting property w.r.t. the class of acyclic cofibrations.
Proof. Suppose you have a map f, that has LLP w.r.t. all acyclic fibrations and you want it to

be a cofibration. (The other direction is an axiom.) Somehow we're going to have to get it to be
a retract of a cofibration. Somehow you have to use factorization. Factor f:

We had assumed that f has LLP. There is a lift:

6
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This implies that f is a retract of i.

_ — A

A
f & f

o 3> X/ — X

<~

e

A

Theorem 1.8 (1) A map p is an acyclic fibration iff it has RLP w.r.t. cofibrations

(2) A map is an acyclic cofibration iff it has LLP w.r.t. all fibrations.

Suppose we know the cofibrations. Then we don’t know the weak equivalences, or the fibrations,
but we know the maps that are both. If we know the fibrations, we know the maps that are both
weak equivalences and cofibrations. This is basically the same argument. One direction is easy: if
a map is an acyclic fibration, it has the lifting property by the definitions. Conversely, suppose f
has RLP w.r.t. cofibrations. Factor this as a cofibration followed by an acyclic fibration.

Id X

X
P4
7 p

Y —=Y

~

f is a retract of p; it is a weak equivalence because p is a weak equivalence. It is a fibration by the
previous theorem.

Corollary 1.9 A map is a weak equivalence iff it can be written as the product of an acyclic
fibration and an acyclic cofibration.

We can always write
7N
SO R

By two out of three f is a weak equivalence iff p is. The class of weak equivalences is determined
by the fibrations and cofibrations.

Example 1.10 (Topological spaces) The construction here is called the Serre model structure
(although it was defined by Quillen). We have to define some maps.

(1) The fibrations will be Serre fibrations.
(2) The weak equivalences will be weak homotopy equivalences

(3) The cofibrations are determined by the above classes of maps.
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Theorem 1.11 A space equipped with these classes of maps is a model category.

Proof. More work than you realize. M1 is not a problem. The retract axiom is also obvious. (Any
class that has the lifting property also has retracts.) The third property is also obvious: something
is a weak equivalence iff when you apply some functor (homotopy), it becomes an isomorphism.
(This is important.) So we need lifting and factorization. One of the lifting axioms is also auto-
matic, by the definition of a cofibration. Let’s start with the factorizations. Introduce two classes
of maps:

A={D" x {0} = D" x [0,1]8 : n > 0}

B=AU{S" 'S D"8:8n>0,5"1 =0}
These are compact, in a category-theory sense. By definition of Serre fibrations, a map is a fibration
iff it has the right lifting property with respect to A. A map is an acyclic fibration iff it has the
RLP w.r.t. B. (This was on the homework.) I need another general fact:
Proposition 1.12 The class of maps having the left lifting property w.r.t. a class P is closed

under arbitrary coproducts, co-base change, and countable (or even transfinite) composition. By
countable composition

AO;)A1—>A2—>"'
we mean the map A — colim,BA,.

Suppose I have a map fy : Xo — Yy. We want to produce a diagram:

Xo— X,

RN

Y

We have UV — UD where the disjoint union is taken over commutative diagrams

V—X

|

D——Y

where V. — D is in A. Sometimes we call these lifting problems. For every lifting problem, we
formally create a solution. This gives a diagram:

UV ——ub

]

X—=X

TN

Y

where we have subsequently made the pushout to Y. By construction, every lifting problem in X
can be solved in X;.
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VHX0(L>X1

D——=Y ——Y
We know that every map in A is a cofibration. Also, LV — UD is a homotopy equivalence. k
is an acylic cofibration because it is a weak equivalence (recall that it is a homotopy equivalence)
and a cofibration.

Now we make a cone of Xg — X; — -+ X into Y. The claim is that f is a fibration:

X(_~> Xeo

by which we mean

N, e

ST

Y Y

<

y4

-~

>

where ¢ € A. V is compact Hausdorff. X, was a colimit along closed inclusions.

So I owe you one lifting property, and the other factorization.



