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Chapter 14

Homological Algebra

Homological algebra begins with the notion of a differential object, that is, an object with an

endomorphism A
d→ A such that d2 = 0. This equation leads to the obvious inclusion Im(d) ⊂

ker(d), but the inclusion generally is not equality. We will find that the difference between ker(d)
and Im(d), called the homology, is a highly useful variant of a differential object: its first basic
property is that if an exact sequence

0→ A′ → A→ A′′ → 0

of differential objects is given, the homology of A is related to that of A′, A′′ through a long exact
sequence. The basic example, and the one we shall focus on, is where A is a chain complex, and d
the usual differential. In this case, homology simply measures the failure of a complex to be exact.

After introducing these preliminaries, we develop the theory of derived functors. Given a
functor that is only left or right-exact, derived functors allow for an extension of a partially exact
sequence to a long exact sequence. The most important examples to us, Tor and Ext, provide
characterizations of flatness, projectivity, and injectivity.

§1 Complexes

1.1 Chain complexes

The chain complex is the most fundamental construction in homological algebra.

Definition 1.1 Let R be a ring. A chain complex is a collection of R-modules {Ci} (for i ∈ Z)
together with boundary operators ∂i : Ci → Ci−1 such that ∂i−1∂i = 0. The boundary map is
also called the differential. Often, notation is abused and the indices for the boundary map are
dropped.

A chain complex is often simply denoted C∗.

In practice, one often has that Ci = 0 for i < 0.

Example 1.2 All exact sequences are chain complexes.

Example 1.3 Any sequence of abelian groups {Ci}i∈Z with the boundary operators identically
zero forms a chain complex.

We will see plenty of more examples in due time.
At each stage, elements in the image of the boundary Ci+1 → Ci lie in the kernel of ∂i : Ci →

Ci−1. Let us recall that a chain complex is exact if the kernel and the image coincide. In general,
a chain complex need not be exact, and this failure of exactness is measured by its homology.
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Definition 1.4 Let C∗ The submodule of cycles Zi ⊂ Ci is the kernel ker(∂i). The submodule of
boundaries Bi ⊂ Ci is the image Im(∂i+1). Thus homology is said to be “cycles mod boundaries,”
i.e. Zi/Bi.

To further simplify notation, often all differentials regardless of what chain complex they are
part of are denoted ∂, thus the commutativity relation on chain maps is f∂ = ∂f with indices and
distinction between the boundary operators dropped.

Definition 1.5 Let C∗ be a chain complex with boundary map ∂i. We define the homology of
the complex C∗ via Hi(C∗) = ker(∂i)/Im(∂i+1).

Example 1.6 In a chain complex C∗ where all the boundary maps are trivial, Hi(C∗) = Ci.

Often we will bundle all the modules Ci of a chain complex together to form a graded module
C∗ =

⊕
i Ci. In this case, the boundary operator is a endomorphism that takes elements from

degree i to degree i − 1. Similarly, we often bundle together all the homology modules to give a
graded homology module H∗(C∗) =

⊕
iHi(C∗).

Definition 1.7 A differential module is a module M together with a morphism d : M → M
such that d2 = 0.

Thus, given a chain complex C∗, the module
⊕
Ci is a differential module with the direct sum

of all the differentials ∂i. A chain complex is just a special kind of differential module, one where
the objects are graded and the differential drops the grading by one.

1.2 Functoriality

We have defined chain complexes now, but we have no notion of a morphism between chain
complexes. We do this next; it turns out that chain complexes form a category when morphisms
are appropriately defined.

Definition 1.8 A morphism of chain complexes f : C∗ → D∗, or a chain map, is a sequence
of maps fi : Ci → Di such that f∂ = ∂′f where ∂ is the boundary map of C∗ and ∂′ of D∗ (again
we are abusing notation and dropping indices).

There is thus a category of chain complexes where the morphisms are chain maps.
One can make a similar definition for differential modules. If (M,d) and (N, d′) are differential

modules, then a morphism of differential modules (M,d) → (N, d′) is a morphism of modules
M → N such that the diagram

M

��

d // M

��
N

d′ // N

commutes. There is therefore a category of differential modules, and the map C∗ →
⊕
Ci gives a

functor from the category of chain complexes to that of differential modules.

