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Chapter 16

Homological theory of local rings

We will then apply the general theory to commutative algebra proper. The use of homological
machinery provides a new and elegant characterization of regular local rings (among noetherian
local rings, they are the ones with finite global dimension) and leads to proofs of several difficult
results about them. For instance, we will be able to prove the rather important result (which one
repeatedly uses in algebraic geometry) that a regular local ring is a UFD. As another example, the
aforementioned criterion leads to a direct proof of the otherwise non-obvious that a localization of
a regular local ring at a prime ideal is still a regular local ring.

Note: right now, the material on regular local rings is still missing! It should be
added.

§1 Depth

In this section, we first introduce the notion of depth for local rings via the Ext functor, and then
show that depth can be measured as the length of a maximal regular sequence. After this, we
study the theory of regular sequences in general (on not-necessarily-local rings), and show that the
depth of a module can be bounded in terms of both its dimension and its associated primes.

1.1 Depth over local rings

Throughout, let (R,m) be a noetherian local ring. Let k = R/m be the residue field.

Let M 6= 0 be a finitely generated R-module. We are going to define an arithmetic invariant
of M , called the depth, that will measure in some sense the torsion of M .

Definition 1.1 The depth of M is equal to the smallest integer i such that Exti(k,M) 6= 0. If
there is no such integer, we set depthM =∞.

We shall give another characterization of this shortly that makes no reference to Ext functors,
and is purely elementary. We will eventually see that there is always such an i (at least if M 6= 0),
so depthM <∞.

Example 1.2 (Depth zero) Let us characterize when a module M has depth zero. Depth zero is
equivalent to saying that Ext0(k,M) = HomR(k,M) 6= 0, i.e. that there is a nontrivial morphism

k →M.

As k = R/m, the existence of such a map is equivalent to the existence of a nonzero x such that
Ann(x) = m, i.e. m ∈ Ass(M). So depth zero is equivalent to having m ∈ Ass(M).
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Suppose now that depth(M) 6= 0. In particular, m /∈ Ass(M). Since Ass(M) is finite, prime
avoidance implies that m 6⊂

⋃
p∈Ass(M) p. Thus m contains an element which is a nonzerodivisor

on M (see ??). So we find:

Proposition 1.3 M has depth zero iff every element in m is a zerodivisor on M .

Now suppose depthM 6= 0. There is a ∈ m which is a nonzerodivisor on M , i.e. such that
there is an exact sequence

0→M
a→M →M/aM → 0.

For each i, there is an exact sequence in Ext groups:

Exti−1(k,M/aM)→ Exti(k,M)
a→ Exti(k,M)→ Exti(k,M/aM)→ Exti+1(k,M). (16.1)

However, the map a : Exti(k,M) → Exti(k,M) is zero as multiplication by a kills k. (If a kills a
module N , then it kills Ext∗(N,M) for all M .) We see from this that

Exti(k,M) ↪→ Exti(k,M/aM)

is injective, and
Exti−1(k,M/aM)� Exti(k,M)

is surjective.

Corollary 1.4 If a ∈ m is a nonzerodivisor on M , then

depth(M/aM) = depthM − 1.

Proof. When depthM = ∞, this is easy (left to the reader) from the exact sequence. Sup-
pose depth(M) = n. We would like to see that depthM/aM = n − 1. That is, we want to
see that Extn−1(k,M/aM) 6= 0, but Exti(k,M/aM) = 0 for i < n − 1. This is direct from
the sequence (16.1) above. In fact, surjectivity of Extn−1(k,M/aM) → Extn(k,M) shows that
Extn−1(k,M/aM) 6= 0. Now let i < n− 1. Then in (16.1), Exti(k,M/aM) is sandwiched between
two zeros, so it is zero. N

The moral of the above discussion is that one quotients out by a nonzerodivisor, the depth
drops by one. In fact, we have described a recursive algorithm for computing depth(M).

1. If m ∈ Ass(M), output zero.

2. If m /∈ Ass(M), choose an element a ∈ m which is a nonzerodivisor on M . Output
depth(M/aM) + 1.

If one wished to apply this in practice, one would probably start by looking for a nonzerodivisor
a1 ∈ m on M , and then looking for one on M/a1M , etc. From this we make:

Definition 1.5 Let (R,m) be a local noetherian ring, M a finiteR-module. A sequence a1, . . . , an ∈
m is said to be M-regular iff:

1. a1 is a nonzerodivisor on M

2. a2 is a nonzerodivisor on M/a1M

3. . . .

4. ai is a nonzerodivisor on M/(a1, . . . , ai−1)M for all i.
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A regular sequence a1, . . . , an is maximal if it can be extended no further, i.e. there is no an+1

such that a1, . . . , an+1 is M -regular.

We now get the promised “elementary” characterization of depth.

Corollary 1.6 depth(M) is the length of every maximal M -regular sequence. In particular, all
M -regular sequences have the same length.

Proof. If a1, . . . , an is M -regular, then

depthM/(a1, . . . , ai)M = depthM − i

for each i, by an easy induction on i and the Corollary 1.4. From this the result is clear, because
depth zero occurs precisely when m is an associated prime (Proposition 1.3). But it is also clear that
a regular sequence a1, . . . , an is maximal precisely when every element of m acts as a zerodivisor
on M/(a1, . . . , an)M , that is, m ∈ Ass(M/(a1, . . . , an)M). N

Remark We could define the depth via the length of a maximal M -regular sequence.

Finally, we can bound the depth in terms of the dimension.

Corollary 1.7 Let M 6= 0. Then the depth of M is finite. In fact,

depthM ≤ dimM. (16.2)

Proof. When depthM = 0, the assertion is obvious. Otherwise, there is a ∈ m which is a nonze-
rodivisor on M . We know that

depthM/aM = depthM − 1

and (by ??)
dimM/aM = dimM − 1.

By induction on dimM , we have that depthM/aM ≤ dimM/aM . From this the induction step is
clear, because depth and dim both drop by one after quotienting. N

Generally, the depth is not the dimension.

Example 1.8 Given any M , adding k makes the depth zero: M⊕k has m as an associated prime.
But the dimension does not jump to zero just by adding a copy of k. If M is a direct sum of
pieces of differing dimensions, then the bound (16.2) does not exhibit equality. In fact, if M,M ′

are finitely generated modules, then we have

depthM ⊕M ′ = min (depthM, depthM ′) ,

which follows at once from the definition of depth in terms of vanishing Ext groups.

Exercise 16.1 Suppose R is a noetherian local ring whose depth (as a module over itself) is zero.
If R is reduced, then R is a field.

Finally, we include a result that states that the depth does not depend on the ring so much as
the module.

Proposition 1.9 (Depth and change of rings) Let (R,m)→ (S, n) be a morphism of noethe-
rian local rings. Suppose M is a finitely generated S-module, which is also finitely generated as an
R-module. Then depthRM = depthSM .

5



CRing Project, Chapter 16

Proof. It is clear that we have the inequality depthRM ≤ depthSM , by the interpretation of depth
via regular sequences. Let x1, . . . , xn ∈ R be a maximal M -sequence. We need to show that it is a
maximal M -sequence in S as well. By quotienting, we may replace M with M/(x1, . . . , xn)M ; we
then have to show that if M has depth zero as an R-module, it has depth zero as an S-module.

But then HomR(R/m,M) 6= 0. This is a R-submodule of M , consisting of elements killed by
m, and in fact it is a S-submodule. We are going to show that n annihilates some element of it,
which will imply that depthSM = 0.

To see this, note that HomR(R/m,M) is artinian as an R-module (as it is killed by m). As a
result, it is an artinian S-module, which means it contains n as an associated prime, proving the
claim and the result. N

1.2 Regular sequences

In the previous subsection, we defined the notion of depth of a finitely generated module over a
noetherian local ring using the Ext functors. We then showed that the depth was the length of a
maximal regular sequence.

Now, although it will not be necessary for the main results in this chapter, we want to generalize
this to the case of a non-local ring. Most of the same arguments go through, though there are
some subtle differences. For instance, regular sequences remain regular under permutation in the
local case, but not in general. Since there will be some repetition, we shall try to be brief.

We start by generalizing the idea of a regular sequence which is not required to be contained
in the maximal ideal of a local ring. Let R be a noetherian ring, and M a finitely generated
R-module.

Definition 1.10 A sequence x1, . . . , xn ∈ R is M-regular (or is an M-sequence) if for each
k ≤ n, xk is a nonzerodivisor on the R-module M/(x1, . . . , xk−1)M and also (x1, . . . , xn)M 6= M .

So x1 is a nonzerodivisor on M , by the first part. That is, the homothety M
x1→M is injective.