CRing Project, Chapter 19

10



CRing Project contents

I___Fundamentals|

0 Categories

(1 _Foundations|

B Field IE ong

|3 Three important functors|

(II  Commutative algebral

[4  The Spec of a ring|

[F Noetherian rings and modules]

[6  Graded and filtered rings|

[7 Integrality and valuation rings|

|8  Unique factorization and the class group|

0 Dedekind d el

(10 Dimension theory|

(11 Completions|

[12 Regularity, differentials, and smoothness|

[13 Various topics|

{14 Homological Algebral

15 Fl Sitedl

[L6 Homological theory of local rings|

11

37
71

93

131
133
157
183
201
233
249
265
293

313

337
339
353
369

395



CRing Project, Chapter 19

|17 Etale, unramified, and smooth morphismsl 425
{18 Complete local rings| 459
(19 Homotopical algebral 461
20 GNU Free Documentation Licensel 469

12



CRing Project bibliography

[AM69]

[BBDS2]

[Bou9s]

[Cam88]

[CF86]

[Clall]

[dJeall]

[Eis95]

[For91]

[Gil70]

[Gre97)

[Gro57]

M. F. Atiyah and I. G. Macdonald. Introduction to commutative algebra. Addison-Wesley
Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.

A. A. Beilinson, J. Bernstein, and P. Deligne. Faisceaux pervers. In Analysis and topology
on singular spaces, I (Luminy, 1981), volume 100 of Astérisque, pages 5-171. Soc. Math.
France, Paris, 1982.

Nicolas Bourbaki. Commutative algebra. Chapters 1-7. Elements of Mathematics
(Berlin). Springer-Verlag, Berlin, 1998. Translated from the French, Reprint of the 1989
English translation.

Oscar Campoli. A principal ideal domain that is not a euclidean domain. American
Mathematical Monthly, 95(9):868-871, 1988.

J. W. S. Cassels and A. Frohlich, editors. Algebraic number theory, London, 1986. Aca-
demic Press Inc. [Harcourt Brace Jovanovich Publishers|. Reprint of the 1967 original.

Pete L. Clark. Factorization in euclidean domains. 2011. Available at http://math.
uga.edu/~pete/factorization2010.pdf.

Aise Johan de Jong et al. Stacks Project. Open source project, available at http:
//www.math.columbia.edu/algebraic_geometry/stacks-git/, 2010.

David Eisenbud. Commutative algebra, volume 150 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 1995. With a view toward algebraic geometry.

Otto Forster. Lectures on Riemann surfaces, volume 81 of Graduate Texts in Mathe-
matics. Springer-Verlag, New York, 1991. Translated from the 1977 German original by
Bruce Gilligan, Reprint of the 1981 English translation.

Alexander Grothendieck and Jean Dieudonné. Elements de géometrie algébrique. Pub-
lications Mathématiques de 'THES.

Anton Geraschenko (mathoverflow.net/users/1). Is there an example of a formally
smooth morphism which is not smooth? MathOverflow. http://mathoverflow.net/
questions/200 (version: 2009-10-08).

Robert Gilmer. An existence theorem for non-Noetherian rings. The American Mathe-
matical Monthly, 77(6):621-623, 1970.

John Greene. Principal ideal domains are almost euclidean. The American Mathematical
Monthly, 104(2):154-156, 1997.

Alexander Grothendieck. Sur quelques points d’algebre homologique. Téhoku Math. J.
(2), 9:119-221, 1957.

13


http://math.uga.edu/~pete/factorization2010.pdf
http://math.uga.edu/~pete/factorization2010.pdf
http://www.math.columbia.edu/algebraic_geometry/stacks-git/
http://www.math.columbia.edu/algebraic_geometry/stacks-git/
http://mathoverflow.net/questions/200
http://mathoverflow.net/questions/200

[Har77)

[Hat02]

[Hov07]

[KS06]

[Lan94]

[Lan02]

[Liu02]

[LROS]

[Mar02]

[Mat80]

[McC76]

CRing Project, Chapter 19

Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York, 1977. Graduate
Texts in Mathematics, No. 52.

Allen Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002. Avail-
able at http://www.math.cornell.edu/~hatcher/AT/AT.pdf|

Mark Hovey. Model Categories. American Mathematical Society, 2007.

Masaki Kashiwara and Pierre Schapira. Categories and sheaves, volume 332 of
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathe-
matical Sciences/. Springer-Verlag, Berlin, 2006.