Proposition 1.9 A chain map C∗ → D∗ induces a map in homology Hi(C)→ Hi(D) for each i;
thus homology is a covariant functor from the category of chain complexes to the category of graded
modules.

More precisely, each Hi is a functor from chain complexes to modules.
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Proof. Let f : C∗ → D∗ be a chain map. Let ∂ and ∂′ be the differentials for C∗ and D∗
respectively. Then we have a commutative diagram:

Ci+1
∂i+1−−−−→ Ci −−−−→

∂i
Ci−1yfi+1

yfi yfi−1

Di+1

∂′i+1−−−−→ Di −−−−→
∂′i

Di−1

(14.1)

Now, in order to check that a chain map f induces a map f∗ on homology, we need to check
that f∗(Im(∂)) ⊂ Im(∂′) and f∗(ker(∂)) ⊂ ker(∂). We first check the condition on images: we
want to look at fi(Im(∂i+1)). By commutativity of f and the boundary maps, this is equal
to ∂′i+1(Im(fi+1). Hence we have fi(Im(∂i+1)) ⊂ Im(∂′i+1). For the condition on kernels, let
x ∈ ker(∂i). Then by commutativity, ∂′i(fi(x)) = fi−1∂i(x) = 0. Thus we have that f induces for
each i a homomorphism fi : Hi(C∗)→ Hi(D∗) and hence it induces a homomorphism on homology
as a graded module. N

Exercise 14.1 Define the homology H(M) of a differential module (M,d) via ker d/ Im d. Show
that M 7→ H(M) is a functor from differential modules to modules.

1.3 Long exact sequences

TO BE ADDED: OMG! We have all this and not the most basic theorem of them all.

Definition 1.10 If M is a complex then for any integer k, we define a new complex M [k] by
shifting indices, i.e. (M [k])i := M i+k.

Definition 1.11 If f : M → N is a map of complexes, we define a complex Cone(f) := {N i ⊕
M i+1} with differential

d(ni,mi+1) := (diN (ni) + (−1)i · f(mi+1, di+1
M (mi+1))

Remark: This is a special case of the total complex construction to be seen later.

Proposition 1.12 A map f : M → N is a quasi-isomorphism if and only if Cone(f) is acyclic.

Proposition 1.13 Note that by definition we have a short exact sequence of complexes

0→ N → Cone(f)→M [1]→ 0

so by Proposition 2.1, we have a long exact sequence

· · · → Hi−1(Cone(f))→ Hi(M)→ Hi(N)→ Hi(Cone(f))→ . . .

so by exactness, we see that Hi(M) ' Hi(N) if and only if Hi−1(Cone(f)) = 0 and Hi(Cone(f)) =
0. Since this is the case for all i, the claim follows. �

1.4 Cochain complexes

Cochain complexes are much like chain complexes except the arrows point in the opposite direction.

Definition 1.14 A cochain complex is a sequence of modules Ci for i ∈ Z with coboundary
operators, also called differentials, ∂i : Ci → Ci+1 such that ∂i+1∂i = 0.
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The theory of cochain complexes is entirely dual to that of chain complexes, and we shall not
spell it out in detail. For instance, we can form a category of cochain complexes and chain maps
(families of morphisms commuting with the differential). Moreover, given a cochain complex C∗,
we define the cohomology objects to be hi(C∗) = ker(∂i)/Im(∂i−1); one obtains cohomology
functors.

It should be noted that the long exact sequence in cohomology runs in the opposite direction.
If 0 → C ′∗ → C∗ → C ′′∗ → 0 is a short exact sequence of cochain complexes, we get a long exact
sequence

· · · → Hi(C ′)→ Hi(C)→ Hi(C ′′)→ Hi+1(C ′)→ Hi+1(C)→ . . . .

Similarly, we can also turn cochain complexes and cohomology modules into a graded module.
Let us now give a standard example of a cochain complex.

Example 1.15 (The de Rham complex) Readers unfamiliar with differential forms may omit
this example. Let M be a smooth manifold. For each p, let Cp(M) be the R-vector space of
smooth p-forms on M . We can make the {Cp(M)} into a complex by defining the maps

Cp(M)→ Cp+1(M)

via ω → dω, for d the exterior derivative. (Note that d2 = 0.) This complex is called the de
Rham complex of M , and its cohomology is called the de Rham cohomology. It is known
that the de Rham cohomology is isomorphic to singular cohomology with real coefficients.