The last condition is also going to turn out to be necessary for us. In the previous subsection, it
was automatic as mM 6= M (unless M = 0) by Nakayama’s lemma as M was assumed finitely
generated.

The property of being a regular sequence is inherently an inductive one. Note that x1, . . . , xn
is a regular sequence on M if and only if x1 is a zerodivisor on M and x2, . . . , xn is an M/x1M -
sequence.

Definition 1.11 If M is an R-module and I ⊂ R an ideal, then we write depthIM for the length
of the length-maximizing M -sequence contained in I. When R is local and I ⊂ R the maximal
ideal, then we just write depthM as before.

While we will in fact have a similar characterization of depth in terms of Ext, in this section
we define it via regular sequences.

Example 1.12 The basic example one is supposed to keep in mind is the polynomial ring R =
R0[x1, . . . , xn] and M = R. Then the sequence x1, . . . , xn is regular in R.

Example 1.13 Let (R,m) be a regular local ring, and let x1, . . . , xn be a regular system of pa-
rameters in R (i.e. a system of generators for m of minimal size). Then we have seen that the {xi}
form a regular sequence on R, in any order. This is because each quotient R/(x1, . . . , xi) is itself
regular, hence a domain.

As before, we have a simple characterization of depth zero:

Proposition 1.14 Let R be noetherian, M finitely generated. If M is an R-module with IM 6= M ,
then M has depth zero if and only if I is contained in an element of Ass(M).
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Proof. This is analogous to Proposition 1.3. Note than an ideal consists of zerodivisors on M if
and only if it is contained in an associated prime (??). N

The above proof used ??, a key fact which will be used repeatedly in the sequel. This is one
reason the theory of depth works best for finitely generated modules over noetherian rings.

The first observation to make is that regular sequences are not preserved by permutation. This
is one nice characteristic that we would like but is not satisfied.

Example 1.15 Let k be a field. Consider R = k[x, y]/((x − 1)y, yz). Then x, z is a regular
sequence on R. Indeed, x is a nonzerodivisor and R/(x) = k[z]. However, z, x is not a regular
sequence because z is a zerodivisor in R.

Nonetheless, regular sequences are preserved by permutation for local rings under suitable
noetherian hypotheses:

Proposition 1.16 Let R be a noetherian local ring and M a finite R-module. Then if x1, . . . , xn
is a M -sequence contained in the maximal ideal, so is any permutation xσ(1), . . . , xσ(n).

Proof. It is clearly enough to check this for a transposition. Namely, if we have an M -sequence

x1, . . . , xi, xi+1, . . . xn

we would like to check that so is
x1, . . . , xi+1, xi, . . . , xn.

It is here that we use the inductive nature. Namely, all we need to do is check that

xi+1, xi, . . . , xn

is regular on M/(x1, . . . , xi−1)M , since the first part of the sequence will automatically be regular.
Now xi+2, . . . , xn will automatically be regular on M/(x1, . . . , xi+1)M . So all we need to show is
that xi+1, xi is regular on M/(x1, . . . , xi−1)M .

The moral of the story is that we have reduced to the following lemma.

Lemma 1.17 Let R be a noetherian local ring. Let N be a finite R-module and a, b ∈ R an
N -sequence contained in the maximal ideal. Then so is b, a.

Proof. We can prove this as follows. First, a will be a nonzerodivisor on N/bN . Indeed, if not
then we can write

an = bn′

for some n, n′ ∈ N with n /∈ bN . But b is a nonzerodivisor on N/aN , which means that bn′ ∈ aN
implies n′ ∈ aN . Say n′ = an′′. So an = ban′′. As a is a nonzerodivisor on N , we see that n = bn′′.
Thus n ∈ bN , contradiction. This part has not used the fact that R is local.

Now we claim that b is a nonzerodivisor on N . Suppose n ∈ N and bn = 0. Since b is a
nonzerodivisor on N/aN , we have that n ∈ aN , say n = an′. Thus

b(an′) = a(bn′) = 0.

The fact that N
a→ N is injective implies that bn′ = 0. So we can do the same and get n′ = an′′,

n′′ = an(3), n(3) = an(4), and so on. It follows that n is a multiple of a, a2, a3, . . . , and hence in
mjN for each j where m ⊂ R is the maximal ideal. The Krull intersection theorem now implies
that n = 0.

Together, these arguments imply that b, a is an N -sequence, proving the lemma. N
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The proof of the result is now complete. N

One might wonder what goes wrong, and why permutations do not preserve regular sequences
in general; after all, oftentimes we can reduce results to their analogs for local rings. Yet the fact
that regularity is preserved by permutations for local rings does not extend to arbitrary rings. The
problem is that regular sequences do not localize. Well, they almost do, but the final condition
that (x1, . . . , xn)M 6= M doesn’t get preserved. We can state:

Proposition 1.18 Suppose x1, . . . , xn is an M -sequence. Let N be a flat R-module. Then if
(x1, . . . , xn)M ⊗R N 6= M ⊗N , then x1, . . . , xn is an M ⊗R N -sequence.

Proof. This is actually very easy now. The fact that xi : M/(x1, . . . , xi−1)M →M/(x1, . . . , xi−1)M
is injective is preserved when M is replaced by M ⊗R N because the functor −⊗R N is exact. N

In particular, it follows that if we have a good reason for supposing that (x1, . . . , xn)M ⊗N 6=
M ⊗ N , then we’ll already be done. For instance, if N is the localization of R at a prime ideal
containing the xi. Then we see that automatically x1, . . . , xn is an Mp = M ⊗R Rp-sequence.

Finally, we have an analog of the previous correspondence between depth and the vanishing of
Ext. Since the argument is analogous to Corollary 1.6, we omit it.

Theorem 1.19 Let R be a ring. Suppose M is an R-module and IM 6= M . All maximal M -
sequences in I have the same length. This length is the smallest value of r such that Extr(R/I,M) 6=
0.

Exercise 16.2 Suppose I is an ideal in R. Let M be an R-module such that IM 6= M . Show
that depthIM ≥ 2 if and only if the natural map

M ' Hom(R,M)→ Hom(I,M)

is an isomorphism.

1.3 Powers of regular sequences

Regular sequences don’t necessarily behave well with respect to permutation or localization without
additional hypotheses. However, in all cases they behave well with respect to taking powers. The
upshot of this is that the invariant called depth that we will soon introduce is invariant under
passing to the radical.

We shall deduce this from the following easy fact.

Lemma 1.20 Suppose we have an exact sequence of R-modules

0→M ′ →M →M ′′ → 0.

Suppose the sequence x1, . . . , xn ∈ R is M ′-regular and M ′′-regular. Then it is M -regular.

The converse is not true, of course.

Proof. Morally, this is the snake lemma. For instance, the fact that multiplication by x1 is injective
on M ′,M ′′ implies by the snake diagram that M

x1→ M is injective. However, we don’t a priori
know that a simple inductive argument on n will work to prove this. The reason is that it needs to
be seen that quotienting each term by (x1, . . . , xn−1) will preserve exactness. However, a general
fact will tell us that this is indeed the case. See below.

Anyway, this general fact now lets us induct on n. If we assume that x1, . . . , xn−1 is M -
regular, we need only prove that xn : M/(x1, . . . , xn−1)M → M/(x1, . . . , xn−1) is injective. (It is
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not surjective or the sequence would not be M ′′-regular.) But we have the exact sequence by the
next lemma,

0→M ′/(x1 . . . xn−1)M ′ →M/(x1 . . . xn−1)M →M ′′/(x1 . . . xn−1)M ′′ → 0

and the injectivity of xn on the two ends implies it at the middle by the snake lemma. N

So we need to prove:

Lemma 1.21 Suppose 0→M ′ →M →M ′′ → 0 is a short exact sequence. Let x1, . . . , xm be an
M ′′-sequence. Then the sequence

0→M ′/(x1 . . . xm)M ′ →M/(x1 . . . xm)M →M ′′/(x1 . . . xm)M ′′ → 0

is exact as well.

One argument here uses the fact that the Tor functors vanish when one has a regular sequence like
this. We can give a direct argument.

Proof. By induction, this needs only be proved when m = 1, since we have the recursive description
of regular sequences: in general, x2 . . . xm will be regular on M ′′/x1M

′′. In any case, we have
exactness except possibly at the left as the tensor product is right-exact. So let m′ ∈M ′; suppose
m′ maps to a multiple of x1 in M . We need to show that m′ is a multiple of x1 in M ′.

