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Chapter 6

Graded and filtered rings

In algebraic geometry, working in classical affine space AnC of points in Cn turns out to be insufficient
for various reasons. Instead, it is often more convenient to consider varieties in projective space PnC,
which is the set of lines through the origin in Cn+1. In other words, it is the set of all n+ 1-tuples
[z0, . . . , zn] ∈ Cn+1 − {0} modulo the relation that

[z0, . . . , zn] = [λz0, . . . , λzn], λ ∈ C∗. (6.1)

Varieties in projective space have many convenient properties that affine varieties do not: for
instance, intersections work out much more nicely when intersections at the extra “points at
infinity” are included. Moreover, when endowed with the complex topology, (complex) projective
varieties are compact, unlike all but degenerate affine varieties (i.e. finite sets).

It is when defining the notion of a “variety” in projective space that one encounters gradedness.
Now a variety in Pn must be cut out by polynomials F1, . . . , Fk ∈ C[x0, . . . , xn]; that is, a point
represented by [z0, . . . , zn] lies in the associated variety if and only if Fi(z0, . . . , zn) = 0 for each i.
For this to make sense, or to be independent of the choice of z0, . . . , zn up to rescaling as in (6.1),
it is necessary to assume that each Fi is homogeneous.

Algebraically, AnC is the set of maximal ideals in the polynomial ring Cn. Projective space is
defined somewhat more geometrically (as a set of lines) but it turns out that there is an algebraic
interpretation here too. The points of projective space are in bijection with the homogeneous
maximal ideals of the polynomial ring C[x0, . . . , xn]. We shall define more generally the Proj of a
graded ring in this chapter. Although we shall not repeatedly refer to this concept in the sequel,
it will be useful for readers interested in algebraic geometry.

We shall also introduce the notion of a filtration. A filtration allows one to endow a given module
with a topology, and one can in fact complete with respect to this topology. This construction will
be studied in Chapter 11.

§1 Graded rings and modules

Much of the material in the present section is motivated by algebraic geometry; see [GD], volume
II for the construction of ProjR as a scheme.

1.1 Basic definitions

Definition 1.1 A graded ring R is a ring together with a decomposition (as abelian groups)

R = R0 ⊕R1 ⊕ . . .

such that RmRn ⊂ Rm+n for all m,n ∈ Z≥0, and where R0 is a subring (i.e. 1 ∈ R0). A Z-graded
ring is one where the decomposition is into

⊕
n∈ZRn. In either case, the elements of the subgroup

Rn are called homogeneous of degree n.
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The basic example to keep in mind is, of course, the polynomial ring R[x1, . . . , xn] for R any
ring. The graded piece of degree n consists of the homogeneous polynomials of degree n.

Consider a graded ring R.

Definition 1.2 A graded R-module is an ordinary R-module M together with a decomposition

M =
⊕
k∈Z

Mk

as abelian groups, such that RmMn ⊂ Mm+n for all m ∈ Z≥0, n ∈ Z. Elements in one of these
pieces are called homogeneous. Any m ∈ M is thus uniquely a finite sum

∑
mni where each

mni ∈Mni is homogeneous of degree ni.

Clearly there is a category of graded R-modules, where the morphisms are the morphisms of
R-modules that preserve the grading (i.e. take homogeneous elements to homogeneous elements
of the same degree).

Since we shall focus on positively graded rings, we shall simply call them graded rings; when we
do have to consider rings with possibly negative gradings, we shall highlight this explicitly. Note,
however, that we allow modules with negative gradings freely.

In fact, we shall note an important construction that will generally shift the graded pieces such
that some of them might be negative:

Definition 1.3 Given a graded module M , we define the twist M(n) as the same R-module but
with the grading

M(n)k = Mn+k.

This is a functor on the category of graded R-modules.

In algebraic geometry, the process of twisting allows one to construct canonical line bundles on
projective space. Namely, a twist of R itself will lead to a line bundle on projective space that in
general is not trivial. See [Har77], II.5.

Here are examples:

Example 1.4 (An easy example) If R is a graded ring, then R is a graded module over itself.

Example 1.5 (Another easy example) If S is any ring, then S can be considered as a graded
ring with S0 = S and Si = 0 for i > 0. Then a graded S-module is just a Z-indexed collection of
(ordinary) S-modules.

Example 1.6 (The blowup algebra) This example is a bit more interesting, and will be used
in the sequel. Let S be any ring, and let J ⊂ S be an ideal. We can make R = S ⊕ J ⊕ J2 ⊕ . . .
(the so-called blowup algebra) into a graded ring, by defining the multiplication the normal way
except that something in the ith component times something in the jth component goes into the
i+ jth component.

Given any S-module M , there is a graded R-module M⊕JM⊕J2M⊕. . . , where multiplication
is defined in the obvious way. We thus get a functor from S-modules to graded R-modules.

Definition 1.7 Fix a graded ring R. Let M be a graded R-module and N ⊂M an R-submodule.
Then N is called a graded submodule if the homogeneous components of anything in N are in
N . If M = R, then a graded ideal is also called a homogeneous ideal.