It is a theorem, which we do not prove, that the de Rham cohomology is isomorphic to the
singular cohomology of M with coefficients in R.

1.5 Long exact sequence

1.6 Chain Homotopies

In general, two maps of complexes C∗ ⇒ D∗ need not be equal to induce the same morphisms in
homology. It is thus of interest to determine conditions when they do. One important condition is
given by chain homotopy: chain homotopic maps are indistinguishable in homology. In algebraic
topology, this fact is used to show that singular homology is a homotopy invariant. We will find it
useful in showing that the construction (to be given later) of a projective resolution is essentially
unique.

Definition 1.16 Let C∗, D∗ be chain complexes with differentials di. A chain homotopy between
two chain maps f, g : C∗ → D∗ is a series of homomorphisms hi : Ci → Di−1 satisfying f i − gi =
dhi + hn+1d. Again often notation is abused and the condition is written f − g = dh+ hd.

Proposition 1.17 If two morphisms of complexes f, g : C∗ → D∗ are chain homotopic, they are
taken to the same induced map after applying the homology functor.

Proof. Write {di} for the various differentials (in both complexes). Let m ∈ Zi(C), the group of i-
cycles. Suppose there is a chain homotopy h between f, g (that is, a set of morphisms Ci → Di−1).
Then

f i(m)− gi(m) = hi+1 ◦ di(m) + di−1 ◦ hi(m) = di−1 ◦Hi(m) ∈ =(di−1)

which is zero in the cohomology Hi(D). N

Corollary 1.18 If two chain complexes are chain homotopically equivalent (there are maps f :
C∗ → D∗ and g : D∗ → C∗ such that both fg and gf are chain homotopic to the identity), they
have isomorphic homology.
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Proof. Clear. N

Example 1.19 Not every quasi-isomorphism is a homotopy equivalence. Consider the complex

· · · → 0→ Z/·2→ Z→ 0→ 0→ . . .

so H0 = Z/2Z and all cohomologies are 0. We have a quasi-isomorphism from the above complex
to the complex

· · · → 0→ 0→ Z/2Z→ 0→ 0→ . . .

but no inverse can be defined (no map from Z/2Z→ Z).

Proposition 1.20 Additive functors preserve chain homotopies

Proof. Since an additive functor F is a homomorphism on Hom(−,−), the chain homotopy con-
dition will be preserved; in particular, if t is a chain homotopy, then F (t) is a chain homotopy. N

In more sophisticated homological theory, one often makes the definition of the “homotopy
category of chain complexes.”

Definition 1.21 The homotopy category of chain complexes is the category hKom(R) where
objects are chain complexes of R-modules and morphisms are chain maps modulo chain homotopy.

1.7 Topological remarks

TO BE ADDED: add more detail The first homology theory to be developed was simplicial
homology - the study of homology of simplicial complexes. To be simple, we will not develop the
general theory and instead motivate our definitions with a few basic examples.

Example 1.22 Suppose our simplicial complex has one line segment with both ends identified at
one point p. Call the line segment a. The n-th homology group of this space roughly counts how
many “different ways” there are of finding n dimensional sub-simplices that have no boundary that
aren’t the boundary of any n+ 1 dimensional simplex. For the circle, notice that for each integer,
we can find such a way (namely the simplex that wraps counter clockwise that integer number of
times). The way we compute this is we look at the free abelian group generated by 0 simplices, and
1 simplices (there are no simplices of dimension 2 or higher so we can ignore that). We call these
groups C0 and C1 respectively. There is a boundary map ∂1 : C1 → C0. This boundary map takes
a 1-simplex and associates to it its end vertex minus its starting vertex (considered as an element
in the free abelian group on vertices of our simplex). In the case of the circle, since there is only
one 1-simplex and one 0-simplex, this map is trivial. We then get our homology group by looking
at ker(∂1). In the case that there is a nontrivial boundary map ∂2 : C2 → C1 (which can only
happen when our simplex is at least 2-dimensional), we have to take the quotient ker(∂1)/ ker(∂2).
This motivates us to define homology in a general setting.