Suppose m′ maps to x1m. Then x1m maps to zero in M ′′, so by regularity m maps to zero in
M ′′. Thus m comes from something, m′, in M ′. In particular m′ − x1m′ maps to zero in M , so it
is zero in M ′. Thus indeed m′ is a multiple of x1 in M ′. N

With this lemma proved, we can state:

Proposition 1.22 Let M be an R-module and x1, . . . , xn an M -sequence. Then xa11 , . . . , x
an
n is

an M -sequence for any a1, . . . , an ∈ Z>0.

Proof. We will use:

Lemma 1.23 Suppose x1, . . . , xi, . . . , xn and x1, . . . , x
′
i, . . . , xn are M -sequences for some M .

Then so is x1, . . . , xix
′
i, . . . , xn.

Proof. As usual, we can mod out by (x1 . . . xi−1) and thus assume that i = 1. We have to show
that if x1, . . . , xn and x′1, . . . , xn are M -sequences, then so is x1x

′
1, . . . , xn.

We have an exact sequence

0→ x1M/x1x
′
1M →M/x1x

′
1M →M/x1M → 0.

Now x2, . . . , xn is regular on the last term by assumption, and also on the first term, which is
isomorphic to M/x′1M as x1 acts as a nonzerodivisor on M . So x2, . . . , xn is regular on both ends,
and thus in the middle. This means that

x1x
′
1, . . . , xn

is M -regular. That proves the lemma. N

So we now can prove the proposition. It is trivial if
∑
ai = n (i.e. if all are 1) it is clear. In

general, we can use complete induction on
∑
ai. Suppose we know the result for smaller values of∑

ai. We can assume that some aj > 1. Then the sequence

xa11 , . . . x
aj
j , . . . x

an
n

9
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is obtained from the sequences

xa11 , . . . , x
aj−1
j , . . . , xann

and

xa11 , . . . , x
1
j , . . . , x

an
n

by multiplying the middle terms. But the complete induction hypothesis implies that both those
two sequences are M -regular, so we can apply the lemma. N

In general, the product of two regular sequences is not a regular sequence. For instance, consider
a regular sequence x, y in some finitely generated module M over a noetherian local ring. Then
y, x is regular, but the product sequence xy, xy is never regular.

1.4 Depth

We make the following definition slightly differently than in the local case:

Definition 1.24 Suppose I is an ideal such that IM 6= M . Then we define the I-depth of M
to be the maximum length of a maximal M -sequence contained in I. When R is a local ring and
I the maximal ideal, then that number is simply called the depth of M .

The depth of a proper ideal I ⊂ R is its depth on R.

The definition is slightly awkward, but it turns out that all maximal M -sequences in I have
the same length, as we saw in Theorem 1.19. So we can use any of them to compute the depth.

The first thing we can prove using the above machinery is that depth is really a “geometric”
invariant, in that it depends only on the radical of I.

Proposition 1.25 Let R be a ring, I ⊂ R an ideal, and M an R-module with IM 6= M . Then
depthIM = depthRad(I)M .

Proof. The inequality depthIM ≤ depthRadIM is trivial, so we need only show that if x1, . . . , xn
is an M -sequence in Rad(I), then there is an M -sequence of length n in I. For this we just take a
high power

xN1 , . . . , x
N
n

where N is large enough such that everything is in I. We can do this as powers of M -sequences
are M -sequences (Proposition 1.22). N

This was a fairly easy consequence of the above result on powers of regular sequences. On the
other hand, we want to give another proof, because it will let us do more. Namely, we will show
that depth is really a function of prime ideals.

For convenience, we set the following condition: if IM = M , we define

depthI(M) =∞.

Proposition 1.26 Let R be a noetherian ring, I ⊂ R an ideal, and M a finitely generated R-
module. Then

depthIM = min
p∈V (I)

depthpM.

So the depth of I on M can be calculated from the depths at each prime containing I. In
this sense, it is clear that depthI(M) depends only on V (I) (and the depths on those primes), so
clearly it depends only on I up to radical.

10
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Proof. In this proof, we shall use the fact that the length of every maximal M -sequence is the
same (Theorem 1.19).

It is obvious that we have an inequality

depthI ≤ min
p∈V (I)

depthpM

as each of those primes contains I. We are to prove that there is a prime p containing I with

depthIM = depthpM.

But we shall actually prove the stronger statement that there is p ⊃ I with depthpMp = depthIM .
Note that localization at a prime can only increase depth because an M -sequence in p leads to an
M -sequence in Mp thanks to Nakayama’s lemma and the flatness of localization.

So let x1, . . . , xn ∈ I be a M -sequence of maximum length. Then I acts by zerodivisors
on M/(x1, . . . , xn)M or we could extend the sequence further. In particular, I is contained in
an associated prime of M/(x1, . . . , xn)M by elementary commutative algebra (basically, prime
avoidance).

Call this associated prime p ∈ V (I). Then p is an associated prime of Mp/(x1, . . . , xn)Mp, and
in particular acts only by zerodivisors on this module. Thus the Mp-sequence x1, . . . , xn can be
extended no further in p. In particular, since the depth can be computed as the length of any
maximal Mp-sequence,

depthpMp = depthIM. N

Perhaps we should note a corollary of the argument above:

Corollary 1.27 Hypotheses as above, we have depthIM ≤ depthpMp for any prime p ⊃ I. How-
ever, there is at least one p ⊃ I where equality holds.

We are thus reduced to analyzing depth in the local case.

Exercise 16.3 If (R,m) is a local noetherian ring and M a finitely generated R-module, then
show that depthM = depthR̂ M̂ , where M̂ is the m-adic completion. (Hint: use M̂ = M ⊗R R̂,

and the fact that R̂ is flat over R.)

1.5 Depth and dimension

Consider an R-module M , which is always assumed to be finitely generated. Let I ⊂ R be an ideal
with IM 6= M . We deduce from the previous subsections:

Proposition 1.28 Let M be a finitely generated module over the noetherian ring R. Then

depthIM ≤ dimM

for any ideal I ⊂ R with IM 6= M .

Proof. We have proved this when R is a local ring (Corollary 1.7). Now we just use Corollary 1.27
to reduce to the local case. N

This does not tell us much about how depthIM depends on I, though; it just says something
about how it depends on M . In particular, it is not very helpful when trying to estimate depthI =
depthIR. Nonetheless, there is a somewhat stronger result, which we will need in the future. We
start by stating the version in the local case.

11
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Proposition 1.29 Let (R,m) be a noetherian local ring. Let M be a finite R-module. Then the
depth of m on M is at most the dimension of R/p for p an associated prime of M :

depthM ≤ min
p∈Ass(M)

dimR/p.

This is sharper than the bound depthM ≤ dimM , because each dimR/p is at most dimM (by
definition).

Proof. To prove this, first assume that the depth is zero. In that case, the result is immediate.
We shall now argue inductively. Assume that that this is true for modules of smaller depth. We
will quotient out appropriately to shrink the support and change the associated primes. Namely,
choose a M -regular (nonzerodivisor on M) x ∈ R. Then depthM/xM = depthM − 1.

Let p0 be an associated prime of M . We claim that p0 is properly contained in an asso-
ciated prime of M/xM . We will prove this below. Thus p0 is properly contained in some
q0 ∈ Ass(M/xM).

Now we know that depthM/xM = depthM − 1. Also, by the inductive hypothesis, we know
that dimR/q0 ≥ depthM/xM = depthM − 1. But the dimension of R/q0 is strictly smaller than
that of R/p0, so at least dimR/p0 + 1 ≥ depthM . This proves the lemma, modulo the result:

Lemma 1.30 Let (R,m) be a noetherian local ring. Let M be a finitely generated R-module,
x ∈ m an M -regular element. Then each element of Ass(M) is properly contained in an element
of Ass(M/xM).

So if we quotient by a regular element, we can make the associated primes jump up.

Proof. Let p0 ∈ Ass(M); we want to show p0 is properly contained in something in Ass(M/xM).
Indeed, x /∈ p0, so p0 cannot itself be an associated prime. However, p0 annihilates a nonzero

element of M/xM . To see this, consider a maximal principal submodule of M annihilated by
p0. Let this submodule be Rz for some z ∈ M . Then if z is a multiple of x, say z = xz′, then
Rz′ would be a larger submodule of M annihilated by p0—here we are using the fact that x is a
nonzerodivisor on M . So the image of this z in M/xM is nonzero and is clearly annihilated by p0.
It follows p0 is contained in an element of Ass(M/xM), necessarily properly. N

Exercise 16.4 Another argument for Lemma 1.30 is given in §16 of [GD], vol. IV, by reducing
to the coprimary case. Here is a sketch.