In particular, a graded submodule is automatically a graded module in its own right.

Lemma 1.8 1. The sum of two graded submodules (in particular, homogeneous ideals) is graded.

4
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2. The intersection of two graded submodules is graded.

Proof. Immediate. N

One can grade the quotients of a graded module by a graded submodule. If N ⊂M is a graded
submodule, then M/N can be made into a graded module, via the isomorphism of abelian groups

M/N '
⊕
k∈Z

Mk/Nk.

In particular, if a ⊂ R is a homogeneous ideal, then R/a is a graded ring in a natural way.

Exercise 6.1 Let R be a graded ring. Does the category of graded R-modules admit limits and
colimits?

1.2 Homogeneous ideals

Recall that a homogeneous ideal in a graded ring R is simply a graded submodule of R. We now
prove a useful result that enables us tell when an ideal is homogeneous.

Proposition 1.9 Let R be a graded ring, I ⊂ R an ideal. Then I is a homogeneous ideal if and
only if it can be generated by homogeneous elements.

Proof. If I is a homogeneous ideal, then by definition

I =
⊕
i

I ∩Ri,

so I is generated by the sets {I ∩Ri}i∈Z≥0
of homogeneous elements.

Conversely, let us suppose that I is generated by homogeneous elements {hα}. Let x ∈ I be
arbitrary; we can uniquely decompose x as a sum of homogeneous elements, x =

∑
xi, where each

xi ∈ Ri. We need to show that each xi ∈ I in fact.
To do this, note that x =

∑
qαhα where the qα belong to R. If we take ith homogeneous

components, we find that

xi =
∑

(qα)i−deg hαhα,

where (qα)i−deg hα refers to the homogeneous component of qα concentrated in the degree i−deg hα.
From this it is easy to see that each xi is a linear combination of the hα and consequently lies in
I. N

Example 1.10 If a, b ⊂ R are homogeneous ideals, then so is ab. This is clear from Proposi-
tion 1.9.

Example 1.11 Let k be a field. The ideal (x2 + y) in k[x, y] is not homogeneous. However, we
find from Proposition 1.9 that the ideal (x2 + y2, y3) is.

Since we shall need to use them to define ProjR in the future, we now prove a result about
homogeneous prime ideals specifically. Namely, “primeness” can be checked just on homogeneous
elements for a homogeneous ideal.

Lemma 1.12 Let p ⊂ R be a homogeneous ideal. In order that p be prime, it is necessary and
sufficient that whenever x, y are homogeneous elements such that xy ∈ p, then at least one of
x, y ∈ p.
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Proof. Necessity is immediate. For sufficiency, suppose a, b ∈ R and ab ∈ p. We must prove that
one of these is in p. Write

a = ak1 + a1 + · · ·+ ak2 , b = bm1 + · · ·+ bm2

as a decomposition into homogeneous components (i.e. ai is the ith component of a), where
ak2 , bm2 are nonzero and of the highest degree.

Let k = k2−k1,m = m2−m1. So there are k homogeneous terms in the expression for a, m in
the expression for b. We will prove that one of a, b ∈ p by induction on m+ n. When m+ n = 0,
then it is just the condition of the lemma. Suppose it true for smaller values of m + n. Then ab
has highest homogeneous component ak2bm2

, which must be in p by homogeneity. Thus one of
ak2 , bm2

belongs to p. Say for definiteness it is ak. Then we have that

(a− ak2)b ≡ ab ≡ 0 mod p

so that (a− ak2)b ∈ p. But the resolutions of a− ak2 , b have a smaller m+n-value: a− ak2 can be
expressed with k − 1 terms. By the inductive hypothesis, it follows that one of these is in p, and
since ak ∈ p, we find that one of a, b ∈ p. N

1.3 Finiteness conditions

There are various finiteness conditions (e.g. noetherianness) that one often wants to impose in
algebraic geometry. Since projective varieties (and schemes) are obtained from graded rings, we
briefly discuss these finiteness conditions for them.

Definition 1.13 For a graded ring R, write R+ = R1⊕R2⊕. . . . Clearly R+ ⊂ R is a homogeneous
ideal. It is called the irrelevant ideal.

When we define the Proj of a ring, prime ideals containing the irrelevant ideal will be no good.
The intuition is that when one is working with PnC, the irrelevant ideal in the corresponding ring
C[x0, . . . , xn] corresponds to all homogeneous polynomials of positive degree. Clearly these have
no zeros except for the origin, which is not included in projective space: thus the common zero
locus of the irrelevant ideal should be ∅ ⊂ PnC.

Proposition 1.14 Suppose R = R0⊕R1⊕. . . is a graded ring. Then if a subset S ⊂ R+ generates
the irrelevant ideal R+ as R-ideal, it generates R as R0-algebra.

The converse is clear as well. Indeed, if S ⊂ R+ generates R as an R0-algebra, clearly it generates
R+ as an R-ideal.