Originally homology was intended to be a homotopy invariant meaning that space with the
same homotopy type would have isomorphic homology modules. In fact, any homotopy induces
what is now known as a chain homotopy on the simplicial chain complexes.

Exercise 14.2 (Singular homology) Let X be a topological space and let Sn be the set of
all continuous maps ∆n → X where ∆n is the convex hull of n distinct points and the origin with
orientation given by an ordering of the n vertices. Define Cn to be the free abelian group generated
by elements of Sn. Define ∆n

î
to be the face of ∆n obtained by omitting the i-th vertex from the

simplex. We can then construct a boundary map ∂n : Cn → Cn−1 to take a map σn : ∆n → X
to

∑n
i=0(−1)iσn|∆n

î
. Verify that ∂2 = 0 (hence making C∗ into a chain complex known as the

“singular chain complex of X”. Its homology groups are the “singular homology groups”.

Exercise 14.3 Compute the singular homology groups of a point.
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§2 Derived functors

2.1 Projective resolutions

Fix a ring R. Let us recall (Definition 2.5) that an R-module P is called projective if the functor
N → HomR(P,N) (which is always left-exact) is exact.

Projective objects are useful in defining chain exact sequences known as “projective resolu-
tions.” In the theory of derived functors, the projective resolution of a module M is in some sense
a replacement for M : thus, we want it to satisfy some uniqueness and existence properties. The
uniqueness is not quite true, but it is true modulo chain equivalence.

Definition 2.1 Let M be an arbitrary module, a projective resolution of M is an exact sequence

· · · → Pi → Pi−1 → Pi−2 · · · → P1 → P0 →M (14.2)

where the Pi are projective modules.

Proposition 2.2 Any module admits a projective resolution.

The proof will even show that we can take a free resolution.

Proof. We construct the resolution inductively. First, we take a projective module P0 with P0 � N
surjective by the previous part. Given a portion of the resolution

Pn → Pn−1 → · · · → P0 � N → 0

for n ≥ 0, which is exact at each step, we consider K = ker(Pn → Pn−1). The sequence

0→ K → Pn → Pn−1 → · · · → P0 � N → 0

is exact. So if Pn+1 is chosen such that it is projective and there is an epimorphism Pn+1 � K,
(which we can construct by Proposition 6.6), then

Pn+1 → Pn → . . .

is exact at every new step by construction. We can repeat this inductively and get a full projective
resolution. N

Here is a useful observation:

Proposition 2.3 If R is noetherian, and M is finitely generated, then we can choose a projective
resolution where each Pi is finitely generated.

We can even take a resolution consisting of finitely generated free modules.

Proof. To say that M is finitely generated is to say that it is a quotient of a free module on
finitely many generators, so we can take P0 free and finitely generated. The kernel of P0 → M is
finitely generated by noetherianness, and we can proceed as before, at each step choosing a finitely
generated object. N

Example 2.4 The abelian group Z/2 has the free resolution 0 → · · · 0 → Z → Z → Z/2. Simi-
larly, since any finitely generated abelian group can be decomposed into the direct sum of torsion
subgroups and free subgroups, all finitely generated abelian groups admit a free resolution of length
two.

Actually, over a principal ideal domain R (e.g. R = Z), every module admits a free resolution
of length two. The reason is that if F �M is a surjection with F free, then the kernel F ′ ⊂ F is
free by a general fact (TO BE ADDED: citation needed) that a submodule of a free module is
free (if one works over a PID). So we get a free resolution of the type

0→ F ′ → F →M → 0.
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In general, projective resolutions are not at all unique. Nonetheless, they are unique up to chain
homotopy. Thus a projective resolution is a rather good “replacement” for the initial module.

Proposition 2.5 Let M,N be modules and let P∗ → M,P ′∗ → N be projective resolutions. Let
f : M → N be a morphism. Then there is a morphism

P∗ → P ′∗

such that the following diagram commutes:

. . . // P1
//

��

P0
//

��

M

f

��
. . . // P ′1 // P ′0 // N

This morphism is unique up to chain homotopy.