The strategy is to use the existence of an exact sequence

0→M ′ →M →M ′′ → 0

with Ass(M ′′) = Ass(M)− {p0} and Ass(M ′) = {p0}. Quotienting by x preserves exactness, and
we get

0→M ′/xM ′ →M/xM →M ′′/xM ′′ → 0.

Now p0 is properly contained in every associated prime of M ′/xM ′ (as it acts nilpotently on M ′).
It follows that any element of Ass(M ′/xM ′) ⊂ Ass(M/xM) will do the job.

In essence, the point is that the result is trivial when Ass(M) = {p0}.

Exercise 16.5 Here is a simpler argument for Lemma 1.30, following [Ser65]. Let p0 ∈ Ass(M),
as before. Again as before, we want to show that HomR(R/p0,M/xM) 6= 0. But we have an exact
sequence

0→ HomR(R/p0,M)
x→ HomR(R/p0,M)→ HomR(R/p0,M/xM),

and since the first map is not surjective (by Nakayama), the last object is nonzero.

12



CRing Project, Chapter 16

Finally, we can globalize the results:

Proposition 1.31 Let R be a noetherian ring, I ⊂ R an ideal, and M a finitely generated module.
Then depthIM is at most the length of every chain of primes in SpecR that starts at an associated
prime of M and ends at a prime containing I.

Proof. Currently omitted. N

§2 Cohen-Macaulayness

2.1 Cohen-Macaualay modules over a local ring

For a local noetherian ring, we have discussed two invariants of a module: dimension and depth.
They generally do not coincide, and Cohen-Macaulay modules will be those where they do.

Let (R,m) be a noetherian local ring.

Definition 2.1 A finitely generated R-module M is Cohen-Macaulay if depthM = dimM . The
ring R is called Cohen-Macaulay if it is Cohen-Macaulay as a module over itself.

We already know that the inequality ≤ always holds. If there is a system of parameters for
M (i.e., a sequence x1, . . . , xr ∈ m such that M/(x1, . . . , xr)M is artinian) which is a regular
sequence on M , then M is Cohen-Macaulay: we see in fact that dimM = depthM = r. This is
the distinguishing trait of Cohen-Macaulay rings.

Let us now give a few examples:

Example 2.2 (Regular local rings are Cohen-Macaulay) If R is regular, then depthR =
dimR, so R is Cohen-Macaulay.

Indeed, we have seen that if x1, . . . , xn is a regular system of parameters for R (i.e. a minimal
set of generators for m), then n = dimR and the {xi} form a regular sequence. See the remark
after ??; the point is that R/(x1, . . . , xi−1) is regular for each i (by the aforementioned corollary),
and hence a domain, so xi acts on it by a nonzerodivisor.

The next example easily shows that a Cohen-Macaulay ring need not be regular, or even a
domain:

Example 2.3 (Local artinian rings are Cohen-Macaulay) Any local artinian ring, because
the dimension is zero for an artinian ring.

Example 2.4 (Cohen-Macaulayness and completion) A finitely generated moduleM is Cohen-
Macaulay if and only if its completion M̂ is; this follows from ?? 16.3.

Here is a slightly harder example.

Example 2.5 A normal local domain (R,m) of dimension 2 is Cohen-Macaulay. This is a special
case of Serre’s criterion for normality.

Here is an argument. If x ∈ m is nonzero, we want to show that depthR/(x) = 1. To do this,
we need to show that m /∈ Ass(R/(x)) for each such x, because then depthR/(x) ≥ 1 (which is all
we need). However, suppose the contrary; then there is y not divisible by x such that my ⊂ (x).
So y/x /∈ R, but m(y/x) ⊂ R.

This, however, implies m is principal. Indeed, we either have m(y/x) = R, in which case m
is generated by x/y, or m(y/x) ⊂ m. The latter would imply that y/x is integral over R (as
multiplication by it stabilizes a finitely generated R-module), and by normality y/x ∈ R. We have
seen much of this argument before.

13
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Example 2.6 Consider C[x, y]/(xy), the coordinate ring of the union of two axes intersecting at
the origin. This is not regular, as its localization at the origin is not a domain. We will later show
that this is a Cohen-Macaulay ring, though.

Example 2.7 R = C[x, y, z]/(xy, xz) is not Cohen-Macaulay (at the origin). The associated
variety looks geometrically like the union of the plane x = 0 and the line y = z = 0 in affine 3-
space. Here there are two components of different dimensions intersecting. Let’s choose a regular
sequence (that is, regular after localization at the origin). The dimension at the origin is clearly
two because of the plane. First, we need a nonzerodivisor in this ring, which vanishes at the origin,
say x+ y + z. (Check this.) When we quotient by this, we get

S = C[x, y, z]/(xy, xz, x+ y + z) = C[y, z]/((y + z)y, (y + z)z).

The claim is that S localized at the ideal corresponding to (0, 0) has depth zero. We have
y + z 6= 0, which is killed by both y, z, and hence by the maximal ideal at zero. In particular the
maximal ideal at zero is an associated prime, which implies the claim about the depth.

As it happens, a Cohen-Macaulay variety is always equidimensional. The rough reason is that
each irreducible piece puts an upper bound on the depth given by the dimension of the piece. If
any piece is too small, the total depth will be too small.

Here is the deeper statement:

Proposition 2.8 Let (R,m) be a noetherian local ring, M a finitely generated, Cohen-Macaulay
R-module. Then:

1. For each p ∈ Ass(M), we have dimM = dimR/p.

2. Every associated prime of M is minimal (i.e. minimal in suppM).

3. suppM is equidimensional.

In general, there may be nontrivial inclusion relations among the associated primes of a general
module. However, this cannot happen for a Cohen-Macaulay module.

Proof. The first statement implies all the others. (Recall that equidimensional means that all the
irreducible components of suppM , i.e. the SpecR/p, have the same dimension.) But this in turn
follows from the bound of Proposition 1.29. N

Next, we would like to obtain a criterion for when a quotient of a Cohen-Macaulay module is
still Cohen-Macaulay. The answer will be similar to ?? for regular local rings.

Proposition 2.9 Let M be a Cohen-Macaulay module over the local noetherian ring (R,m). If
x1, . . . , xn ∈ m is a M -regular sequence, then M/(x1, . . . , xn)M is Cohen-Macaulay of dimension
(and depth) dimM − n.

Proof. Indeed, we reduce to the case n = 1 by induction. But then, because x1 is a nonzerodivisor
on M , we have dimM/x1M = dimM − 1 and depthM/x1M = depthM − 1. Thus

dimM/x1M = depthM/x1M. N

So, if we are given a Cohen-Macaulay module M and want one of a smaller dimension, we just
have to find x ∈ m not contained in any of the minimal primes of suppM (these are the only
associated primes). Then, M/xM will do the job.

14
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2.2 The non-local case

More generally, we would like to make the definition:

Definition 2.10 A general noetherian ring R is Cohen-Macaulay if Rp is Cohen-Macaulay for
all p ∈ SpecR.

We should check that these definitions coincide for a local noetherian ring. This, however,
is not entirely obvious; we have to show that localization preserves Cohen-Macaulayness. In
this subsection, we shall do that, and we shall furthermore show that Cohen-Macaulay rings are
catenary, or more generally that Cohen-Macaulay modules are catenary. (So far we have seen that
they are equidimensional, in the local case.)

We shall deduce this from the following result, which states that for a Cohen-Macaulay module,
we can choose partial systems of parameters in any given prime ideal in the support.

Proposition 2.11 Let M be a Cohen-Macaulay module over the local noetherian ring (R,m), and
let p ∈ suppM . Let x1, . . . , xr ∈ p be a maximal M -sequence contained in p. Then:

1. p is an associated and minimal prime of M/(x1, . . . , xr)M .

2. dimR/p = dimM − r

Proof. We know (Proposition 2.9) that M/(x1, . . . , xr)M is a Cohen-Macaulay module too. Clearly
p is in its support, since all the xi ∈ p. The claim is that p is an associated prime—or minimal
prime, it is the same thing—of M/(x1, . . . , xr)M . If not, there is x ∈ p that is a nonzerodivisor on
this quotient, which means that {x1, . . . , xr} was not maximal as claimed.

Now we need to verify the assertion on the dimension. Clearly dimM/(x1, . . . , xr)M = dimM−
r, and moreover dimR/p = dimM/(x1, . . . , xr) by Proposition 2.8. Combining these gives the
second assertion. N

Corollary 2.12 Hypotheses as above, dimMp = r = dimM −dimR/p. Moreover, Mp is a Cohen-
Macaulay module over Rp.

This result shows that Definition 2.10 is a reasonable definition.