Serge Lang. Algebraic number theory, volume 110 of Graduate Texts in Mathematics.
Springer-Verlag, New York, second edition, 1994.

Serge Lang. Algebra, volume 211 of Graduate Texts in Mathematics. Springer-Verlag,
New York, third edition, 2002.

Qing Liu. Algebraic geometry and arithmetic curves, volume 6 of Oxford Graduate Texts
in Mathematics. Oxford University Press, Oxford, 2002. Translated from the French by
Reinie Erné, Oxford Science Publications.

T. Y. Lam and Manuel L. Reyes. A prime ideal principle in commutative algebra. J.
Algebra, 319(7):3006-3027, 2008.

David Marker. Model theory, volume 217 of Graduate Texts in Mathematics. Springer-
Verlag, New York, 2002. An introduction.

Hideyuki Matsumura. Commutative algebra, volume 56 of Mathematics Lecture Note
Series. Benjamin/Cummings Publishing Co., Inc., Reading, Mass., second edition, 1980.

John McCabe. A note on Zariski’s lemma. The American Mathematical Monthly,
83(7):560-561, 1976.

James S. Milne. Etale cohomology, volume 33 of Princeton Mathematical Series. Prince-
ton University Press, Princeton, N.J., 1980.

Saunders Mac Lane. Categories for the working mathematician, volume 5 of Graduate
Texts in Mathematics. Springer-Verlag, New York, second edition, 1998.

Hervé Perdry. An elementary proof of Krull’s intersection theorem. The American
Mathematical Monthly, 111(4):356-357, 2004.

Daniel Quillen. Homology of commutative rings. Mimeographed notes.

Michel Raynaud. Anneauz locauz henséliens. Lecture Notes in Mathematics, Vol. 169.
Springer-Verlag, Berlin, 1970.

Michel Raynaud and Laurent Gruson. Criteres de platitude et de projectivité. Techniques
de “platification” d’un module. Invent. Math., 13:1-89, 1971.

Jean-Pierre Serre. Algebre locale. Multiplicités, volume 11 of Cours au College de France,
1957-1958, rédigé par Pierre Gabriel. Seconde édition, 1965. Lecture Notes in Mathe-
matics. Springer-Verlag, Berlin, 1965.

Jean-Pierre Serre. Local fields, volume 67 of Graduate Texts in Mathematics. Springer-
Verlag, New York, 1979. Translated from the French by Marvin Jay Greenberg.

14


http://www.math.cornell.edu/~hatcher/AT/AT.pdf

[Ser09]

[SGAT2]

[SGAO03]

[Tam94]

[Vis08]

[Was97]

[Wei94]

CRing Project, Chapter 19

Jean-Pierre Serre. How to use finite fields for problems concerning infinite fields. 2009.
arXiv:0903.0517v2.

Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos. Lecture
Notes in Mathematics, Vol. 269. Springer-Verlag, Berlin, 1972. Séminaire de Géométrie
Algébrique du Bois-Marie 1963-1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck, et
J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat.

Revétements étales et groupe fondamental (SGA 1). Documents Mathématiques (Paris)
[Mathematical Documents (Paris)], 3. Société Mathématique de France, Paris, 2003.
Séminaire de géométrie algébrique du Bois Marie 1960-61. [Algebraic Geometry Seminar
of Bois Marie 1960-61], Directed by A. Grothendieck, With two papers by M. Ray-
naud, Updated and annotated reprint of the 1971 original [Lecture Notes in Math., 224,
Springer, Berlin; MR0354651 (50 #7129)].

Gilinter Tamme. Introduction to étale cohomology. Universitext. Springer-Verlag, Berlin,
1994. Translated from the German by Manfred Kolster.

Angelo Vistoli. Notes on Grothendieck topologies, fibered categories, and descent theory.
Published in FGA Explained, 2008. arXiv:math/0412512v4.

Lawrence C. Washington. Introduction to cyclotomic fields, volume 83 of Graduate Texts
in Mathematics. Springer-Verlag, New York, second edition, 1997.

Charles A. Weibel. An introduction to homological algebra, volume 38 of Cambridge
Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1994.

15



	Homotopical algebra
	Model categories
	Definition
	The retract argument