Proof. Let P∗ →M and P ′∗ → N be projective resolutions. We will define a morphism of complexes
P∗ → P ′∗ such that the diagram commutes. Let the boundary maps in P∗, P

′
∗ be denoted d (by

abuse of notation). We have an exact diagram

. . . // Pn
d // Pn−1

d // . . . d // P0
// M

f

��

// 0

. . . // P ′n
d // P ′n−1

// . . . d // P ′0 // N // 0

Since P ′0 � N is an epimorphism, the map P0 → M → N lifts to a map P0 → P ′0 making the
diagram

P0

��

// M

f

��
P ′0 // N

commute. Suppose we have defined maps Pi → P ′i for i ≤ n such that the following diagram
commutes:

Pn
d //

��

Pn−1
d //

��

. . . d // P0

��

// M

f

��

// 0

P ′n
d // P ′n−1

// . . . d // P ′0 // N // 0

Then we will define Pn+1 → P ′n+1, after which induction will prove the existence of a map. To do
this, note that the map

Pn+1 → Pn → P ′n → P ′n−1

is zero, because this is the same as Pn+1 → Pn → Pn−1 → P ′n−1 (by induction, the diagrams
before n commute), and this is zero because two P -differentials were composed one after another.
In particular, in the diagram

Pn+1
// Pn

��
P ′n+1

// P ′n

,

9
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the image in P ′n of Pn+1 lies in the kernel of P ′n → P ′n−1, i.e. in the image I of P ′n+1. The exact
diagram

Pn+1

��
P ′n+1

// I // 0

shows that we can lift Pn+1 → I to Pn+1 → P ′n+1 (by projectivity). This implies that we can
continue the diagram further and get a morphism P∗ → P ′∗ of complexes.

Suppose f, g : P∗ → P ′∗ are two morphisms of the projective resolutions making

P0
//

��

M

��
P ′0

// N

commute. We will show that f, g are chain homotopic.

For this, we start by defining D0 : P0 → P ′1 such that dD0 = f − g : P0 → P ′0. This we can do
because f − g sends P0 into ker(P ′0 → N), i.e. into the image of P ′1 → P ′0, and P0 is projective.
Suppose we have defined chain-homotopies Di : Pi → Pi+1 for i ≤ n such that dDi+Di−1d = f−g
for i ≤ n. We will define Dn+1. There is a diagram

Pn+1

��

// Pn

Dn}}zz
zz

zz
zz

��

// Pn−1

Dn−1}}zz
zz

zz
zz

��
P ′n+2

// P ′n+1
// P ′n // P ′n−1

where the squares commute regardless of whether you take the vertical maps to be f or g (provided
that the choice is consistent).

We would like to define Dn+1 : Pn → P ′n+1. The key condition we need satisfied is that

dDn+1 = f − g −Dnd.

However, we know that, by the inductive hypothesis on the D’s

d(f − g −Dnd) = fd− gd− dDnd = fd− gd− (f − g)d+Dndd = 0. N

In particular, f − g−Dnd lies in the image of P ′n+1 → P ′n. The projectivity of Pn ensures that we
can define Dn+1 satisfying the necessary condition.

Corollary 2.6 Let P∗ → M,P ′∗ → M be projective resolutions of M . Then there are maps
P∗ → P ′∗, P

′
∗ → P∗ under M such that the compositions are chain homotopic to the identity.

Proof. Immediate. N

2.2 Injective resolutions

One can dualize all this to injective resolutions. TO BE ADDED: do this

10
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2.3 Definition

Often in homological algebra, we see that “short exact sequences induce long exact sequences.”
Using the theory of derived functors, we can make this formal.

Let us work in the category of modules over a ring R. Fix two such categories. Recall that a
right-exact functor F (from the category of modules over a ring to the category of modules over
another ring) is an additive functor such that for every short exact sequence 0→ A→ B → C → 0,
we get a exact sequence F (A)→ F (B)→ F (C)→ 0.

We want a natural way to continue this exact sequence to the left; one way of doing this is to
define the left derived functors.

Definition 2.7 Let F be a right-exact functor and P∗ → M are projective resolution. We can
form a chain complex F (P∗) whose object in degree i is F (Pi) with boundary maps F (∂). The
homology of this chain complex denoted LiF are the left derived functors.

For this definition to be useful, it is important to verify that deriving a functor yields functors
independent on choice of resolution. This is clear by ??.