Proof. Indeed, if we consider the conclusions of ??, we find that x1, . . . , xr becomes a system of
parameters for Mp: we have that Mp/(x1, . . . , xr)Mp is an artinian Rp-module, while the sequence
is also regular. The first claim follows, as does the second: any module with a system of parameters
that is a regular sequence is Cohen-Macaulay. N

As a result, we can get the promised result that a Cohen-Macaulay ring is catenary.

Proposition 2.13 If M is Cohen-Macaulay over the local noetherian ring R, then suppM is a
catenary space.

In other words, if p ⊂ q are elements of suppM , then every maximal chain of prime ideals from
p to q has the same length.

Proof. We will show that dimR/p = dimR/q + dimRq/pRq, a claim that suffices to establish
catenariness. We will do this by using the dimension formulas computed earlier.

Namely, we know that M is catenary over R, so by Corollary 2.12

dimRq
Mq = dimM − dimR/q, dimRp

Mp = dimM − dimR/p.

Moreover, Mq is Cohen-Macaulay over Rq. As a result, we have (in view of the previous equation)

dimRp
Mp = dimRq

Mq − dimRq/pRq = dimM − dimR/q− dimRq/pRq.
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Combining, we find

dimM − dimR/p = dimM − dimR/q− dimRq/pRq,

which is what we wanted. N

It thus follows that any Cohen-Macaulay ring, and thus any quotient of a Cohen-Macaualay
ring, is catenary. In particular, it follows any non-catenary local noetherian ring cannot be ex-
pressed as a quotient of a Cohen-Macaulay (e.g. regular) local ring.

It also follows immediately that if R is any regular (not necessarily local) ring, then R is
catenary, and the same goes for any quotient of R. In particular, since a polynomial ring over a
field is regular, we find:

Proposition 2.14 Any affine ring is catenary.

2.3 Reformulation of Serre’s criterion

Much earlier, we proved criteria for a noetherian ring to be reduced and (more interestingly)
normal. We can state them more cleanly using the theory of depth developed.

Definition 2.15 Let R be a noetherian ring, and let k ∈ Z≥0.

1. We say that R satisfies condition Rk if, for every prime ideal p ∈ SpecR with dimRp ≤ k,
the local ring Rp is regular.

2. R satisfies condition Sk if depthRp ≥ inf(k,dimRp) for all p ∈ SpecR.

A Cohen-Macaulay ring satisfies all the conditions Sk, and conversely. The condition Rk
means geometrically that the associated variety is regular (i.e., smooth, at least if one works over
an algebraically closed field) outside a subvariety of codimension ≥ k.

Recall that, according to ??, a noetherian ring is reduced iff:

1. For any minimal prime p ⊂ R, Rp is a field.

2. Every associated prime of R is minimal.

Condition 1 can be restated as follows. The ideal p ⊂ R is minimal if and only if it is zero-
dimensional, and Rp is regular if and only if it is a field. So the first condition is that for every
height zero prime, Rp is regular. In other words, it is the condition R0.

For the second condition, p ∈ Ass(R) iff p ∈ Ass(Rp), which is equivalent to depthRp = 0.
So the second condition states that for primes p ∈ SpecR of height at least 1, p /∈ Ass(Rp), or
depth(Rp) ≥ 1. This is the condition S1.

We find:

Proposition 2.16 A noetherian ring is reduced if and only if it satisfies R0 and S1.

In particular, for a Cohen-Macaulay ring, checking if it is reduced is easy; one just has to check
R0 (if the localizations at minimal primes are reduced).

Serre’s criterion for normality is in the same spirit, but harder. Recall that a noetherian ring
is normal if it is a finite direct product of integrally closed domains.

The earlier form of Serre’s criterion (see ??) was:

Proposition 2.17 Let R be a local ring. Then R is normal iff

1. R is reduced.
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2. For every height one prime p ∈ SpecR, Rp is a DVR (i.e. regular).

3. For every nonzerodivisor x ∈ R, every associated prime of R/(x) is minimal.

In view of the criterion for reducedness, these conditions are equivalent to:

1. For every prime p of height ≤ 1, Rp is regular.

2. For every prime p of height ≥ 1, depthRp ≥ 1 (necessary for reducedness)

3. depthRp ≥ 2 for p containing but not minimal over any principal ideal (x) for x a nonze-
rodivisor. This is the last condition of the proposition; to say depthRp ≥ 2 is to say that
depthRp/(x)Rp ≥ 1, or p /∈ Ass(Rp/(x)Rp).

Combining all this, we find:

Theorem 2.18 (Serre’s criterion) A noetherian ring is normal if and only if it satisfies the
conditions R1 and S2.

Again, for a Cohen-Macaulay ring, the last condition is automatic, as the depth is the codi-
mension.

§3 Projective dimension and free resolutions

We shall introduce the notion of projective dimension of a module; this will be the smallest pro-
jective resolution it admits (if there is none such, the dimension is ∞). We can think of it as
measuring how far a module is from being projective. Over a noetherian local ring, we will show
that the projective dimension can be calculated very simply using the Tor functor (which is an
elaboration of the story that a projective module over a local ring is free).

Ultimately we want to show that a noetherian local ring is regular if and only if every finitely
generated module admits a finite free resolution. Although we shall not get to that result until the
next section, we will at least relate projective dimension to a more familiar invariant of a module:
depth.

3.1 Introduction

Let R be a commutative ring, M an R-module.

Definition 3.1 The projective dimension of M is the largest integer n such that there exists
a module N with

Extn(M,N) 6= 0.

We allow ∞, if arbitrarily large such n exist. We write pd(M) for the projective dimension. For
convenience, we set pd(0) = −∞.

So, if m > n = pd(M), then we have Extm(M,N) = 0 for all modules N , and n is the smallest
integer with this property. As an example, note that pd(M) = 0 if and only if M is projective
and nonzero. Indeed, we have seen that the Ext groups Exti(M,N), i > 0 vanish always for M
projective, and conversely.

To compute pd(M) in general, one can proceed as follows. Take any M . Choose a surjection
P �M with P projective; call the kernel K and draw a short exact sequence

0→ K → P →M → 0.

17



CRing Project, Chapter 16

For any R-module N , we have a long exact sequence

Exti−1(P,N)→ Exti−1(K,N)→ Exti(M,N)→ Exti(P,N).

If i > 0, the right end vanishes; if i > 1, the left end vanishes. So if i > 1, this map Exti−1(K,N)→
Exti(M,N) is an isomorphism.

Suppose that pd(K) = d ≥ 0. We find that Exti−1(K,N) = 0 for i− 1 > d. This implies that
Exti(M,N) = 0 for such i > d + 1. In particular, pd(M) ≤ d + 1. This argument is completely
reversible if d > 0. Then we see from these isomorphisms that

pd(M) = pd(K) + 1 , unless pd(M) = 0 (16.3)

If M is projective, the sequence 0→ K → P →M → 0 splits, and pd(K) = 0 too.
The upshot is that we can compute projective dimension by choosing a projective resolution.

Proposition 3.2 Let M be an R-module. Then pd(M) ≤ n iff there exists a finite projective
resolution of M having n+ 1 terms,

0→ Pn → · · · → P1 → P0 →M → 0.

Proof. Induction on n. When n = 0, M is projective, and we can use the resolution 0 → M →
M → 0.

Suppose pd(M) ≤ n, where n > 0. We can get a short exact sequence

0→ K → P0 →M → 0

with P0 projective, so pd(K) ≤ n− 1 by (16.3). The inductive hypothesis implies that there is a
projective resolution of K of length ≤ n− 1. We can splice this in with the short exact sequence
to get a projective resolution of M of length n.

The argument is reversible. Choose any projective resolution

0→ Pn → · · · → P1 → P0 →M → 0

and split into short exact sequences, and then one argue inductively to show that pd(M) ≤ n. N

Let pd(M) = n. Choose any projective resolution · · · → P2 → P1 → P0 → M . Choose
Ki = ker(Pi → Pi−1) for each i. Then there is a short exact sequence 0 → K0 → P0 → M → 0.
Moreover, there are exact sequences

0→ Ki → Pi → Ki−1 → 0

for each i. From these, and from (16.3), we see that the projective dimensions of the Ki drop by
one as i increments. So Kn−1 is projective if pd(M) = n as pd(Kn−1) = 0. In particular, we can
get a projective resolution

0→ Kn−1 → Pn−1 → · · · → P0 →M → 0

which is of length n. In particular, if one has a (possibly infinite) projective resolution M , one
can stop after going out n terms, because the kernels will become projective. In other words, the
projective resolution can be made to break off at the nth term. This applies to any projective
resolution. Conversely, since any module has a (possibly infinite) projective resolution, we find:

Proposition 3.3 We have pd(M) ≤ n if any projective resolution

· · · → P1 → P0 →M → 0

breaks off at the nth stage: that is, the kernel of Pn−1 → Pn−2 is projective.
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If pd(M) ≤ n, then by definition we have Extn+1(M,N) = 0 for any module N . By itself,
this does not say anything about the Tor functors. However, the criterion for projective dimension
enables us to show:

Proposition 3.4 If pd(M) ≤ n, then Torm(M,N) = 0 for m > n.