Proof. Let T ⊂ R be the R0-algebra generated by S. We shall show inductively that Rn ⊂ T .
This is true for n = 0. Suppose n > 0 and the assertion true for smaller n. Then, we have

Rn = RS ∩Rn by assumption

= (R0 ⊕R1 ⊕ · · · ⊕Rn−1)(S) ∩Rn because S ⊂ R+

⊂ (R0[S])(S) ∩Rn by inductive hypothesis

⊂ R0(S). N

Theorem 1.15 The graded ring R is noetherian if and only if R0 is noetherian and R is finitely
generated as R0-algebra.
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Proof. One direction is clear by Hilbert’s basis theorem. For the other, suppose R noetherian.
Then R0 is noetherian because any sequence I1 ⊂ I2 ⊂ . . . of ideals of R0 leads to a sequence of
ideals I1R ⊂ I2R ⊂ . . . , and since these stabilize, the original I1 ⊂ I2 ⊂ . . . must stabilize too.
(Alternatively, R0 = R/R+, and taking quotients preserves noetherianness.) Moreover, since R+ is
a finitely generated R-ideal by noetherianness, it follows that R is a finitely generated R0-algebra
too: we can, by Proposition 1.14, take as R0-algebra generators for R a set of generators for the
ideal R+. N

The basic finiteness condition one often needs is that R should be finitely generated as an
R0-algebra. We may also want to have that R is generated by R1, quite frequently—in algebraic
geometry, this implies a bunch of useful things about certain sheaves being invertible. (See [GD],
volume II.2.) As one example, having R generated as R0-algebra by R1 is equivalent to having R
a graded quotient of a polynomial algebra over R0 (with the usual grading). Geometrically, this
equates to having ProjR contained as a closed subset of some projective space over R0.

However, sometimes we have the first condition and not the second, though if we massage
things we can often assure generation by R1. Then the next idea comes in handy.

Definition 1.16 Let R be a graded ring and d ∈ N. We set R(d) =
⊕

k∈Z≥0
Rkd; this is a

graded ring and R0-algebra. If M is a graded R-module and l ∈ {0, 1, . . . , d− 1}, we write
M (d,l) =

⊕
k≡l mod dMk. Then M (d,l) is a graded R(d)-module.

We in fact have a functor ·(d,l) from graded R-modules to graded R(d)-modules.
One of the implications of the next few results is that, by replacing R with R(d), we can make

the condition “generated by terms of degree 1” happen. But first, we show that basic finiteness is
preserved if we filter out some of the terms.

Proposition 1.17 Let R be a graded ring and a finitely generated R0-algebra. Let M be a finitely
generated R-module.

1. Each Mi is finitely generated over R0, and the Mi become zero when i� 0.

2. M (d,l) is a finitely generated R(d) module for each d, l. In particular, M itself is a finitely
generated R(d)-module.

3. R(d) is a finitely generated R0-algebra.

Proof. Choose homogeneous generators m1, . . . ,mk ∈ M . For instance, we can choose the homo-
geneous components of a finite set of generators for M . Then every nonzero element of M has
degree at least min(degmi). This proves the last part of (1). Moreover, let r1, . . . , rp be alge-
bra generators of R over R0. We can assume that these are homogeneous with positive degrees
d1, . . . , dp > 0. Then the R0-module Mi is generated by the elements

ra11 . . . rapp ms

where
∑
ajdj + degms = i. Since the dj > 0 and there are only finitely many ms’s, there are only

finitely many such elements. This proves the rest of (1).
To prove (2), note first that it is sufficient to show that M is finitely generated over R(d),

because the M (d,l) are R(d)-homomorphic images (i.e. quotient by the M (d′,l) for d′ 6= d). Now M
is generated as R0-module by the ra11 . . . r

ap
p ms for a1, . . . , ap ≥ 0 and s = 1, . . . , k. In particular,

by the euclidean algorithm in elementary number theory, it follows that the ra11 . . . r
ap
p ms for

a1, . . . , ap ∈ [0, d − 1] and s = 1, . . . , k generate M over R(d), as each power rdi ∈ R(d). In
particular, R is finitely generated over R(d).

When we apply (2) to the finitely generated R-module R+, it follows that R
(d)
+ is a finitely gen-

erated R(d)-module. This implies that R(d) is a finitely generated R0-algebra by Proposition 1.14.N
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In particular, by ?? (later in the book!) R is integral over R(d): this means that each element
of R satisfies a monic polynomial equation with R(d)-coefficients. This can easily be seen directly.
The dth power of a homogeneous element lies in R(d).

Remark Part (3), the preservation of the basic finiteness condition, could also be proved as
follows, at least in the noetherian case (with S = R(d)). We shall assume familiarity with the
material in ?? for this brief digression.

Lemma 1.18 Suppose R0 ⊂ S ⊂ R is an inclusion of rings with R0 noetherian. Suppose R is
a finitely generated R0-algebra and R/S is an integral extension. Then S is a finitely generated
R0-algebra.

In the case of interest, we can take S = R(d). The point of the lemma is that finite generation can
be deduced for subrings under nice conditions.