Theorem 2.8 The following properties characterize derived functors:

1. L0F (−) = F (−)

2. Suppose 0 → A → B → C → 0 is an exact sequence and F a right-exact functor; the left
derived functors fit into the following exact sequence:

· · ·LiF (A)→ LiF (B)→ LiF (C)→ Li−1F (A) · · · → L1(C)→ L0F (A)→ L0F (B)→ L0F (C)→ 0
(14.3)

Proof. The second property is the hardest to prove, but it is by far the most useful; it is essentially
an application of the snake lemma. N

One can define right derived functors analogously; if one has a left exact functor (an additive
functor that takes an exact sequence 0 → A → B → C → 0 to 0 → F (A) → F (B) → F (C)), we
can pick an injective resolution instead (the injective criterion is simply the projective criterion with
arrows reversed). If M → I∗ is a injective resolution then the cohomology of the chain complex
F (I∗) gives the right derived functors. However, variance must also be taken into consideration so
the choice of whether or not to use a projective or injective resolution is of importance (in all of
the above, functors were assumed to be covariant). In the following, we see an example of when
right derived functors can be computed using projective resolutions.

2.4 Ext functors

Definition 2.9 The right derived functors of Hom(−, N) are called the Ext-modules denoted
ExtiR(−, N).

We now look at the specific construction:
Let M,M ′ be R-modules. Choose a projective resolution

· · · → P2 → P1 → P0 →M → 0

and consider what happens when you hom this resolution into N . Namely, we can consider
HomR(M,N), which is the kernel of Hom(P0,M)→ Hom(P1,M) by exactness of the sequence

0→ HomR(M,N)→ HomR(P0, N)→ HomR(P1, N).

11
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You might try to continue this with the sequence

0→ HomR(M,N)→ HomR(P0, N)→ HomR(P1, N)→ HomR(P2, N)→ . . . .

In general, it won’t be exact, because HomR is only left-exact. But it is a chain complex. You can
thus consider the homologies.

Definition 2.10 The homology of the complex {HomR(Pi, N)} is denoted ExtiR(M,N). By def-
inition, this is ker(Hom(Pi, N) → Hom(Pi+1, N))/ Im(Hom(Pi−1, N) → Hom(Pi, N)). This is an
R-module, and is called the ith ext group.

Let us list some properties (some of these properties are just case-specific examples of general
properties of derived functors)

Proposition 2.11 Ext0
R(M,N) = HomR(M,N).

Proof. This is obvious from the left-exactness of Hom(−, N). (We discussed this.) N

Proposition 2.12 Exti(M,N) is a functor of N .

Proof. Obvious from the definition. N

Here is a harder statement.

Proposition 2.13 Exti(M,N) is well-defined, independent of the projective resolution P∗ → M ,
and is in fact a contravariant additive functor of M .1

Proof. Omitted. We won’t really need this, though; it requires more theory about chain com-
plexes. N

Proposition 2.14 If M is annihilated by some ideal I ⊂ R, then so is Exti(M,N) for each i.

Proof. This is a consequence of the functoriality in M . If x ∈ I,then x : M →M is the zero map,
so it induces the zero map on Exti(M,N).

Proposition 2.15 Exti(M,N) = 0 if M projective and i > 0.

Proof. In that case, one can use the projective resolution

0→M →M → 0.

Computing Ext via this gives the result. N

Proposition 2.16 If there is an exact sequence

0→ N ′ → N → N ′′ → 0,

there is a long exact sequence of Ext groups

0→ Hom(M,N ′)→ Hom(M,N)→ Hom(M,N ′′)→ Ext1(M,N ′)→ Ext1(M,N)→ . . .

1I.e. a map M → M ′ induces Exti(M ′, N) → Exti(M,N).

12
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Proof. This proof will assume a little homological algebra. Choose a projective resolution P∗ →M .
(The notation P∗ means the chain complex · · · → P2 → P1 → P0.) In general, homming out of
M is not exact, but homming out of a projective module is exact. For each i, we get an exact
sequence

0→ HomR(Pi, N
′)→ HomR(Pi, N)→ HomR(Pi, N

′′)→ 0,

which leads to an exact sequence of chain complexes

0→ HomR(P∗, N
′)→ HomR(P∗, N)→ HomR(P∗, N

′′)→ 0.