One can define an analog of projective dimension with the Tor functors, called flat dimension, and
it follows that the flat dimension is at most the projective dimension.

In fact, we have more generally:

Proposition 3.5 Let F be a right-exact functor on the category of R-modules, and let {LiF} be
its left derived functors. If pd(M) ≤ n, then LiF (M) = 0 for i > n.

Clearly this implies the claim about Tor functors.

Proof. Recall how LiF (M) can be computed. Namely, one chooses a projective resolution P• →M
(any will do), and compute the homology of the complex F (P•). However, we can choose P• →M
such that Pi = 0 for i > n by Proposition 3.2. Thus F (P•) is concentrated in degrees between 0
and n, and the result becomes clear when one takes the homology. N

In general, flat modules are not projective (e.g. Q is flat, but not projective, over Z), and while
one can use projective dimension to bound “flat dimension” (the analog for Tor-vanishing), one
cannot use the flat dimension to bound the projective dimension. For a local ring, we will see that
it is possible in the next subsection.

3.2 Tor and projective dimension

Over a noetherian local ring, there is a much simpler way to test whether a finitely generated
module is projective. This is a special case of the very general flatness criterion ??, but we can
give a simple direct proof. So we prefer to keep things self-contained.

Theorem 3.6 Let M be a finitely generated module over the noetherian local ring (R,m), with
residue field k = R/m. Then, if Tor1(M,k) = 0, M is free.

In particular, projective—or even flat—modules which are of finite type over R are automatically
free. This is a strengthening of the earlier theorem (??) that a finitely generated projective module
over a local ring is free.

Proof. Indeed, we can find a free module F and a surjection F →M such that F ⊗R k →M ⊗R k
is an isomorphism. To do this, choose elements of M that form a basis of M ⊗R k, and then define
a map F →M via these elements; it is a surjection by Nakayama’s lemma.

Let K be the kernel of F �M , so there is an exact sequence

0→ K → F →M → 0.

We want to show that K = 0, which will imply that M = 0. By Nakayama’s lemma, it suffices to
show that K ⊗R k = 0. But we have an exact sequence

Tor1(M,k)→ K ⊗R k → F ⊗R k →M ⊗R k → 0.

The last map is an isomorphism, and Tor1(M,k) = 0, which implies that K ⊗R k = 0. The result
is now proved. N

As a result, we can compute the projective dimension of a module in terms of Tor.
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Corollary 3.7 Let M be a finitely generated module over the noetherian local ring R with residue
field k. Then pd(M) is the largest integer n such that Torn(M,k) 6= 0. It is also the smallest
integer n such that Torn+1(M,k) = 0.

There is a certain symmetry: if Ext replaces Tor, then one has the definition of depth. We will
show later that there is indeed a useful connection between projective dimension and depth.

Proof. We will show that if Torn+1(M,k) = 0, then pd(M) ≤ n. This implies the claim, in view
of Proposition 3.4. Choose a (possibly infinite) projective resolution

· · · → P1 → P0 →M → 0.

Since R is noetherian, we can assume that each Pi is finitely generated.
Write Ki = ker(Pi → Pi−1), as before; these are finitely generated R-modules. We want to

show that Kn−1 is projective, which will establish the claim, as then the projective resolution will
“break off.” But we have an exact sequence

0→ K0 → P0 →M → 0,

which shows that Torn(K0, k) = Torn+1(M,k) = 0. Using the exact sequencese 0 → Ki → Pi →
Ki−1 → 0, we inductively work downwards to get that Tor1(Kn−1, k) = 0. So Kn−1 is projective
by Theorem 3.6. N

In particular, we find that if pd(k) ≤ n, then pd(M) ≤ n for all M . This is because if pd(k) ≤ n,
then Torn+1(M,k) = 0 by using the relevant resolution of k (see Proposition 3.4, but for k).

Corollary 3.8 Suppose there exists n such that Torn+1(k, k) = 0. Then every finitely generated
R-module has a finite free resolution of length at most n.

We have thus seen that k is in some sense the “worst” R-module, in that it is as far from
being projective, or that it has the largest projective dimension. We can describe this worst-case
behavior with the next concept:

Definition 3.9 Given a ring R, the global dimension is the sup of the projective dimensions of
all finitely generated R-modules.

So, to recapitulate: the global dimension of a noetherian local ring R is the projective dimension
of its residue field k, or even the flat dimension of the residue field.

3.3 Minimal projective resolutions

Usually projective resolutions are non-unique; they are only unique up to chain homotopy. We will
introduce a certain restriction that enforces uniqueness. These “minimal” projective resolutions
will make it extremely easy to compute the groups Tor•(·, k).

Let (R,m) be a local noetherian ring with residue field k, M a finitely generated R-module.
All tensor products will be over R.

Definition 3.10 A projective resolution P• → M of finitely generated modules is minimal if
for each i, the induced map Pi ⊗ k → Pi−1 ⊗ k is zero, and the map P0 ⊗ k → M/mM is an
isomorphism.

In other words, the complex P• ⊗ k is isomorphic to M ⊗ k. This is equivalent to saying that
for each i, the map Pi → ker(Pi−1 → Pi−2) is an isomorphism modulo m.

Proposition 3.11 Every M (over a local noetherian ring) has a minimal projective resolution.
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Proof. Start with a module M . Then M/mM is a finite-dimensional vector space over k, of
dimension say d0. We can choose a basis for that vector space, which we can lift to M . That
determines a map of free modules

Rd0 →M,

which is a surjection by Nakayama’s lemma. It is by construction an isomorphism modulo m. Then
define K = ker(Rd0 → M); this is finitely generated by noetherianness, and we can do the same
thing for K, and repeat to get a map Rd1 � K which is an isomorphism modulo m. Then

Rd1 → Rd0 →M → 0

is exact, and minimal; we can continue this by the same procedure. N

Proposition 3.12 Minimal projective resolutions are unique up to isomorphism.

Proof. Suppose we have one minimal projective resolution:

· · · → P2 → P1 → P0 →M → 0

and another:
· · · → Q2 → Q1 → Q0 →M → 0.

There is always a map of projective resolutions P∗ → Q∗ by general homological algebra. There
is, equivalently, a commutative diagram

. . .

��

// P2

��

// P1

��

// P0

��

// M

id

��

// 0

. . . // Q2
// Q1

// Q0
// M // 0

If both resolutions are minimal, the claim is that this map is an isomorphism. That is, φi : Pi → Qi
is an isomorphism, for each i.

To see this, note that Pi, Qi are finite free R-modules.1 So φi is an isomorphism iff φi is an
isomorphism modulo the maximal ideal, i.e. if

Pi/mPi → Qi/mQi

is an isomorphism. Indeed, if φi is an isomorphism, then its tensor product with R/m obviously is
an isomorphism. Conversely suppose that the reductions mod m make an isomorphism. Then the
ranks of Pi, Qi are the same, and φi is an n-by-n matrix whose determinant is not in the maximal
ideal, so is invertible. This means that φi is invertible by the usual formula for the inverse matrix.

So we are to check that Pi/mPi → Qi/mQi is an isomorphism for each i. This is equivalent to
the assertion that

(Qi/mQi)
∨ → (Pi/mPi)

∨

is an isomorphism. But this is the map

HomR(Qi, R/m)→ HomR(Pi, R/m).

If we look at the chain complexes Hom(P∗, R/m),Hom(Q∗, R/m), the cohomologies compute the
Ext groups of (M,R/m). But all the maps in this chain complex are zero because the resolution is
minimal, and we have that the image of Pi is contained in mPi−1 (ditto for Qi). So the cohomologies
are just the individual terms, and the maps HomR(Qi, R/m)→ HomR(Pi, R/m) correspond to the
identities on Exti(M,R/m). So these are isomorphisms.2 N

1We are using the fact that a finite projective module over a local ring is free.
2We are sweeping under the rug the statement that Ext can be computed via any projective resolution. More

precisely, if you take any two projective resolutions, and take the induced maps between the projective resolutions,
hom them into R/m, then the maps on cohomology are isomorphisms.
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Corollary 3.13 If · · · → P2 → P1 → P0 → M is a minimal projective resolution of M , then the
ranks rank(Pi) are well-defined (i.e. don’t depend on the choice of the minimal resolution).