Proof. We shall start by finding a subalgebra S′ ⊂ S such that R is integral over S′, but S′

is a finitely generated R0-algebra. The procedure will be a general observation of the flavor of
“noetherian descent” to be developed in ??. Then, since R is integral over S′ and finitely generated
as an algebra, it will be finitely generated as a S′-module. S, which is a sub-S′-module, will equally
be finitely generated as a S′-module, hence as an R0-algebra. So the point is to make S finitely
generated as a module over a “good” ring.

Indeed, let r1, . . . , rm be generators of R/R0. Each satisfies an integral equation rnkk +Pk(rk) =
0, where Pk ∈ S[X] has degree less than nk. Let S′ ⊂ S ⊂ R be the subring generated over R0 by
the coefficients of all these polynomials Pk.

Then R is, by definition, integral over S′. Since R is a finitely generated S′-algebra, it follows
by ?? that it is a finitely generated S′-module. Then S, as a S′-submodule is a finitely generated
S′-module by noetherianness. Therefore, S is a finitely generated R0-algebra. N

This result implies, incidentally, the following useful corollary:

Corollary 1.19 Let R be a noetherian ring. If a finite group G acts on a finitely generated R-
algebra S, the ring of invariants SG is finitely generated.

Proof. Apply Lemma 1.18 to R,SG, S. One needs to check that S is integral over SG. But each
s ∈ S satisfies the equation ∏

σ∈G
(X − σ(s)),

which has coefficients in SG. N

This ends the digression.

We next return to our main goals, and let R be a graded ring, finitely generated as an R0-
algebra, as before; let M be a finitely generated R-module. We show that we can have R(d)

generated by terms of degree d (i.e. “degree 1” if we rescale) for d chosen large.

Lemma 1.20 Hypotheses as above, there is a pair (d, n0) such that

RdMn = Mn+d

for n ≥ n0.

Proof. Indeed, select R-module generators m1, . . . ,mk ∈M and R0-algebra generators r1, . . . , rp ∈
R as in the proof of Proposition 1.17; use the same notation for their degrees, i.e. dj = deg rj . Let
d be the least common multiple of the dj . Consider the family of elements

si = r
d/di
i ∈ Rd.

8
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Then suppose m ∈ Mn for n > d + sup degmi. We have that m is a sum of products of powers
of the {rj} and the {mi}, each term of which we can assume is of degree n. In this case, since in
each term, at least one of the {rj} must occur to power ≥ d

dj
, we can write each term in the sum

as some sj times something in Mn−d.
In particular, Mn = RdMn−d. N

Proposition 1.21 Suppose R is a graded ring and finitely generated R0-algebra. Then there is
d ∈ N such that R(d) is generated over R0 by Rd.

What this proposition states geometrically is that if we apply the functor R 7→ R(d) for large d
(which, geometrically, is actually harmless), one can arrange things so that ProjR (not defined
yet!) is contained as a closed subscheme of ordinary projective space.

Proof. Consider R as a finitely generated, graded R-module. Suppose d′ is as in the Proposi-
tion 1.21 (replacing d, which we reserve for something else), and choose n0 accordingly. So we have
Rd′Rm = Rm+d′ whenever m ≥ n0. Let d be a multiple of d′ which is greater than n0.

Then, iterating, we have RdRn = Rd+n if n ≥ d since d is a multiple of d′. In particular, it
follows that Rnd = (Rd)

n for each n ∈ N, which implies the statement of the proposition. N

As we will see below, taking R(d) does not affect the Proj, so this is extremely useful.

Example 1.22 Let k be a field. Then R = k[x2] ⊂ k[x] (with the grading induced from k[x]) is
a finitely generated graded k-algebra, which is not generated by its elements in degree one (there
are none!). However, R(2) = k[x2] is generated by x2.

We next show that taking the R(d) always preserves noetherianness.

Proposition 1.23 If R is noetherian, then so is R(d) for any d > 0.

Proof. If R is noetherian, then R0 is noetherian and R is a finitely generated R0-algebra by
Theorem 1.15. Proposition 1.17 now implies that R(d) is also a finitely generated R0-algebra, so
it is noetherian. N

The converse is also true, since R is a finitely generated R(d)-module.

1.4 Localization of graded rings

Next, we include a few topics that we shall invoke later on. First, we discuss the interaction of ho-
mogeneity and localization. Under favorable circumstances, we can give Z-gradings to localizations
of graded rings.

Definition 1.24 If S ⊂ R is a multiplicative subset of a graded (or Z-graded) ring R consisting of
homogeneous elements, then S−1R is a Z-graded ring: we let the homogeneous elements of degree
n be of the form r/s where r ∈ Rn+deg s. We write R(S) for the subring of elements of degree zero;
there is thus a map R0 → R(S).

If S consists of the powers of a homogeneous element f , we write R(f) for RS . If p is a
homogeneous ideal and S the set of homogeneous elements of R not in p, we write R(p) for R(S).

Of course, R(S) has a trivial grading, and is best thought of as a plain, unadorned ring. We shall
show that R(f) is a special case of something familiar.

Proposition 1.25 Suppose f is of degree d. Then, as plain rings, there is a canonical isomorphism
R(f) ' R(d)/(f − 1).