Taking the long exact sequence in homology gives the result. N

Much less obvious is:

Proposition 2.17 There is a long exact sequence in the M variable. That is, a short exact
sequence

0→M ′ →M →M ′′ → 0

leads a long exact sequence

0→ HomR(M ′′, N)→ HomR(M,N)→ HomR(M ′, N)→ Ext1(M ′′, N)→ Ext1(M,N)→ . . . .

Proof. Omitted. N

We now can characterize projectivity:

Corollary 2.18 TFAE:

1. M is projective.

2. Exti(M,N) = 0 for all R-modules N and i > 0.

3. Ext1(M,N) = 0 for all N .

Proof. We have seen that 1 implies 2 because projective modules have simple projective resolutions.
2 obviously implies 3. Let’s show that 3 implies 1.Choose a projective module P and a surjection
P �M with kernel K. There is a short exact sequence 0→ K → P →M → 0. The sequence

0→ Hom(M,K)→ Hom(P,K)→ Hom(K,K)→ Ext1(M,K) = 0

shows that there is a map P → K which restricts to the identity K → K. The sequence 0→ K →
P →M → 0 thus splits, so M is a direct summand in a projective module, so is projective. N

Finally, we note that there is another way of constructing Ext. We constructed them by choosing
a projective resolution of M . But you can also do this by resolving N by injective modules.

Definition 2.19 An R-module Q is injective if HomR(−, Q) is an exact (or, equivalently, right-
exact) functor. That is, if M0 ⊂ M is an inclusion of R-modules, then any map M0 → Q can be
extended to M → Q.

If we are given M,N , and an injective resolution N → Q∗, we can look at the chain complex
{Hom(M,Qi)}, i.e. the chain complex

0→ Hom(M,Q0)→ Hom(M,Q1)→ . . .

and we can consider the cohomologies.

13
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Definition 2.20 We call these cohomologies

ExtiR(M,N)′ = ker(Hom(M,Qi)→ Hom(M,Qi+1))/ Im(Hom(M,Qi−1)→ Hom(M,Qi)).

This is dual to the previous definitions, and it is easy to check that the properties that we
couldn’t verify for the previous Exts are true for the Ext′’s.

Nonetheless:

Theorem 2.21 There are canonical isomorphisms:

Exti(M,N)′ ' Exti(M,N).

In particular, to compute Ext groups, you are free either to take a projective resolution of M ,
or an injective resolution of N .

Proof (Idea of proof). In general, it might be a good idea to construct a third more complex
construction that resembles both. Given M,N construct a projective resolution P∗ → M and an
injective resolution N → Q∗. Having made these choices, we get a double complex

HomR(Pi, Q
j)

of a whole lot of R-modules. The claim is that in such a situation, where you have a double
complex Cij , you can form an ordinary chain complex C ′ by adding along the diagonals. Namely,
the nth term is C ′n =

⊕
i+j=n Cij . This total complex will receive a map from the chain complex

used to compute the Ext groups and a chain complex used to compute the Ext′ groups. There are
maps on cohomology,

Exti(M,N)→ Hi(C ′∗), Exti(M,N)′ → Hi(C ′∗).

The claim is that isomorphisms on cohomology will be induced in each case. That will prove the
result, but we shall not prove the claim. N

Last time we were talking about Ext groups over commutative rings. For R a commutative
ring and M,N R-modules, we defined an R-module Exti(M,N) for each i, and proved various
properties. We forgot to mention one.

Proposition 2.22 If R noetherian, and M,N are finitely generated, Exti(M,N) is also finitely
generated.

Proof. We can take a projective resolution P∗ of M by finitely generated free modules, R being
noetherian. Consequently the complex Hom(P∗, N) consists of finitely generated modules. Thus
the cohomology is finitely generated, and this cohomology consists of the Ext groups. N

2.5 Application: Modules over DVRs

Definition 2.23 Let M be a module over a domain A. We say that M is torsion-free, if for any
nonzero a ∈ A, a : M → M is injective. We say that M is torsion if for any m ∈ M , there is
nonzero a ∈ A such that am = 0.

Lemma 2.24 For any module finitely generated module M over a Noetherian domain A, there is
a short exact sequence

0→Mtors →M →Mtors−free → 0

where Mtors is killed by an element of A and Mtors−free is torsion-free.