Proof. Immediate from the proposition. In fact, the ranks are the dimensions (as R/m-vector
spaces) of Exti(M,R/m). N

3.4 The Auslander-Buchsbaum formula

Theorem 3.14 (Auslander-Buschsbaum formula) Let R be a local noetherian ring, M a
finitely generated R-module of finite projective dimension. If pd(R) <∞, then pd(M) = depth(R)−
depth(M).

Proof. Induction on pd(M). When pd(M) = 0, then M is projective, so isomorphic to Rn for
some n. Thus depth(M) = depth(R).

Assume pd(M) > 0. Choose a surjection P �M and write an exact sequence

0→ K → P →M → 0,

where pd(K) = pd(M)− 1. We also know by induction that

pd(K) = depthR− depth(K).

What we want to prove is that

depthR− depthM = pd(M) = pd(K) + 1.

This is equivalent to wanting know that depth(K) = depth(M) + 1. In general, this may not be
true, though, but we will prove it under minimality hypotheses.

Without loss of generality, we can choose that P is minimal, i.e. becomes an isomorphism
modulo the maximal ideal m. This means that the rank of P is dimM/mM . So K = 0 iff P →M
is an isomorphism; we’ve assumed that M is not free, so K 6= 0.

Recall that the depth of M is the smallest value i such thatExti(R/m,M) 6= 0. So we should
look at the long exact sequence from the above short exact sequence:

Exti(R/m, P )→ Exti(R/m,M)→ Exti+1(R/m,K)→ Exti+1(R/m, P ).

Now P is just a direct sum of copies of R, so Exti(R/m, P ) and Exti+1(R/m, P ) are zero if
i+ 1 < depthR. In particular, if i+ 1 < depthR, then the map Exti(R/m,M)→ Exti+1(R/m,K)
is an isomorphism. So we find that depthM + 1 = depthK in this case.

We have seen that if depthK < depthR, then by taking i over all integers < depthK, we find
that

Exti(R/m,M) =

{
0 if i+ 1 < depthK

Exti+1(R/m,K) if i+ 1 = depthK
.

In particular, we are done unless depthK ≥ depthR. By the inductive hypothesis, this is equiv-
alent to saying that K is projective.

So let us consider the case where K is projective, i.e. pd(M) = 1. We want to show that
depthM = d − 1 if d = depthR. We need a slightly different argument in this case. Let d =
depth(R) = depth(P ) = depth(K) since P,K are free. We have a short exact sequence

0→ K → P →M → 0

and a long exact sequence of Ext groups:

0→ Extd−1(R/m,M)→ Extd(R/m,K)→ Extd(R/m, P ).
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We know that Extd(R/m,K) is nonzero as K is free and R has depth d. However, Exti(R/m,K) =
Exti(R/m, P ) = 0 for i < d. This implies that Exti−1(R/m,M) = 0 for i < d.

We will show:

The map Extd(R/m,K)→ Extd(R/m, P ) is zero.

This will imply that the depth of M is precisely d− 1. This is because the matrix K → P is given
by multiplication by a matrix with coefficients in m as K/mK → P/mP is zero. In particular, the
map on the Ext groups is zero, because it is annihilated by m. N

Example 3.15 Consider the case of a regular local ring R of dimension n. Then depth(R) = n,
so we have

pd(M) + depth(M) = n,

for every finitely generated R-module M . In particular, depth(M) = n if and only if M is free.

Example 3.16 (The Cohen-Macaulay locus is open) Let R be a regular noetherian ring (i.e.
one all of whose localizations are regular). Let M be a finitely generated R-module. We consider
the locus Z ⊂ SpecR consisting of prime ideals p ∈ SpecR such that Mp is a Cohen-Macaulay
R-module. We want to show that this is an open subset.

Namely, over a local ring (A,m), define the codepth of a finitely generated A-module N as
codepthN = dimN − depthN ≥ 0; we have that codepthN = 0 if and only if N is Cohen-
Macaulay. We are going to show that the function p 7→ codepthRp

Mp is upper semicontinuous on
SpecR. To do this, we use the Auslander-Buchsbaum formula depthRp

Mp = dimRp − pdRp
Mp

(see Example 3.15). We will show below that p 7→ pdRp
Mp is upper semi-continuous on SpecR.

Thus, we have

codepthRp
Mp = −

(
dimRp − dimRp

Mp

)
+ pdRp

Mp,

where the second term is upper semi-continuous. The claim is that the first term is upper semi-
continuous. If we consider suppM ⊂ SpecR, then the bracketed difference measures the local
codimension of suppM ⊂ SpecR. Namely, dimRp−dim suppMp is the local codimension because
Rp is regular, and consequently SpecRp is biequidimensional (TO BE ADDED: argument). The
local codimension of any set is always lower semi-continuous (TO BE ADDED: reference in the
section on topological dim). As a result, the codepth is upper semi-continuous.

We just need to prove the assertion that p 7→ pdRp
Mp is upper semi-continuous. That is, we

need to show that if Mp admits a projective resolution of length n by finitely generated modules,
then there is a projective resolution of length n of Mq for q in some Zariski neighborhood. But a
projective resolution of Mp “descends” to a projective (even free) resolution of Mg for some g /∈ p,
which gives the result by localization.

If R is the quotient of a regular ring, the same result holds (because the Cohen-Macaulay locus
behaves properly with respect to quotients). In particular, this result holds for R an affine ring.

Example 3.17 Let R = C[x1, . . . , xn]/p for p prime. Choose an injection R′ → R where R′ =
C[y1, . . . , ym] and R is a finitely generated R′-module. This exists by the Noether normalization
lemma.

We wanted to show:

Theorem 3.18 R is Cohen-Macaulay3 iff R is a projective R′-module.

We shall use the fact that projectiveness can be tested locally at every maximal ideal.

3That is, its localizations at any prime—or, though we haven’t proved yet, at any maximal ideal—are.
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Proof. Choose a maximal ideal m ⊂ R′. We will show that Rm is a free R′m-module via the injection
of rings R′m ↪→ Rm (where Rm is defined as R localized at the multiplicative subset of elements of
R′ −m) at each m iff Cohen-Macaulayness holds.

Now R′m is a regular local ring, so its depth is m. By the Auslander-Buchsbaum formula, Rm

is projective as an R′m-module iff
depthR′

m
Rm = m.

Now R is a projective module iff the above condition holds for all maximal ideals m ⊂ R′. The
claim is that this is equivalent to saying that depthRn = m = dimRn for every maximal ideal
n ⊂ R (depth over R!).

These two statements are almost the same, but one is about the depth of R as an R-module,
and another as an R′-module.

Issue: There may be several maximal ideals of R lying over the maximal ideal m ⊂ R′.

The problem is that Rm is not generally local, and not generally equal to Rn if n lies over
m. Fortunately, depth makes sense even over semi-local rings (rings with finitely many maximal
ideals).

Let us just assume that this does not occur, though. Let us assume that Rm is a local ring for
every maximal ideal m ⊂ R. Then we are reduced to showing that if S = Rm, then the depth of S
as an R′m-module is the same as the depth as an Rm-module. That is, the depth doesn’t depend
too much on the ring, since R′m, Rm are “pretty close.” If you believe this, then you believe the
theorem, by the first paragraph.

Let’s prove this claim in a more general form:

Proposition 3.19 Let φ : S′ → S be a local4 map of local noetherian rings such that S is a finitely
generated S′-module. Then, for any finitely generated S-module M ,

depthSM = depthS′ M.

With this, the theorem will be proved.

Remark This result generalizes to the semi-local case, which is how one side-steps the issue above.

Proof. By induction on depthS′ M . There are two cases.
Let m′,m be the maximal ideals of S′, S. If depthS′(M) > 0, then there is an element a in m′

such that

M
φ(a)→ M

is injective. Now φ(a) ∈ m. So φ(a) is a nonzerodivisor, and we have an exact sequence

0→M
φ(a)→ M →M/φ(a)M → 0.

Thus we find
depthSM > 0.

Moreover, we find that depthSM = depthS(M/φ(a)M)+1 and depthS′ M = depthS′(M/φ(a)M))+
1. The inductive hypothesis now tells us that

depthSM = depthS′ M. N

The hard case is where depthS′ M = 0. We need to show that this is equivalent to depthSM =
0. So we know at first that m′ ∈ Ass(M). That is, there is an element x ∈ M such that
AnnS′(x) = m′. Now AnnS(x) ( S and contains m′S.