9
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Proof. The homomorphism R(d) → R(f) is defined to map g ∈ Rkd to g/fd ∈ R(f). This is then
extended by additivity to non-homogeneous elements. It is clear that this is multiplicative, and
that the ideal (f − 1) is annihilated by the homomorphism. Moreover, this is surjective.

We shall now define an inverse map. Let x/fn ∈ R(f); then x must be a homogeneous element

of degree divisible by d. We map this to the residue class of x in R(d)/(f −1). This is well-defined;
if x/fn = y/fm, then there is N with

fN (xfm − yfn) = 0,

so upon reduction (note that f gets reduced to 1!), we find that the residue classes of x, y are the
same, so the images are the same.

Clearly this defines an inverse to our map. N

Corollary 1.26 Suppose R is a graded noetherian ring. Then each of the R(f) is noetherian.

Proof. This follows from the previous result and the fact that R(d) is noetherian (Proposition 1.23).

More generally, we can define the localization procedure for graded modules.

Definition 1.27 Let M be a graded R-module and S ⊂ R a multiplicative subset consisting
of homogeneous elements. Then we define M(S) as the submodule of the graded module S−1M
consisting of elements of degree zero. When S consists of the powers of a homogeneous element
f ∈ R, we write M(f) instead of M(S). We similarly define M(p) for a homogeneous prime ideal p.

Then clearly M(S) is a R(S)-module. This is evidently a functor from graded R-modules to
R(S)-modules.

We next observe that there is a generalization of Proposition 1.25.

Proposition 1.28 Suppose M is a graded R-module, f ∈ R homogeneous of degree d. Then there
is an isomorphism

M(f) 'M (d)/(f − 1)M (d)

of R(d)-modules.

Proof. This is proved in the same way as Proposition 1.25. Alternatively, both are right-exact func-
tors that commute with arbitrary direct sums and coincide on R, so must be naturally isomorphic
by a well-known bit of abstract nonsense.1 N

In particular:

Corollary 1.29 Suppose M is a graded R-module, f ∈ R homogeneous of degree 1. Then we have

M(f) 'M/(f − 1)M 'M ⊗R R/(f − 1).

1.5 The Proj of a ring

Let R = R0 ⊕R1 ⊕ . . . be a graded ring.

Definition 1.30 Let ProjR denote the set of homogeneous prime ideals of R that do not contain
the irrelevant ideal R+.2

1Citation needed.
2Recall that an ideal a ⊂ R for R graded is homogeneous if the homogeneous components of a belong to a.
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We can put a topology on ProjR by setting, for a homogeneous ideal b,

V (b) = {p ∈ ProjR : p ⊃ b}
. These sets satisfy

1. V (
∑

bi) =
⋂
V (bi).

2. V (ab) = V (a) ∪ V (b).

3. V (Rad a) = V (a).

Note incidentally that we would not get any more closed sets if we allowed all ideals b, since to
any b we can consider its “homogenization.” We could even allow all sets.

In particular, the V ’s do in fact yield a topology on ProjR (setting the open sets to be com-
plements of the V ’s). As with the affine case, we can define basic open sets. For f homogeneous of
positive degree, define D′(f) to be the collection of homogeneous ideals (not containing R+) that
do not contain f ; clearly these are open sets.

Let a be a homogeneous ideal. Then we claim that:

Lemma 1.31 V (a) = V (a ∩R+).

Proof. Indeed, suppose p is a homogeneous prime not containing S+ such that all homogeneous
elements of positive degree in a (i.e., anything in a ∩R+) belongs to p. We will show that a ⊂ p.

Choose a ∈ a ∩ R0. It is sufficient to show that any such a belongs to p since we are working
with homogeneous ideals. Let f be a homogeneous element of positive degree that is not in p.
Then af ∈ a ∩R+, so af ∈ p. But f /∈ p, so a ∈ p. N

Thus, when constructing these closed sets V (a), it suffices to work with ideals contained in
the irrelevant ideal. In fact, we could take a in any prescribed power of the irrelevant ideal, since
taking radicals does not affect V .

Proposition 1.32 We have D′(f)∩D′(g) = D′(fg). Also, the D′(f) form a basis for the topology
on ProjR.

Proof. The first part is evident, by the definition of a prime ideal. We prove the second. Note that
V (a) is the intersection of the V ((f)) for the homogeneous f ∈ a∩R+. Thus ProjR− V (a) is the
union of these D′(f). So every open set is a union of sets of the form D′(f). N

We shall now show that the topology is actually rather familiar from the affine case, which is
not surprising, since the definition is similar.

Proposition 1.33 D′(f) is homeomorphic to SpecR(f) under the map

p→ pRf ∩R(f)

sending homogeneous prime ideals of R not containing f into primes of R(f).

Proof. Indeed, let p be a homogeneous prime ideal of R not containing f . Consider φ(p) =
pRf ∩ R(f) as above. This is a prime ideal, since pRf is a prime ideal in Rf by basic properties
of localization, and R(f) ⊂ Rf is a subring. (It cannot contain the identity, because that would
imply that a power of f lay in p.)