14
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Proof. This is because we may take Mtors to be all the elements which are killed by a non-zero
element of A. Then this is clearly a sub-module. Since A is Noetherian, it is finitely generated,
which means that it can be killed by one element of A (take the product of the elements that kill
the generators). Then it is easy to check that the quotient M/Mtors is torsion-free. N

Lemma 2.25 For R a PID, a module M over R is flat if and only if it is torsion-free.

Proof. This is the content of Problem 2 on the Midterm. N

Using this, we will classify modules over DVRs.

Proposition 2.26 let M be a finitely generated module over a DVR R. Then

M = Mtors ⊕R⊕n,

i.e, where Mtors can be annihilated by πn for some n.

Proof. Set Mtors ⊂ M be as in Lemma 2.24 so that M/Mtors is torsion-free. Therefore, by
Corollary ?? and Lemma 2.25 we see that it is flat. But it is over a local ring, so that means that
it is free. So we have M/Mtors = R⊕n for some n. Furthermore, since R⊕n is free, it is additionally
projective, so the above sequence splits, so

M = Mtors ⊕R⊕n

as desired. N

There is nothing more to say about the free part, so let us discuss the torsion part in more
detail.

Lemma 2.27 Any finitely generated torsion module over a DVR is⊕
R/πnR.

Before we prove this, let us give two examples:

1. Take R = k[[t]], which is a DVR with maximal ideal (t). Thus, by the lemma, for a finitely
generated torsion module M , t : M → M is a nilpotent operator. However, k[[t]]/tn is a
Jordan block so we are exactly saying that linear transformations can be written in Jordan
block form.

2. Let R = Zp. Here the lemma implies that finitely generated torsion modules over Zp can be
written as a direct sum of p-groups.

Now let us proceed with the proof of the lemma.

Proof (Proof of Lemma 2.27). Let n be the minimal integer such that πn kills M . This means
that M is a module over Rn = R/πnR, and also there is an element m ∈M , and an injective map
Rn ↪→M , because we may choose m to be an element which is not annihilated by πn−1, and then
take the map to be 1 7→ m.

Proceeding by induction, it suffices to show that the above map Rn ↪→ M splits. But for this
it suffices that Rn is an injective module over itself. This property of rings is called the Frobenius
property, and it is very rare. We will write this as a lemma.

Lemma 2.28 Rn is injective as a module over itself.

15
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Proof (Proof of Lemma 2.28). Note that a module M over a ring R is injective if and only if for
any ideal I ⊂ R, Ext1(R/I,M) = 0. This was shown on Problem Set 8, Problem 2a.

Thus we wish to show that for any ideal I, Ext1
Rn

(Rn/I,Rn) = 0. Note that since R is a
DVR, we know that it is a PID, and also any element has the form r = πkr0 for some k ≥ 0 and
some r0 invertible. Then all ideals in R are of the form (πk) for some k, so all ideals in Rn are
also of this form. Therefore, Rn/I = Rm for some m ≤ n, so it suffices to show that for m ≤ n,
Ext1

Rn
(Rm, Rn) = 0.

But note that we have short exact sequence

0→ Rn−m →πm· Rn → Rm → 0

which gives a corresponding long exact sequence of Exts

0→ HomRn(Rm, Rn)→ HomRn(Rn, Rn)→♥ HomRn(Rn−m, Rn)

→ Ext1
Rn

(Rm, Rn)→ Ext1
Rn

(Rn, Rn)→ · · ·

But note that any map of Rn modules, Rn−m → Rn, must map 1 ∈ Rn−m to an element which is
killed by πn−m, which means it must be a multiple of πm, so say is is πma. Then the map is

r 7→ πmar,

which is the image of the map
[r 7→ ar] ∈ HomRn

(Rn, Rn).

Thus, ♥ is surjective. Also note that Rn is projective over itself, so Ext1
Rn

(Rn, Rn) = 0. This,
along with the surjectivity of ♥ shows that

Ext1
Rn

(Rm, Rn) = 0

as desired. N

As mentioned earlier, this lemma concludes our proof of Lemma 2.27 as well. N
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lications Mathématiques de l’IHÉS.
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