4I.e. φ sends non-units into non-units.
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Sx ⊂ M is a submodule, surjected onto by S by the map a → ax. This map actually, as we
have seen, factors through S/m′S. Here S is a finite S′-module, so S/m′S is a finite S′/m′-module.
In particular, it is a finite-dimensional vector space over a field. It is thus a local artinian ring. But
Sx is a module over this local artinian ring. It must have an associated prime, which is a maximal
ideal in S/m′S. The only maximal ideal can be m/m′S. It follows that m ∈ Ass(Sx) ⊂ Ass(M).

In particular, depthSM = 0 too, and we are done. N

§4 Serre’s criterion and its consequences

We would like to prove Serre’s criterion for regularity.

Theorem 4.1 Let (R,m) be a local noetherian ring. Then R is regular iff R/m has finite projective
dimension. In this case, pd(R/m) = dimR.

TO BE ADDED: proof

4.1 First consequences

Proposition 4.2 Let (R,m) → (S, n) be a flat, local homomorphism of noetherian local rings. If
S is regular, so is R.

Proof. Let n = dimS. Let M be a finitely generated R-module, and consider a resolution

Pn → Pn−1 → · · · → P0 →M → 0,

where all the {Pi} are finite free R-modules. If we can show that the kernel of Pn → Pn−1 is
projective, then it will follow that M has finite projective dimension. Since M was arbitrary, it
will follow that R is regular too, by Serre’s criterion.

Let K be the kernel, so there is an exact sequence

0→ K → Pn → Pn−1 → · · · → P0 →M → 0,

which we can tensor with S, by flatness:

0→ K ⊗R S → Pn ⊗R S → Pn−1 ⊗R S → · · · → P0 ⊗R S →M ⊗R S → 0.

Because any finitely generated S-module has projective dimension ≤ n, it follows that K ⊗R S is
projective, and in particular flat.

But now S is faithfully flat over R (see ??), and it follows that K is R-flat. Thus K is projective
over R, proving the claim. N

Theorem 4.3 The localization of a regular local ring at a prime ideal is regular.

Geometrically, this means that to test whether a nice scheme (e.g. a variety) is regular (i.e., all
the local rings are regular), one only has to test the closed points.

Proof. Let (R,m) be a regular local ring. Let p ∈ SpecR be a prime ideal; we wish to show that
Rp is regular. To do this, let M be a finitely generated Rp-module. Then we can find a finitely
generated R-submodule N ⊂ M such that the natural map Np → M is an isomorphism. If we
take a finite free resolution of N by R-modules and localize at p, we get a finite free resolution of
M by Rp-modules.

It now follows that M has finite projective dimension as an Rp-module. By Serre’s criterion,
this implies that Rp is regular. N
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4.2 Regular local rings are factorial

We now aim to prove that a regular local ring is factorial.
First, we need:

Definition 4.4 Let R be a noetherian ring and M a f.gen. R-module. Then M is stably free if
M ⊕Rk is free for some k.

Stably free obviously implies “projective.” Free implies stably free, clearly—take k = 0. Over
a local ring, a finitely generated projective module is free, so all three notions are equivalent. Over
a general ring, these notions are generally different.

We will need the following lemma:

Lemma 4.5 Let M be an R-module with a finite free resolution. If M is projective, it is stably
free.

Proof. There is an exact sequence

0→ Fk → Fk−1 → · · · → F1 → F0 →M → 0

with the Fi free and finitely generated, by assumption.
We induct on the length k of the resolution. We know that if N is the kernel of F0 →M , then

N is projective (as the sequence 0→ N → F0 →M → 0 splits) so there is a resolution

0→ Fk → · · · → F1 → N → 0.

By the inductive hypothesis, N is stably free. So there is a free module Rd such that N ⊕ Rd is
free.

We know that M ⊕N = F0 is free. Thus M ⊕N ⊕ Rd = F0 ⊕ Rd is free and N ⊕ Rd is free.
Thus M is stably free. N

Remark Stably freeness does not generally imply freeness, though it does over a local noetherian
ring.

Nonetheless,

Proposition 4.6 Stably free does imply free for invertible modules.

Proof. Let I be stably free and invertible. We must show that I ' R. Without loss of generality,
we can assume that SpecR is connected, i.e. R has no nontrivial idempotents. We will assume
this in order to talk about the rank of a projective module.

We know that I ⊕ Rn ' Rm for some m. We know that m = n + 1 by localization. So
I ⊕ Rn ' Rn+1 for some n. We will now need to construct the exterior powers, for which we
digress:

Definition 4.7 Let R be a commutative ring and M an R-module. Then ∧M , the exterior
algebra on M , is the free (noncommutative) graded R-algebra generated by M (with product ∧)
with just enough relations such that ∧ is anticommutative (and, more strongly, x ∧ x = 0 for x
degree one).

Clearly ∧M is a quotient of the tensor algebra T (M), which is by definition R ⊕M ⊕M ⊗
M ⊕ · · · ⊕M⊗n ⊕ . . . . The tensor algebra is a graded R-algebra in an obvious way: (x1 ⊗ · · · ⊗
xa).(y1 ⊗ · · · ⊗ yb) = x1 ⊗ · · · ⊗ xa ⊗ y1 ⊗ · · · ⊗ yb. This is an associative R-algebra. Then

∧M = T (M)/(x⊗ x, x, y ∈M).

The grading on ∧M comes from the grading of T (M).
We are interested in basically one example:
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Example 4.8 Say M = Rm. Then ∧mM = R. If e1, . . . , em ∈M are generators, then e1∧· · ·∧em
is a generator. More generally, ∧kM is free on ei1 ∧ · · · ∧ eik for i1 < · · · < ik.

We now make:

Definition 4.9 If M is a projective R-module of rank n, then

det(M) = ∧nM.

If M is free, then det(M) is free of rank one. So, as we see by localization, det(M) is always an
invertible module for M locally free (i.e. projective) and ∧n+1M = 0.

Lemma 4.10 det(M ⊕N) = detM ⊗ detN .

Proof. This isomorphism is given by wedging ∧topM ⊗ ∧topN → ∧top(M ⊕ N). This is easily
checked for oneself. N

Anyway, let us finally go back to the proof. If I ⊕Rn = Rn+1, then taking determinants shows
that

det I ⊗R = R, N

so det I = R. But this is I as I is of rank one. So I is free.

Theorem 4.11 A regular local ring is factorial.

Let R be a regular local ring of dimension n. We want to show that R is factorial. Choose a
prime ideal p of height one. We’d like to show that p is principal.

Proof. Induction on n. If n = 0, then we are done—we have a field.
If n = 1, then a height one prime is maximal, hence principal, because regularity is equivalent

to the ring’s being a DVR.
Assume n > 1. The prime ideal p has height one, so it is contained in a maximal ideal m. Note

that m2 ⊂ m as well. I claim that there is an element x of m−p−m2. This follows as an argument
like prime avoidance. To see that x exists, choose x1 ∈ m−p and x2 ∈ m−m2. We are done unless
x1 ∈ m2 and x2 ∈ p (or we could take x to be x1 or x2). In this case, we just take x = x1 + x2.

So choose x ∈ m − p − m2. Let us examine the ring Rx = R[1/x], which contains an ideal
p[x−1]. This is a proper ideal as x /∈ p. Now R[1/x] is regular (i.e. its localizations at primes are
regular local). The dimension, however, is of dimension less than n since by inverting x we have
removed m. By induction we can assume that Rx is locally factorial.

Now pRx is prime and of height one, so it is invertible as Rx is locally factorial. In particular
it is projective.

But p has a finite resolution by R-modules (by regularity), so pRx has a finite free resolution.
In particular, pRx is stably free and invertible, hence free. Thus pRx is principal.

We want to show that p is principal, not just after localization. We know that there is a y ∈ p
such that y generates pRx. Choose y such that (y) ⊂ p is as large as possible. We can do this
since R is noetherian. This implies that x - y because otherwise we could use y/x instead of y.

We shall now show that
p = (y).

So suppose z ∈ p. We know that y generates p after x is inverted. In particular, z ∈ pRx. That
is, zxa ∈ (y) for a large. That is, we can write

zxa = yw, for some w ∈ R.
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We chose x such that x /∈ m2. In particular, R/(x) is regular, hence an integral domain; i.e. x is a
prime element. We find that x must divide one of y, w if a > 0. But we know that x - y, so x | w.
Thus w = w′x for some x. We find that, cancelling x,

zxa−1 = yw′

and we can repeat this argument over and over until we find that

z ∈ (y). N
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