So we have defined a map φ : D′(f)→ SpecR(f). We can define its inverse ψ as follows. Given
q ⊂ R(f) prime, we define a prime ideal p = ψ(q) of R by saying that a homogeneous element

x ∈ R belongs to p if and only if xdeg f/fdeg x ∈ q. It is easy to see that this is indeed an ideal,
and that it is prime by Lemma 1.12.

Furthermore, it is clear that φ◦ψ and ψ◦φ are the identity. This is because x ∈ p for p ∈ D′(f)
if and only if fnx ∈ p for some n.

We next need to check that these are continuous, hence homeomorphisms. If a ⊂ R is a
homogeneous ideal, then V (a) ∩D′(f) is mapped to V (aRf ∩R(f)) ⊂ SpecR(f), and vice versa.N
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§2 Filtered rings

In practice, one often has something weaker than a grading. Instead of a way of saying that an
element is of degree d, one simply has a way of saying that an element is “of degree at most d.”
This leads to the definition of a filtered ring (and a filtered module). We shall use this definition
in placing topologies on rings and modules and, later, completing them.

2.1 Definition

Definition 2.1 A filtration on a ring R is a sequence of ideals R = I0 ⊃ I1 ⊃ . . . such that
ImIn ⊂ Im+n for each m,n ∈ Z≥0. A ring with a filtration is called a filtered ring.

A filtered ring is supposed to be a generalization of a graded ring. If R =
⊕
Rk is graded, then

we can make R into a filtered ring in a canonical way by taking the ideal Im =
⊕

k≥mRk (notice
that we are using the fact that R has only pieces in nonnegative gradings!).

We can make filtered rings into a category: a morphism of filtered rings φ : R → S is a
ring-homomorphism preserving the filtration.

Example 2.2 (The I-adic filtration) Given an ideal I ⊂ R, we can take powers of I to generate
a filtration. This filtration R ⊃ I ⊃ I2 ⊃ . . . is called the I-adic filtration, and is especially
important when R is local and I the maximal ideal.

If one chooses the polynomial ring k[x1, . . . , xn] over a field with n variables and takes the
(x1, . . . , xn)-adic filtration, one gets the same as the filtration induced by the usual grading.

Example 2.3 As a specialization of the previous example, consider the power series ring R = k[[x]]
over a field k with one indeterminate x. This is a local ring (with maximal ideal (x)), and it has a
filtration with Ri = (xi). Note that this ring, unlike the polynomial ring, is not a graded ring in
any obvious way.

When we defined graded rings, the first thing we did thereafter was to define the notion of a
graded module over a graded ring. We do the analogous thing for filtered modules.

Definition 2.4 Let R be a filtered ring with a filtration I0 ⊃ I1 ⊃ . . . . A filtration on an
R-module M is a decreasing sequence of submodules

M = M0 ⊃M1 ⊃M2 ⊃ . . .

such that ImMn ⊂ Mn+m for each m,n. A module together with a filtration is called a filtered
module.

As usual, there is a category of filtered modules over a fixed filtered ring R, with morphisms
the module-homomorphisms that preserve the filtrations.

Example 2.5 (The I-adic filtration for modules) Let R be any ring and I ⊂ R any ideal.
Then if we make R into a filtered ring with the I-adic filtration, we can make any R-module M
into a filtered R-module by giving M the filtration

M ⊃ IM ⊃ I2M ⊃ . . . ,

which is also called the I-adic filtration.

12
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2.2 The associated graded

We shall now describe a construction that produces graded things from filtered ones.

Definition 2.6 Given a filtered ring R (with filtration {In}), the associated graded ring gr(R)
is the graded ring

gr(R) =

∞⊕
n=0

In/In+1.

This is made into a ring by the following procedure. Given a ∈ In representing a class a ∈
In/In+1 and b ∈ Im representing a class b ∈ Im/Im+1, we define ab to be the class in In+m/In+m+1

represented by ab.

It is easy to check that if different choices of representing elements a, b were made in the above
description, the value of ab thus defined would still be the same, so that the definition is reasonable.

Example 2.7 Consider R = Z(p) (the localization at (p)) with the (p)-adic topology. Then
gr(R) = Z/p[t], as a graded ring. For the successive quotients of ideals are of the form Z/p, and it
is easy to check that multiplication lines up in the appropriate form.

In general, as we will see below, when one takes the gr of a noetherian ring with the I-adic
topology for some ideal I, one always gets a noetherian ring.

Definition 2.8 Let R be a filtered ring, and M a filtered R-module (with filtration {Mn}). We
define the associated graded module gr(M) as the graded gr(R)-module

gr(M) =
⊕
n

Mn/Mn+1

where multiplication by an element of gr(R) is defined in a similar manner as above.

In other words, we have defined a functor gr from the category of filtered R-modules to the
category of graded gr(R) modules.

Let R be a filtered ring, and M a finitely generated filtered R-module. In general, gr(M) cannot
be expected to be a finitely generated gr(R)-module.

Example 2.9 Consider the ring Z(p) (the localization of Z at p), which we endow with the p2-adic
(i.e., (p2)-adic) filtration. The associated graded is Z/p2[t].

Consider M = Z(p) with the filtration Mm = (pm), i.e. the usual (p)-adic topology. The claim
is that gr(M) is not a finitely generated Z/p2[t]-module. This will follow from ?? below, but we can
see it directly: multiplication by t acts by zero on gr(M) (because this corresponds to multiplying
by p2 and shifting the degree by one). However, gr(M) is nonzero in every degree. If gr(M) were
finitely generated, it would be a finitely generated Z/p2Z-module, which it is not.

2.3 Topologies

We shall now see that filtered rings and modules come naturally with topologies on them.

Definition 2.10 A topological ring is a ring R together with a topology such that the natural
maps

R×R→ R, (x, y) 7→ x+ y

R×R→ R, (x, y) 7→ xy

R→ R, x 7→ −x

are continuous (where R×R has the product topology).

13
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TO BE ADDED: discussion of algebraic objects in categories
In practice, the topological rings that we will be interested will exclusively be linearly topolo-

gized rings.

Definition 2.11 A topological ring is linearly topologized if there is a neighborhood basis at
0 consisting of open ideals.

Given a filtered ring R with a filtration of ideals {In}, we can naturally linearly topologize R.
Namely, we take as a basis the cosets x + In for x ∈ R,n ∈ Z≥0. It is then clear that the {In}
form a neighborhood basis at the origin (because any neighborhood x+ In containing 0 must just
be In!).

Example 2.12 For instance, given any ring R and any ideal I ⊂ R, we can consider the I-adic
topology on R. Here an element is “small” (i.e., close to zero) if it lies in a high power of I.

Proposition 2.13 A topology on R defined by the filtration {In} is Hausdorff if and only if
⋂
In =

0.

Proof. Indeed, to say that R is Hausdorff is to say that any two distinct elements x, y ∈ R can be
separated by disjoint neighborhoods. If

⋂
In = 0, we can find N large such that x− y /∈ IN . Then

x + IN , y + IN are disjoint neighborhoods of x, y. The converse is similar: if
⋂
In 6= 0, then no

neighborhoods can separate a nonzero element in
⋂
In from 0. N

Similarly, if M is a filtered R-module with a filtration {Mn}, we can topologize M by choosing
the {Mn} to be a neighborhood basis at the origin. Then M becomes a topological group, that is
a group with a topology such that the group operations are continuous. In the same way, we find:

Proposition 2.14 The topology on M is Hausdorff if and only if
⋂
Mn = 0.

Moreover, because of the requirement that RmMn ⊂Mn+m, it is easy to see that the map

R×M →M

is itself continuous. Thus, M is a topological module.
Here is another example. Suppose M is a linearly topologized module with a basis of submod-

ules {Mα} at the origin. Then any submodule N ⊂ M becomes a linearly topologized module
with a basis of submodules {N ∩Mα} at the origin with the relative topology.

Proposition 2.15 Suppose M is filtered with the {Mn}. If N ⊂ M is any submodule, then the
closure N is the intersection

⋂
N +Mn.

Proof. Recall that x ∈ N is the same as stipulating that every neighborhood of x intersect N .
In other words, any basic neighborhood of x has to intersect N . This means that for each n,
x+Mn ∩N 6= ∅, or in other words x ∈Mn +N . N

§3 The Artin-Rees Lemma

We shall now show that for noetherian rings and modules, the I-adic topology is stable under
passing to submodules; this useful result, the Artin-Rees lemma, will become indispensable in our
analysis of dimension theory in the future.

More precisely, consider the following problem. Let R be a ring and I ⊂ R an ideal. Then for
any R-module M , we can endow M with the I-adic filtration {InM}, which defines a topology on
M . If N ⊂M is a submodule, then N inherits the subspace topology from M (i.e. that defined by
the filtration {InM ∩N}). But N can also be topologized by simply taking the I-adic topology
on it. The Artin-Rees lemma states that these two approaches give the same result.

14
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3.1 The Artin-Rees Lemma

Theorem 3.1 (Artin-Rees lemma) Let R be noetherian, I ⊂ R an ideal. Suppose M is a
finitely generated R-module and M ′ ⊂ M a submodule. Then the I-adic topology on M induces
the I-adic topology on M ′. More precisely, there is a constant c such that

In+cM ∩M ′ ⊂ InM ′.

So the two filtrations {InM ∩M ′}, {InM ′} on M ′ are equivalent up to a shift.

Proof. The strategy to prove Artin-Rees will be as follows. Call a filtration {Mn} on an R-module
M (which is expected to be compatible with the I-adic filtration on R, i.e. InMm ⊂ Mm+n for
all n,m) I-good if IMn = Mn+1 for large n � 0. Right now, we have the very I-good filtration
{InM} on M , and the induced filtration {InM ∩ M ′} on M ′. The Artin-Rees lemma can be
rephrased as saying that this filtration on M ′ is I-good: in fact, this is what we shall prove. It
follows that if one has an I-good filtration on M , then the induced filtration on M ′ is itself I-good.

To do this, we shall give an interpretation of I-goodness in terms of the blowup algebra, and
use its noetherianness. Recall that this is defined as S = R⊕ I ⊕ I2 + . . . , where multiplication is
defined in the obvious manner (see Example 1.6). It can be regarded as a subring of the polynomial
ring R[t] where the coefficient of ti is required to be in Ii. The blowup algebra is clearly a graded
ring.

Given a filtration {Mn} on an R-module M (compatible with the I-adic filtration of M), we
can make

⊕∞
n=0Mn into a graded S-module in an obvious manner.

Here is the promised interpretation of I-goodness:

Lemma 3.2 Then the filtration {Mn} of the finitely generated R-module M is I-good if and only
if
⊕
Mn is a finitely generated S-module.

Proof. Let S1 ⊂ S be the subset of elements of degree one. If
⊕
Mn is finitely generated as an

S-module, then S1(
⊕
Mn) and

⊕
Mn agree in large degrees by Lemma 1.20; however, this means

that IMn−1 = Mn for n� 0, which is I-goodness.
Conversely, if {Mn} is an I-good filtration, then once the I-goodness starts (say, for n > N ,

we have IMn = Mn+1), there is no need to add generators beyond MN . In fact, we can use
R-generators for M0, . . . ,MN in the appropriate degrees to generate

⊕
Mn as an R′-module. N

Finally, let {Mn} be an I-good filtration on the finitely generated R-module M . Let M ′ ⊂M
be a submodule; we will, as promised, show that the induced filtration on M ′ is I-good. Now
the associated module

⊕∞
n=0(InM ∩M ′) is an S-submodule of

⊕∞
n=0Mn, which by Lemma 3.2

is finitely generated. We will show next that S is noetherian, and consequently submodules of
finitely generated modules are finitely generated. Applying Lemma 3.2 again, we will find that the
induced filtration must be I-good.

Lemma 3.3 Hypotheses as above, the blowup algebra R′ is noetherian.

Proof. Choose generators x1, . . . , xn ∈ I; then there is a map R[y1, . . . , yn] → S sending yi → xi
(where xi is in degree one). This is surjective. Hence by the basis theorem (??), R′ is noetherian.N

3.2 The Krull intersection theorem

We now prove a useful consequence of the Artin-Rees lemma and Nakayama’s lemma. In fancier
language, this states that the map from a noetherian local ring into its completion is an embedding.
A priori, this might not be obvious. For instance, it might be surprising that the inverse limit of
the highly torsion groups Z/pn turns out to be the torsion-free ring of p-adic integers.
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Theorem 3.4 (Krull intersection theorem) Let R be a local noetherian ring with maximal
ideal m. Then, ⋂

mi = (0).

Proof. Indeed, the m-adic topology on
⋂
mi is the restriction of the m-adic topology of R on

⋂
mi

by the Artin-Rees lemma (Theorem 3.1). However,
⋂
mi is contained in every m-adic neighborhood

of 0 in R; the induced topology on
⋂

mi is thus the indiscrete topology.
But to say that the m-adic topology on a module N is indiscrete is to say that mN = N , so

N = 0 by Nakayama. The result is thus clear.

By similar logic, or by localizing at each maximal ideal, we find:

Corollary 3.5 If R is a commutative ring and I is contained in the Jacobson radical of R, then⋂
In = 0.

It turns out that the Krull intersection theorem can be proved in the following elementary
manner, due to Perdry in [Per04]. The argument does not use the Artin-Rees lemma. One can
prove:

Theorem 3.6 ([Per04]) Suppose R is a noetherian ring, I ⊂ R an ideal. Suppose b ∈
⋂
In.

Then as ideals (b) = (b)I.

In particular, it follows easily that
⋂
In = 0 under either of the following conditions:

1. I is contained in the Jacobson radical of R.

2. R is a domain and I is proper.

Proof. Let a1, . . . , ak ∈ I be generators. For each n, the ideal In consists of the values of all
homogeneous polynomials in R[x1, . . . , xk] of degree n evaluated on the tuple (a1, . . . , ak), as one
may easily see.

It follows that if b ∈
⋂
In, then for each n there is a polynomial Pn ∈ R[x1, . . . , xk] which is

homogeneous of degree n and which satisfies

Pn(a1, . . . , ak) = b.

The ideal generated by all the Pn in R[x1, . . . , xk] is finitely generated by the Hilbert basis theorem.
Thus there is N such that

PN = Q1P1 +Q2P2 + · · ·+QN−1PN−1

for some polynomials Qi ∈ R[x1, . . . , xk]. By taking homogeneous components, we can assume
moreover that Qi is homogeneous of degree N − i for each i. If we evaluate each at (a1, . . . , ak) we
find

b = b(Q1(a1, . . . , ak) + · · ·+QN−1(a1, . . . , ak)).

But the Qi(a1, . . . , ak) lie in I as all the ai do and Qi is homogeneous of positive degree. Thus b
equals b times something in I. N
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